
OFFPRINT

Holstein polaron: The effect of coupling to
multiple-phonon modes

L. Covaci and M. Berciu

EPL, 80 (2007) 67001

Please visit the new website
www.epljournal.org



Europhysics Letters (EPL) has a new online home at
www.epljournal.org

Take a look for the latest journal news and information on:

• reading the latest articles, free!

• receiving free e-mail alerts

• submitting your work to EPL

TAKE A LOOK AT
THE NEW EPL

www.epl journal.org



December 2007

EPL, 80 (2007) 67001 www.epljournal.org

doi: 10.1209/0295-5075/80/67001

Holstein polaron: The effect of coupling to multiple-phonon

modes

L. Covaci and M. Berciu

Department of Physics and Astronomy, University of British Columbia - Vancouver, BC, V6T 1Z1, Canada

received 30 August 2007; accepted in final form 12 October 2007
published online 2 November 2007

PACS 71.38.-k – Polarons and electron-phonon interactions
PACS 72.10.Di – Scattering by phonons, magnons, and other nonlocalized excitations
PACS 63.20.Kr – Phonon-electron and phonon-phonon interactions

Abstract – We investigate the effects of coupling to multiple-phonon modes on the properties of
a Holstein polaron. To this end, we generalize the Momentum Average approximations MA(0) and
MA(1) to deal with multiple-phonon modes. As for a single-phonon mode, these approximations are
found to be numerically very efficient. They become exact for very weak or very strong couplings,
and are highly accurate in the intermediate regimes, e.g. the spectral weights obey exactly the
first six, respectively eight, sum rules. Our results show that the effect on ground-state properties
is cumulative in nature. As a result, if the effective coupling to one mode is much larger than to all
the others, this mode effectively determines the ground-state properties. However, even very weak
coupling to a second phonon mode has important non-perturbational effects on the higher-energy
spectrum, in particular on the dispersion and the phonon statistics of the polaron band. This has
important consequences on the analysis and interpretation of data for real materials.

Copyright c© EPLA, 2007

The coupling of electrons to phonons is a widely studied
problem, because it leads to many interesting phenomena
such as conventional superconductivity or the formation
of polarons (composite objects comprised of an electron
and the surrounding phonon cloud), important in several
classes of materials. As a recent example, results from
angle-resolved photoemission spectroscopy [1] (ARPES)
have lead to new discussions about possible polaronic
effects in high-temperature superconductors [2].
Even though complex materials have many optical and

acoustic phonons, most theoretical studies of polaron
properties are of the Holstein model based on coupling
to a single optical phonon mode [3,4]. One reason is that
usually there is one optical mode to which the coupling is
strongest, and one assumes that the effects of the other
modes are perturbationally small. Equally importantly,
the efficiency of various numerical methods [4] used to
study the single-mode Holstein model in the intermediate
coupling regime, where no exact solutions are known,
suffers when the Hilbert space is enlarged by addition
of multiple phonon modes. In fact, generalizations of
numerical methods, such as path-integral Monte Carlo,
that may efficiently deal with multiple phonon modes, are
just being proposed [5]. To the best of our knowledge, there
are no results available in the current literature discussing

the effects on polaron properties coming from coupling to
multiple-phonon modes.
Recently, the so-called Momentum Average (MA)

analytical approximation [6,7] has been shown to be highly
accurate over most of the parameter space of the single-
mode Holstein polaron, while requiring a numerically triv-
ial effort irrespective of the dimensionality of the problem
or the strength of the coupling. Moreover, its accuracy can
be systematically improved [8]. Of course, for an exten-
sively studied problem such as the single-mode Holstein
polaron, the MA just reproduced already known results.
The hope is that this numerically efficient yet accurate
approach can be extended to Hamiltonians for which there
are few or no available numerical results. In such cases,
MA would be useful for a quick yet accurate survey of
properties in various regimes, which can then be followed
by quantitatively more accurate, but significantly more
time- and resource-consuming numerical simulations.
In this letter we demonstrate that MA can be general-

ized to deal with a Holstein polaron coupled to multiple-
phonon modes, without loss of accuracy when compared
to the single-mode results. This allows us to study, for
the first time, the effects of coupling to multiple-phonon
modes on the polaron properties, both ground-state and
higher energy. Our results are the first to highlight the
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importance of considering the coupling to multiple phonon
modes in real materials. As we show below, while for
ground-state properties these effects are rather trivial, the
higher-energy spectrum is significantly modified by addi-
tional phonon modes, even if coupling to them is perturba-
tionally small. This shows that neglect of all but the most
strongly coupled phonon mode is thoroughly unjustified.
Starting from the second quantization form of the

original Holstein Hamiltonian [9,10], we generalize it by
considering multiple dispersionless phonon modes, Ωα,
which have local interactions with the electrons:

H=
∑

k

ǫkc
†
kck+

∑

q,α

Ωαb
α†
q b
α
q

+
∑

α,k,q

gα√
N
c†k−qck(b

α†
q + b

α
−q). (1)

The first term describes a free electron on a d-dimensional
lattice with N sites and periodic boundary condition. The
spin of the electron is irrelevant, thus the spin index is
dropped. We use a free-electron dispersion corresponding
to nearest-neighbor hopping on a d-dimensional, simple
cubic-like lattice of constant a= 1, though this can be
trivially generalized to any other dispersion. The second
term describes the optical phonon modes with energies
Ωα, and the third term describes Holstein-like electron-
phonons couplings, characterized by coupling constants
gα. Momenta sums are over the Brillouin zone.
We focus on finding the polaron’s Green’s function [6,7]:

G(k, ω) = 〈0|ckĜ(ω)c†k|0〉, (2)

where Ĝ(ω) = [ω−H+ iη]−1 is the usual resolvent
(�= 1) and |0〉 is the vacuum. The poles of this Green’s
function mark the polaron spectrum, and ground-state
(GS) energies, effective masses, quasiparticle (qp) weights
and average phonon numbers can then be calculated
as discussed in ref. [7]. The spectral weight A(k, ω) =
− 1
π
G(k, ω) can also be directly compared against ARPES

results.
To simplify notation, we first assume that there are

only two phonon modes, and rename their operators as
bq (mode 1) and BQ (mode 2). The generalization to
more phonon modes is discussed below. We use repeat-
edly Dyson’s identity Ĝ(ω) = Ĝ0(ω)+ Ĝ(ω)V̂ Ĝ0(ω),
where Ĝ0(ω) = [ω−H0+ iη]−1 corresponds to the non-
interacting Hamiltonian, to generate an infinite system of
coupled equations involving G(k, ω) and the generalized
Green’s functions:

Fnm(k,q1, . . . ,qn;Q1, . . . ,Qm;ω) =

〈0|ckĜ(ω)c†kT b
†
q1
. . . b†qnB

†
Q1
. . . B†Qm |0〉.

Here kT = k−qT −QT , where qT =
∑n

i=1 qi and QT =
∑m

j=1Qj are the total momenta carried by the two types of
phonons. Arguments identical to those of ref. [8] show that
all functions Fnm are proportional to G(k, ω), because the

only inhomogeneous term in their recurrence relations is
proportional to this quantity. It is thus more convenient
to work with the rescaled functions:

fnm(k, {q}, {Q}, ω) =N
n+m
2
Fnm(k, {q}, {Q}, ω)

G(k, ω)
,

where we introduce the shorthand notations
{q} ≡ q1, . . . ,qn, {q}i ≡ q1, . . . ,qi−1,qi+1, . . . ,qn and
{q}n+1 ≡ q1, . . . ,qn,qn+1. The functions fnm are then
given by the recurrence relations

fnm({q}, {Q}) =G0(kT , ω−nΩ1−mΩ2)

×

⎡

⎣g1

n
∑

i=1

fn−1,m({q}i, {Q})+ g2
m
∑

j=1

fn,m−1({q}, {Q}j)

+
g1
N

∑

qn+1

fn+1,m({q}n+1, {Q})

+
g2
N

∑

Qm+1

fn,m+1({q}, {Q}m+1)

⎤

⎦, (3)

where f00 ≡ 1 by definition, the dependence on k, ω is
implicitly assumed for all other fnm, and G0(k, ω) =
(ω− ǫk+ iη)−1 is the free propagator.
The Green’s function has the standard form

G(k, ω) = [ω− ǫk−Σ(k, ω)+ iη]−1 , (4)

where the exact self-energy is given by

Σ(k, ω) =
g1
N

∑

q1

f10(k,q1, ω)+
g2
N

∑

Q1

f01(k,Q1, ω), (5)

and f10(k,q1, ω) and f01(k,Q1, ω) are the solutions of the
above set of recurrence relations, eqs. (3).

As for the single-mode problem, the MA(0) approxima-
tion is obtained by replacing the free propagator with its
momentum average over the Brillouin zone, in the r.h.s.
of each of eqs. (3):

G0(kT , ω−nΩ1−mΩ2)→ ḡ0(ω−nΩ1−mΩ2)≡ ḡ0(ωnm),

where from now we use the shorthand notation

ωnm = ω−nΩ1−mΩ2, (6)

and the momenta averages over the Brillouin zone

ḡ0(ω) =
1

N

∑

k

G0(k, ω)

are simple known functions1. The resulting simplified
recurrence relations can be solved in terms of the momen-
tum averaged functions

Fnm(ω) =
1

Nm+n

∑

{q},{Q}

fnm(k, {q}, {Q}, ω). (7)

1Expressions of ḡ0(ω) for nearest-neighbor hopping on simple
cubic lattice in d= 1, 2, 3 are listed in ref. [7].
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Thus, the momentum-independent MA(0) self-energy is

ΣMA(0)(ω) = g1F10(ω)+ g2F01(ω),

while the recurrence relations (3) become

Fnm(ω) = ḡ0(ωnm)[ng1Fn−1,m(ω)+mg2Fn,m−1(ω)
+g1Fn+1,m(ω)+ g2Fn,m+1(ω)]. (8)

Of course, F00 = 1.
Similar recursive equations were previously solved in

a different context by Cini et al. [11,12]. They rewrite
these as matrix equations, in terms of vectors Vn =
(Fn,0,Fn,1, . . .)T , i.e. vectors containing all unknowns
with a fixed number of phonons of type 1. The solution
is then a continued fraction of matrices of dimension
equal to the maximum allowed number of second-type
phonons. However, their solution cannot be generalized
to more than two phonon modes, nor to the equations
resulting for MA(1) or higher levels of the approximation
(see below). We have found an alternative solution without
these shortcomings. First, we rewrite these recurrence
relations in matrix form:

Vn =AnVn−1+BnVn+1, (9)

where the vector Vn = (Fn,0;Fn−1,1; . . . ;F1,n−1;F0,n)T
contains all n+1 functions corresponding to a total
of n phonons. An is a matrix of size n+1×n with
the only non-zero elements (An)i,i = (n− i)g1ḡ0(ωn−i,i)
and (An)i+1,i = (i+1)g2ḡ0(ωn−1−i,i+1), ∀i= 0, n− 1.
Similarly, Bn is a matrix of size n+1×n+2 with
the only finite elements (Bn)i,i = g1ḡ0(ωn−i,i) and
(Bn)i,i+1 = g2ḡ0(ωn−i,i), ∀i= 0, n. Dependence on ω is
again implicitly assumed everywhere.
The solution is Vn =MnVn−1 with V0 = (1), where

Mn =
1

1−Bn
1

1−Bn+1
1

1− . . .An+2
An+1

An, (10)

is a continued fraction of matrices of increasing size.
The self-energy is ΣMA(0)(ω) = (g1, g2)V1 = (g1, g2)M1.
The continued fractions become convergent if truncated
at levels N >max(g21/Ω

2
1, g

2
2/Ω

2
2), i.e. when one keeps

contributions from fnm corresponding to expected average
numbers of phonons in the cloud. The generalization to
more phonon modes is straightforward. Vn again contains
all Green’s functions with a fixed number of phonons, and
the interaction links it only to Vn±1. The matrices An
and Bn have non-vanishing elements only on a number of
diagonals equal to the number of modes. The dimension
of these matrices increases now faster with increasing n,
but this is still much less severe than the corresponding
increase in numerical simulations. Also, note that the MA
calculation is equally simple in any dimension, the
only change being in the expression used for ḡ0(ω) (see
footnote 1).

The analysis of the diagrammatic and variational mean-
ing of MA(0) and the sum rules it obeys, is identical to that
for the single-mode case [6–8], and we do not repeat it. It
again proves its accuracy over the entire parameter space,
as long as Ωi/t > 0.1,∀i. However, MA(0) fails to correctly
predict the polaron+one phonon continuum [7,13,14]. To

remedy this, we need to use MA(1) or a higher level approx-
imation [8]. In MA(1), eqs. (3) for f01 and f10 are left
unchanged (i.e. exact), and the momentum average is
made only for fnm with n+m� 2. As shown in ref. [8],

MA(1) correctly predicts the polaron+one phonon contin-
uum, besides giving small improvements in the accuracy of
various other quantities, e.g. the number of exactly satis-
fied sum rules increases from six to eight.
The derivation of ΣMA(1)(ω) for the multiple-mode case

is similar to that in ref. [8], with the only difference
that continued fractions there correspond to continued
fractions of matrices (like in eq. (10)) here. We again
introduced the total momentum averages quantities Fnm,
as in eq. (7), but we also need to introduce two partially
momentum-averaged quantities, namely for n� 1

δFnm(q1) =
1

Nn−1+m

∑

{q}1,{Q}

fnm({q}, {Q})−Fnm

and for m� 1

δFnm(Q1) =
1

Nn−1+m

∑

{q},{Q}1

fnm({q}, {Q})−Fnm

(dependence on k, ω is again implicitly assumed). The
equations of recurrence for Fnm, n+m� 2, are the same
and therefore solved as before. It is straightforward to
verify that δFnm(q1) and δFnm(Q1) satisfy recurrence
relations very similar to those of Fnm. In fact, the matrix
Bn stays the same in both cases, but the corresponding
matrices An are changed by decreasing by 1 the number of
phonons of type 1 or 2, respectively. Thus, the solutions for
δFnm, δFnm involve continued fractions of matrices Mn
and Mn similar to eq. (10) but with the appropriate Ai.

After some algebraic manipulations, the MA(1) self-energy
can be written as

ΣMA(1)(ω) =
(

g1 g2
)

×
[

1−
(

g1γ1 g2γ2 0
0 g1γ2 g2γ1

)

M2

]−1(
g1γ1
g2γ2

)

, (11)

where γi = ḡ0(ω̃i)/[1+ (g1a
i
1+ g2a

i
2)ḡ0(ω̃i)], the renor-

malized energies are ω̃i = ω− (g1ai1+ g2ai2)−Ωi, and the
coupling constant factors are a11 = (M2)0,0, a

1
2 = (M2)0,1,

a21 = (M2)1,1 and a
2
2 = (M2)2,1. Like for the single-mode

Holstein polaron, we find that ΣMA(1)(ω) is independent

of k; momentum dependence only arises from MA(2) or
higher levels. More details on this derivation and the
efficient generalization to three or more phonon modes
will be presented elsewhere [15].
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Fig. 1: (Color online) (a) MA(1) GS energy and (b) ln(m∗/m),
where m∗ is the polaron effective mass, vs. coupling constants
λ1 and λ2, for Ω1 = 0.7t, Ω2 = 0.3t and d= 1.

All results shown below are for two phonon modes
and d= 1, which suffices to uncover the essential new
physics. Results for higher d and more phonon modes are
qualitatively similar and will be presented elsewhere [15].
We begin by discussing GS properties such as the energy
EGS and effective mass m

∗, shown in fig. 1 as functions
of the effective couplings λi = g

2
i /(2dtΩi), i= 1, 2. Note

that the qp weight is related to the effective mass:
Z0 =m/m

∗, where m is the bare electron mass, because

the MA(1) self-energy is momentum independent [7].
The “equipotential” lines drawn show that EGS is well
described as a function of only λeff =

∑

i λi, whereas m∗

is a function of
∑

i λi/Ωi = 2dt
∑

i g
2
i /Ω

2
i . If Ωi =Ω for all

modes, these can be proved to be exact results [15]. In the
strong-coupling limit one also expects EGS =−

∑

i g
2
i /Ωi,

lnZ0 ∝−
∑

i g
2
i /Ω

2
i , supporting the same conclusion. To

a good extent the only effect of having Ω1 	=Ω2 is to
change the slope of the m∗ “equipotentials” from the 45◦

found when Ω1 =Ω2, although some slight deviations from
linearity are also seen in EGS when either λi≪ 1.
We conclude that GS properties can be well understood

in cumulative terms, for instance the energy is well
approximated by that of a polaron coupled to a single
phonon with λeff . The crossover from large to small-
polaron behavior is therefore expected when λeff ≈ 1 [3,4].
As a result, it is possible to have small-polaron behavior
even if each individual phonon mode is weakly coupled
to the electron (each λi < 1, but

∑

i λi > 1 ). However, in
cases where one mode (say, mode 1) is indeed much more
strongly coupled than all others, λ1≫ λi, i= 2, . . ., then
λeff ≈ λ1 and one can, to a good extent, ignore the small
cumulative effect from the other modes.
This conclusion, however, does not generally hold for

higher-energy properties, as we show now. In fig. 2 we plot
the d= 1 spectral function A(k, ω) vs. k and ω. The effec-
tive coupling to the first mode, of frequency Ω1/t= 0.7, is
kept constant to a fairly low value λ1 = 0.4. In panel (a),
coupling to the second mode, of energy Ω2/t= 0.3, is zero,
so this is in fact a one-phonon problem. As expected,

Fig. 2: (Color online) A(k, ω) from MA(1) for d= 1, and for
Ω1 = 0.7t, Ω2 = 0.3t, λ1 = 0.4 and a) λ2 = 0.0, b) λ2 = 0.2.
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λ2 0=
λ2 2.0=

Fig. 3: (Color online) A(k= 0, ω) from MA(1) for d= 1, and for
Ω1 = 0.7t, Ω2 = 0.3t, λ1 = 0.4.

at low energies we see the polaron band, of width Ω1,
followed above EGS +Ω1 by the polaron+one-phonon
continuum, and more features at higher energies [3,4,8].
Addition of even very weak coupling to a second phonon

mode changes things considerably, as shown in panel (b)
for λ2 = 0.2. If Ω2 <Ω1 (as chosen here), the polaron
band width is changed to Ω2, even though the GS energy
and effective mass are not much affected (see previous
discussion). To see this effect more clearly we plot in fig. 3
the full spectral function A(k= 0, ω), while keeping λ1
constant. Clearly, the first feature above the GS appears
at Ω2, not Ω1, as soon as λ2 > 0. This significant change
is not so surprising if one considers the origin of the
polaron+one phonon continuum: it corresponds to states
where one phonon is created far from the polaron. As a
result, they interact little and the total energy is just the
sum of the two. If there are several phonon modes, the
continuum will be defined by the mode with the lowest
frequency Ωmin, irrespective of whether this is the mode
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Fig. 4: (Color online) Number of phonons of both type 1
(× symbols) and type 2 (+ symbols) in the polaron cloud vs.
λ2, for Ω1 = 0.7t, Ω2 = 0.3t and λ1 = 0.4.

most strongly coupled to the electron or not. Because
of this, the polaron band cannot be wider than Ωmin.
While this argument is very reasonable, it seems to have
been completely missed in literature discussions related to
effects of phonons on electron spectra (see below).
This interpretation is confirmed by phonon statistics,

shown in fig. 4. Here we plot average numbersN1 andN2 of
phonons of either type in the polaron cloud, as a function
of the polaron momentum k. These are calculated using
the Hellman-Feynman theorem, Ni(k) = ∂Ek/∂Ωi [7,16].
Again, the coupling to the first mode is kept constant at
λ1 = 0.4. If λ2 = 0 (first panel), we see that N1 increases
from a small value at k= 0 to just above 1 for k > π/2.
This shows, as expected, that while around k= 0 the
large-polaron is essentially similar to a free electron, for
k > π/2 the largest contribution to the polaron comes
from electron+one phonon states. Of course, N2 = 0 in
this case. As λ2 is turned on but is still small (λ2 =
0.1, 0.3, second and third panels) there is little change
near k= 0, however the changes at higher momenta are
dramatic: N1 decreases by 1 whereas N2 increases by 1.
This confirms that it is now the second type of phonon
that controls the nature of the polaron at large k values,
even though λ2 <λ1. Once λ2 >λ1, the second phonon

Fig. 5: (Color online) A(k= 0, ω) vs. ω and λ2, for Ω1 = 0.7t,
Ω2 = 0.3t and λ1 = 0.4t. For all λ2 > 0, the continuum starts at
Ω2 <Ω1.

completely dominates the behavior. For λ2 = 0.6 (fourth
panel) we have λeff = λ1+λ2 = 1, and the polaron is in
the crossover regime, whereas for λ2 = 1.0, λeff = 1.4 the
polaron is firmly in the small-polaron regime. In the
latter case (fifth panel), we expect to see less and less
k dependence, since the polaron cloud becomes limited
to the site on which the electron resides. This is indeed
observed for N2, but also for N1, because once the
polaron is localized at a site (because of strong-coupling
to mode 2) it will automatically also shift the equilibrium
position for mode 1 phonons at that site, resulting in the
creation of a finite number of such bare phonons.
We conclude that the polaron bandwidth at weak and

intermediate couplings is given by the energy of the
phonon of smallest frequency, irrespective of whether this
is the most strongly coupled phonon or not. We now briefly
discuss the consequences of this result.
If there is only one optical phonon mode coupled to

the electron, one can use ARPES data to extract its
frequency Ω from the location of the “discontinuity” in
the dispersion, at weak coupling, or from average distance
between eigenstates at strong couplings, where the Lang-
Firsov spectrum appears [17]. Since the effective mass
determines λ, g can then be extracted from a measurement
of m∗. Our results show that this procedure is usually
wrong in the case of multiple phonon modes, even if one
expects coupling to one of them to be dominant. It only
works if this particular mode also happens to have the
lowest frequency, else one will underestimate its Ω and
overestimate g. This point is clearly demonstrated in fig. 5,
which shows that the Ωmin phonon defines the location of
the low-energy features above the GS, irrespective of its
coupling. Of course, one may hope to see the continua due
to the other phonon modes (see also fig. 2(b)) and thus be
able to identify their frequencies. This is probably unlikely,
due to broadening in real data (note that temperature
dependence would also be determined by the Ωmin phonon,
not by the dominant one). Even if the Ωi are identified
from ARPES data, finding all gi is generally impossible,
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unless we know that one dominates, and we already know
which one that is, i.e. we know its frequency from other
considerations. The only simple case to interpret is the
unlikely (for real materials) case where all phonons have
roughly equal frequencies, when one can treat them as a
single mode with coupling g2eff =

∑

i g
2
i . In any event, it

is clear that one cannot ignore the effects of coupling to
multiple phonon modes, when trying to understand the
properties of any real, complex materials where polaronic
effects are thought to be important.
To summarize, we have found a generalization of the

simple, yet accurate Momentum Average approximations
to the problem of Holstein-type coupling to multiple
phonon modes. This allows us to present the first ever
accurate results for polarons coupled to multiple optical
phonon modes, to the best of our knowledge. The possi-
bility to obtain both low- and high-energy states gives
a complete picture of the effects of the electron-phonon
interactions in the presence of multiple phonon modes.
Our results show that even perturbationally weak coupling
to a second phonon can lead to essential changes of the
spectral weight, if this phonon’s frequency is less than that
of the dominant phonon. In such cases, a simple-minded
way to extract the electron-phonon coupling parameters
from ARPES data is likely to lead to wrong values.
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