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We study the effects of the rippling of a graphene sheet on quasiparticle dispersion. This is achieved
using a generalization to the honeycomb lattice of the momentum average approximation, which is
accurate for all coupling strengths and at all energies. We show that even though the position of the Dirac
points may move and the Fermi speed can be renormalized significantly, quasiparticles with very long
lifetimes survive near the Dirac points even for very strong couplings.
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Graphene [1] has been a hot research topic recently [2],
primarily due to its Dirac points and the new paradigm of
relativisticlike electron dispersion in their vicinity. Such
dispersion is predicted by almost any hopping model on the
two-dimensional (2D) honeycomb lattice. However, 2D
systems should not have long-range order [3], and indeed,
free-standing graphene sheets are rippled [4]. In epitaxial
graphene [5], coupling to substrate phonons becomes im-
portant. Both of these can be modeled as Holstein-like
coupling of electrons to out-of-plane optical phonons [6].
Here we investigate the effect of such coupling on the
electronic dispersion.

This issue is important because we know from studies of
Holstein polarons on simple cubic lattices that even weak-
to-moderate electron-phonon coupling has significant ef-
fects [7]; while a polaron band with infinite lifetime ap-
pears at very low energies, the higher-energy spectral
weight broadens considerably. In other words, phonon
emission and absorption leads to very short lifetimes for
all higher-energy states. This raises the possibility that the
Dirac points, which are at high energies above the bottom
of the band, may also be ‘‘washed out’’ into an incoherent
and featureless background.

We study this problem, for a single electron. Of course,
graphene is a half-metal and phonon-mediated electron-
electron interactions may lead to further broadening. We
assume that such effective interactions, like the Coulomb
interactions, have little effect on lifetimes [8].

Our results show that well-defined Dirac points with
long-lived quasiparticles are preserved even for extremely
strong electron-phonon coupling, where most of the rest of
the spectrum is highly incoherent. Thus, these most inter-
esting features are very robust, although their energies are
shifted somewhat and the slope may be renormalized.
These results justify why one can ignore the rippling
effects and assume a 2D lattice with long-lived quasipar-
ticles, as has been done so far. This provides a valid
description near the Dirac points, but would fail if the
Fermi energy was anywhere else.

We use a generalization of the momentum average (MA)
approximation [9] to calculate the single-electron Green’s
function. MA was shown to be accurate for the entire spec-

trum (not just low energies) for all coupling strengths and
in all dimensions, for such problems [10,11]. This is so be-
cause the MA spectral weight obeys exactly a significant
number of sum rules, and is accurate for all higher order
ones. It can also be systematically improved [11]. We use
here the generalizations of the MA�0� and MA�1� levels.
There is no difference between their predictions near the
Dirac points, showing that convergence is reached and we
need not go to a higher level. The results shown are from
MA�1�, whose spectral weight fulfills exactly the first 8 sum
rules.
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k space, the Holstein Hamiltonian for an electron coupled
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where cy and by (dy and By) create electrons, respectively,
phonons on the two sublattices. The first term is the kinetic
energy of the electron for nearest-neighbor hopping, with
�k � �t

P3
i�1 e

{k�i . Generalization to other models is
straightforward. The second term describes the optical
phonons of frequency �, for the two sublattices. The
Holstein coupling of the electron to phonons on the same
site is described by the last term, g being the coupling
strength. All k sums are over the Brillouin zone (BZ),
defined by the reciprocal lattice vectors b1;2 �

2�=3a�1;�
���
3
p
�. We set t � 1, @ � 1. N ! 1 is the num-

ber of unit cells.
Given the bipartite lattice, the single-electron Green’s

function can be defined as a �2	 2� matrix:
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Ĝ�!�� cykd

y
k �j0i

�
h0jckĜ�!�c
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where Ĝ�!� � �!� i��H ��1 and j0i is the vacuum.
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The resolvent for the free electron is Ĝ0�!� �
�!� i��H 0�

�1, where H 0 �H jg�0. The free-
electron propagator can be calculated straightforwardly:
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G0S�k; !� ei��k�G0A�k; !�

e�i��k�G0A�k; !� G0S�k; !�

� �
;

where the symmetric and antisymmetric parts are
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�
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!� i�� j��k�j

�
(2)

while the phase factor is ei��k� � �k=j�kj. As expected in
a bipartite lattice, two symmetric bands arise with energy
dispersions given by Ek� � �j�kj where j�kj �

�1� 4cos2�
��
3
p

2 kya� � 4 cos�
��
3
p

2 kya� cos�32 kxa��
1=2. In the

first Brillouin zone, the dispersion vanishes at the two
Dirac points K, K0 located at 2�=3a�1;�1=

���
3
p
�.

We now describe briefly the MA�1� approximation for
calculating �G�k; !�, emphasizing the differences from the
derivation of Ref. [11], due to the two-site basis. Like
there, first we generate the equations of motion for this
Green’s function, and all the higher order ones it is linked
to. This is achieved by using repeatedly Dyson’s equation
Ĝ�!� � Ĝ0�!� � Ĝ�!�V̂Ĝ0�!�, where V̂ �H �H 0 is
the electron-phonon interaction. The first equation is
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where �F1�k;q1; !� is the one-phonon Green’s function:
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The equation of motion for �F1 links it back to �G, but also to
two-phonon Green’s functions. The two phonons are both
on the same sublattice as the electron, or one may be on the
other sublattice. The equations for these link them back to
�F1, but also to a new one-phonon Green’s function �F
1,

which has the phonon on the different sublattice than the
electron. And, of course, to a multitude of three-phonon
Green’s functions. And so on and so forth. All these higher-
order Green’s functions must be proportional to the 2	 2
matrix �G�k; !� [11], so it is convenient to rescale them
accordingly, e.g., �f1�k;q1; !� � g

����
N
p

�G�1�k; !� 	
�F1�k;q1; !�, and similarly for all the other ones (see

below). Combining this with Eq. (3), we find the standard
solution �G�k; !� � � �G�1

0 �k; !� �
���k; !���1, where the

self-energy is
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Our task is thus to calculate the momentum average over
the first Brillouin zone of the generalized Green’s function
�f1�k;q1; !�. As just discussed, this is the solution of an
infinite system of coupled equations of motion. We cannot
solve it exactly, so we proceed to make simplifications. At
the MA�0� level, we replace all free propagators that appear
in all these equations by their momentum averages over the
first Brillouin zone. Within MA�1�, we keep the equations
for �f1 and �f?1 unchanged, and make the MA approximation
only from the second level on, i.e., for free propagators of
energy !� n� where n � 2. Either of these approxima-
tions allows us to solve the resulting equations of motion
exactly. We proceed to discuss the MA�1� solution in more
detail.

As for the simpler case presented at length in Ref. [11],
the simplified MA�1� equations of motion can be solved in
terms of total (and partial) momentum averages of these
higher Green’s functions, over all (all minus one) of their
phonons’ momenta. After such total (partial) averages,
only contributions from Green’s function which have all
(all except one) of their phonons on the same sublattice as
the electron are nonvanishing. This is because one can
easily check, using Fourier transforms, that

 

X
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. . . byqn � N�n�1=2�
X
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eik�Ricyi �b
y
i �
n:

If any phonon is on the other sublattice, the sum over
its momentum vanishes, since it cannot be at the same
site as the electron. This shows the variational meaning of
these approximations [11,12]: in MA�0�, a phonon cloud
can appear at any one site. In MA�1� there can also be an
additional phonon anywhere else in the system. MA�1� thus
describes correctly the polaron� one-phonon continuum
[11], but this is a very low-energy feature compared to the
Dirac points. Diagrammatically, both sum all the self-
energy diagrams, but each diagram is simplified [11].

To summarize, the only Green’s functions whose total or
partial averages remain finite are (after rescaling):
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Ĝ cyk�qT

byq1
. . . byqn dyk�qT

Byq1
. . .Byqn

� �
j0i;

�f?n �q1; . . . ;qn� � gnN�n=2� �G�1�k; !�h0j
ck
dk

� �
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Byq1
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Here, qT �
Pn
i�1 qi, and for simplicity of notation we do not write explicitly the k, ! dependence from now on.

We define the total momentum averages �F n � 1=NnP
q1...qn

�fn�q1 . . . qn�, and the partial momentum averages
� �fn�q1� � 1=Nn�1P

q2...qn
�fn�q1 . . . qn� � �F n, � �f?n �q1� � 1=Nn�1P

q2...qn
�f?n �q1 . . . qn�. In terms of these, the equations
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of motion are, for any n � 2

 

�F n � g0S;n�ng2 �F n�1 �
�F n�1�; (5)

 � �fn�q1� � g0S;n��n� 1�g2� �fn�1�q1� � � �fn�1�q1��; (6)

 � �f?n �q1� � g0S;n��n� 1�g2� �f?n�1�q1� � � �f?n�1�q1��; (7)

where we use the shorthand notation

 g0S;n 
 g0S�!� n�� �
1

N

X
k

G0S�k; !� n��; (8)

where the free propagator is given in Eq. (2). For N ! 1,
this is a simple 2D integral over the Brillouin zone.

Recurrence equations of the type (5)–(7) have solutions
in terms of the continued fractions An�!� [11]:

 An�!� �
ng0S;n

1� g2g0S;nAn�1�!�
: (9)

In particular:

 

�F 2 � g2A2�!� �F 1; (10)

 � �f2�q1� � g2A1�!���� �f1�q1�; (11)

 � �f?2 �q1� � g2A1�!���� �f?1 �q1�: (12)

These can be combined with the exact equations of
motion for the original (rescaled) �f1�q1� and �f?1 �q1� one-
phonon Green’s functions, which read
 

�f1�q1� � G0S�k� q1; !���
�
g2 �

1

N

X
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�f2�q1;q2�
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�G0A�k� q1; !���
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X
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�f?1 �q1� � G0A�k� q1; !���
�
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1
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X
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�f2�q1;q2�

�

�G0S�k� q1; !���
1

N

X
q2

�f?2 �q1;q2�: (14)

From these we can easily derive equations for �F 1,
� �f1�q1�, � �f?1 �q1� which combined with Eqs. (10)–(12)
allow us to calculate all of these quantities. In particular,
we find ��MA�1� �!� �

�F 1 � 1�MA�1� �!�; i.e., it is diagonal
and momentum independent [13], where

 �MA�1� �!� �
g2g0S� ~!�

1� g2g0S� ~!��A2�!� � A1�!����
(15)

with ~! � !��� g2A1�!���. As a result, we obtain
�G�k; !� � �G0�k; !��MA�1� �!��. This can now easily be

extended to lattices with even more complex unit cells.
First, we plot in Fig. 1 the spectral weight A�k; !� �

� 1
2� Im�Tr �G�k; !�� along high-symmetry cuts in the BZ.

This corresponds to fairly weak electron-phonon interac-
tions, with an effective coupling � � g2=�3t�� � 0:5. The
effective coupling is defined such that the crossover from
large to small polarons is observed for �� 1, as usual [7].
As expected, the lowest-energy feature is the sharp polaron
band, whose dispersion flattens out just below the
polaron� one-phonon continuum. Because its quasipar-
ticle (qp) weight decreases away from k � 0, it is hard
to see it in this region. We have verified that all expected
behavior of the ground-state energy, qp weight, effective
mass, average number of phonons in the cloud, etc., are
indeed similar to those expected for Holstein polarons.

Above the polaron band, we see the polaron�
one-phonon continuum, plus all higher-energy features
which remain centered around the corresponding energies
of the free electron. Already there is significant broadening
at all higher energies, except near the Dirac points, which
continue to be very sharp, indicating long lifetimes.

This is further analyzed in Fig. 2, where we present the
imaginary part of the self-energy for two different phonon
energies, and for different coupling strengths, in the vicin-
ity of the Dirac points. Since at the MA�1� level the self-

FIG. 1 (color online). Spectral weight along high-symmetry
cuts in the Brillouin zone, for � � 0:25t and � � 0:5.
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FIG. 2 (color online). Imaginary part of the self-energy for
� � 0:07t (left) and � � 0:25t (right).
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energy is still momentum independent, the characteristic
lifetime is just ���1=Im���. The results in Fig. 2 show
that as the coupling, and thus the electron-phonon scatter-
ing, is increased, lifetimes become shorter and shorter.
However, in a relatively narrow energy interval, the life-
times remain very long even at extremely strong couplings
which are well into the small polaron regime. In other
words, well-defined Dirac points still exist, although their
energy shifts monotonically from !K � 0 at weak cou-
pling to !K � 2� at strong coupling. Note that for very
strong couplings one can also observe the appearance of
resonances spaced by �, which signal the Lang-Firsov
states, expected when �! 1 [14,15].

Besides the shift in the energy of the Dirac points, we
also find significant renormalization (decrease) of the ef-
fective ‘‘speed of light’’ with increased coupling. Also, the
upper branch has much longer qp lifetimes. These points
are illustrated in Fig. 3, where we plot the spectral weight
for k near the K Dirac point at various couplings, together
with the free-electron dispersion (red or gray lines). They
also agree with the weak-coupling results of Ref. [6].

One may wonder if these results are an artifact due to the
k-independent self-energy produced by MA�1� [13]. This
cannot be the case, since MA�1� obeys exactly 8 spectral
weight sum-rules for each value of k, so significant spec-
tral weight shifts necessary for the disappearance of the

Dirac points are simply impossible. The explanation for
this comes from rewriting Eq. (8) as g0S�!� �

1
2 	R

d�g����1=�!� �� i�� � 1=�!� �� i���, where
g��� is the free-electron density of states (DOS). The
largest contributions come from ���!; however, near
the Dirac points !� 0 and the DOS vanishes. As a result,
the self-energy of Eq. (15) remains small near (just above)
the Dirac points, because g0S� ~!� ! 0.

We conclude that well-defined Dirac points are a very
robust feature of the graphene, i.e., rather insensitive to
rippling effects or, for epitaxial graphene, to the nature of
the substrate and the buckling due to mismatching.
Experimentally this could be verified by measuring the
‘‘speed of light’’ as a function of type of substrate, or by
tuning the coupling to the substrate [16]. This behavior is
very fortunate, since it guarantees that the interesting
physics expected because of the Dirac points is not affected
by such effects. It also explains why rippling can be
neglected when studying these quasiparticles, e.g., in their
interactions with in-plane phonons [17].
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