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We present a highly efficient yet accurate analytical approximation for the Green’s function of a Holstein
polaron. It is obtained by summing all the self-energy diagrams, but with each self-energy diagram averaged
over the momenta of its free propagators. The result becomes exact for both zero bandwidth and for zero
electron-phonon coupling and is accurate everywhere in the parameter space. The resulting Green’s function
satisfies exactly the first six spectral weight sum rules. All higher sum rules are satisfied with great accuracy,
becoming asymptotically exact for coupling both much larger and much smaller than the free particle band-
width. Comparison with existing numerical data also confirms this accuracy. We use this approximation to
analyze in detail the redistribution of the spectral weight as the coupling strength varies.
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I. INTRODUCTION

There is considerable interest in understanding the effects
on the properties of a particle coming from interactions with
an environment. Examples of such problems abound in con-
densed matter; the problem discussed here is that of an elec-
tron coupled to lattice vibrations, i.e., of electron-phonon
coupling. For example, such coupling is believed to be rel-
evant for understanding certain aspects of the high-
temperature superconductors’ behavior in the underdoped
limit �where the “particle” coupling to phonons is the doping
hole already dressed by interactions with the electrons in the
lower Hubbard band�,1–4 but there are many examples of
other materials characterized by strong-electron phonon cou-
pling, including polymers like polyacetylene, nanotubes, C60
molecules, and other fullerenes.5–7 Other problems of the
same general type regard electrons coupled to spin waves of
a magnetically ordered system,8 or to orbitrons, for example
in manganites,9–11 or to some combination thereof.

In this work, we focus on the simplest Hamiltonian de-
scribing an electron on a lattice interacting with an optical
phonon mode, namely the Holstein model:12

H = �
k

��kck
†ck + �bk

†bk� +
g

�N
�
k,q

ck−q
† ck�bq

† + b−q� . �1�

The first term is the kinetic energy of the electron, with ck
†

and ck being the electron creation and annihilation operators.
For the single dressed particle �known as polaron, in this
case� problem of interest to us, the spin of the particle is
irrelevant and we suppress its index. �k is the free-particle
dispersion. In all results shown here, we assume nearest-
neighbor hopping on a d-dimensional simple cubic lattice of
constant a and with a total of N sites with periodic boundary
conditions, so that

�k = − 2t�
i=1

d

cos�kia� , �2�

but our results are valid for any other dispersion. The second
term describes a branch of optical phonons of energy �. bq

†

and bq are the phonon creation and annihilation operators.

The last term is the on-site linear electron-phonon coupling
g�ici

†ci�bi
†+bi�, written in k space. All sums over momenta

are over the first Brillouin zone, −� /a�ki�� /a. We set �
=1 and a=1 throughout this paper.

The quantity of interest to us is the Green’s function of
the single dressed particle, or polaron, defined as13

G�k,�� = − i�0�T�ck
†���ck�0���0	 , �3�

where �0	 is the ground state of the zero-particle system,
which is the vacuum. T is the time ordering operator, and
ck���=eiH�cke−iH�. Since H�0	=0 and ck�0	=0, Eq. �3� sim-
plifies to

G�k,�� = − i	����0�cke−iH�ck
†�0	 , �4�

where 	��� is the Heaviside function. In other words, only
the retarded part contributes. This Green’s function gives the
amplitude of probability that an electron introduced in the
system at �=0 and removed at a later time �, leaves the
system in its ground state. The usefulness of this quantity can
be appreciated using its Lehmann representation:13

G�k,
� = �
�

����ck
†�0	�2


 − E� + i�
, �5�

where 
��	� and 
E�� are the complete set of one-particle
eigenstates and eigenenergies, H��	=E���	, and �kck

†ck��	
= ��	. The poles of the Green’s function give the whole one-
particle spectrum, while the associated residues, called qua-
siparticle �qp� weights, give partial information on the nature
of the eigenstates. Moreover, the imaginary part of this
Green’s function, called the spectral weight, is directly mea-
sured experimentally through angle-resolved photoemission
spectroscopy.14

There has already been a large amount of work devoted to
understanding the properties of the Holstein polaron, and we
briefly review some of it here. Most of it is numerically
intensive work. Some examples are �i� exact diagonalization
�ED� methods.15–17 These are usually hampered by the fact
that even for a finite lattice, the Hilbert space is infinite due
to the infinite number of possible phonon configurations.
Thus some truncation scheme is needed, but for small pho-
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non frequencies and/or large couplings, the CPU resources
needed and run times become prohibitive. This has led to a
number of �ii� proposals based on variational approaches to
decide which phonon configurations should be included,18–24

as well as �iii� various quantum Monte Carlo �QMC�
methods.25–27 A brief review of these is provided in Refs. 28
and 29. Of special interest are the so-called diagrammatic
Monte Carlo simulations,30–32 which calculate directly the
Green’s function in imaginary time by numerically summing
all diagrams in the perturbational expansion. We make exten-
sive use of comparisons with low-energy results of this
method from Ref. 32. While this method allows in principle
the exact calculation of the Green’s function, the requirement
of convergence for the propagator series usually means that
only low-energy properties are shown. Finally, there are
methods suitable for some particular cases, such as density-
matrix renormalization group for one-dimensional systems33

and dynamic mean-field theory �DMFT� for infinite-
dimensional systems.34,35

Of course, given the long history of this problem, many
analytical techniques have been applied to it with varying
degrees of success �for a review, see Ref. 36�. First of all, the
Green’s function is known exactly in two asymptotic limits.
If there is no coupling, g=0, then the Green’s function is that
of the free electron. The ground state is at 
0=−2dt and the
spectrum consists of a continuous band extending from �
−2dt ,2dt� �for the tight-binding model�. The so-called impu-
rity limit, with t=0, also has an exact solution, given by the
Lang-Firsov formula37

G�
� = e−g2/�2�
n=0

�
1

n!
� g

�

2n 1


 +
g2

�
− n� + i�

. �6�

This can be viewed as the strong-coupling limit, since for t
=0, g becomes the important energy scale in the system. In
this limit the electron is localized at one site in real space,
therefore it is fully delocalized in k space, and the Green’s
function is independent of k. The spectrum has the ground
state �GS� at E0=−g2 /� and an infinite sequence of equidis-
tant levels spaced by � above it. This is extremely different
from the free-particle spectrum, and it is of considerable in-
terest to understand not only how the ground state evolves
from −2dt to −g2 /� as the ratio g / t is increased, but also the
evolution of all the higher-energy spectral weight from a
continuous, finite-width band to an infinite set of discrete
levels. It is known that this crossover regime is analytic, that
is, there are no abrupt changes in the polaron properties as
the coupling is increased.38

Note that it is convenient to describe the effective cou-
pling as the ratio of the two asymptotic ground-state ener-
gies, using as a new parameter

� =
g2

2dt�
.

Most of the numerical methods reviewed above calculate
only GS or low-energy properties, given the significant CPU
time and numerical resources needed to calculate the whole
spectrum. Very recently, several sets of whole-spectrum re-

sults have become available,17,23,28,39–41 however, only for a
few points in the parameter space, and generally for low
dimensions.

It is of obvious interest to find an analytical approxima-
tion for the Green’s function that is simple to estimate, so
that the whole parameter space can be studied easily, but also
with high accuracy. This is precisely what we propose here �a
short version of this work has been published in Ref. 42�. We
call our approximation the momentum average �MA� ap-
proximation; its essence consists in analytically summing all
the diagrams in the diagrammatic expansion, but with each
diagram simplified in a certain way. Before introducing this
method, we briefly review here the other two simple �in
terms of computational effort� analytical approximations for
the Green’s function of the Holstein polaron, available in the
literature.

The first is the self-consistent Born approximation
�SCBA�, which consists of summing exactly only the non-
crossed diagrams. The percentage of diagrams kept decreases
fast with increasing order �see Table I�. If the coupling is
small, the sum is dominated by the low order diagrams and
SCBA works reasonably well. At strong coupling, the con-
tribution of higher order diagrams becomes essential, and
SCBA is expected to fail �see below�. In this approximation,
the Green’s function is written in terms of a self-energy:

GSCBA�k,
� =
1


 − 
k − �SCBA�
� + i�
,

with the self-consistency condition

�SCBA�
� =
g2

N
�
q

GSCBA�k − q,
 − �� .

Note that �SCBA�
� is independent of k. This is a conse-
quence of the simplicity of the Holstein model: If either the
coupling g or the dispersion � were functions of the phonon
momentum q, the SCBA self-energy would depend explicitly
on k.43 �SCBA�
� can be expressed42 as a function of the
average of the free propagator over the Brillouin zone �BZ�
and can be evaluated very efficiently.

The other simple analytical approximation for the Green’s
function of the Holstein model is the generalized Lang-
Firsov �LF� expression.44,45 It is reminiscent of the Lang-
Firsov expression of Eq. �6�:

TABLE I. Comparison between the total number of diagrams of
a given order in the proper self-energy ��k ,
� vs the number of
diagrams of a given order kept within SCBA.

Order 1 2 3 4 5 6 7 8

Total 1 2 10 74 706 8162 110 410 1 708 394

SCBA 1 1 2 5 14 42 132 429
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GLF�k,
� = e−g2/�2�
n=0

�
1

n!
� g

�

2n


 − e−g2/�2
�k +

g2

�
− n� + i�

. �7�

This expression is exact in both asymptotic limits �=0 �g
=0� and �→� �t=0�, but less accurate for finite t and g, as
we show below.

The article is organized as follows. In Sec. II, we derive
the momentum average approximation. Its diagrammatic
meaning is discussed in Sec. III, where we also estimate its
corresponding spectral weight sum rules. We show that MA
satisfies exactly the first six sum rules, but, more importantly,
it remains highly accurate for higher order sum rules. This is
a strong argument in favor of its accuracy. The accuracy is
gauged in more detail in Sec. IV, where we compare the MA
predictions against the SCBA and generalized LF predic-
tions, but also against a host of numerical results. This in-
deed demonstrates that the MA approximation is remarkably
accurate for all parameter values, especially given its sim-
plicity. In this section we also present some results regarding
various properties of the Holstein polaron. Finally, Sec. V
contains our summary and conclusions.

II. CALCULATING THE GREEN’S FUNCTION

A. Exact solution

As is always the case for Green’s functions, one can use
the equation of motion technique to generate an infinite hi-
erarchy of coupled equations for an infinite number of re-
lated Green’s functions. We derive it here for the Holstein
polaron.

In the frequency domain, this approach is equivalent to

using repeatedly Dyson’s identity Ĝ�
�= Ĝ0�
�
+ Ĝ�
�V̂Ĝ0�
�, which holds for any Green’s operators

Ĝ�
�= �
−Ĥ+ i��−1, Ĝ0�
�= �
−Ĥ0+ i��−1 and for any

Hamiltonians Ĥ=Ĥ0+ V̂. As is customary, we take V̂ to be
the electron-phonon interaction. Applying Dyson’s identity
once, we obtain

G�k,
� = G0�k,
��1 +
g

�N
�
q1

F1�k,q1,
�� , �8�

where

G0�k,
� = �0�ckĜ0�
�ck
†�0	 =

1


 − �k + i�
�9�

is the free particle Green’s function. We made use of the

equality V̂ck
†�0	= �g /�N��qck−q

† bq
†�0	 and defined a new

Green’s function:

F1�k,q1,
� = �0�ckĜ�
�ck−q1

† bq1

† �0	 .

F1 is related to the amplitude of probability to start with the
electron and a phonon at the initial time, and find only the
electron in the system at the final time. Its own equation of
motion relates back to G�k ,
� but also to a new Green’s
function with two phonons initially. In general, if we define

Fn�k,q1, . . . ,qn,
� = �0�ckĜ�
�ck−qT

† bq1

† . . . bqn

† �0	 ,

where qT=�i=1
n qi is the total momentum of the n initial

phonons, using Dyson’s identity we find its equation of mo-
tion to be �n�1�

Fn�k,q1, . . . ,qn,
� =
g

�N
G0�k − qT,
 − n�� � ��

i=1

n

Fn−1�k,q1, . . . ,qi−1,qi+1, . . . ,qn,
� + �
qn+1

Fn+1�k,q1, . . . ,qn+1,
�� ,

�10�

i.e., related to the Green’s functions with n−1 and n+1 ini-
tial phonons. Equations �8� and �10� form the exact infinite
hierarchy of coupled equations whose solution is the Hol-
stein polaron Green’s function G�k ,
�=F0�k ,
�.

Obviously, this system of coupled equations can be solved
trivially in the limit �=g=0, in which case G�k ,
�
=G0�k ,
� directly from Eq. �8�. An exact solution equal to
the Lang-Firsov result must also exist if t=0. Indeed, in this
limit all Green’s functions become independent of all mo-
menta, and Eqs. �8� and �10� simplify to

G�
� = G0�
��1 + g�NF1�
�� ,

Fn�
� = gG0�
 − n��� n
�N

Fn−1�
� + �NFn+1�
�� ,

where G0�
�= �
+ i��−1. These recurrence equations can be
solved in terms of continued fractions. We briefly review the
solution here. We suppress the functional notation and re-
write Fn=�nFn−1+�nFn+1, where �n��ng /�N�G0�
−n��
and �n�g�NG0�
−n��. On physical grounds we expect
that Fn+1 becomes vanishingly small for a sufficiently large
n, since it describes physical processes which are less and
less likely. This allows one to solve these equations iteration-
ally starting from this sufficiently large n: Fn��nFn−1, to
find after solving for Fn−1, Fn−2, etc., that

GREEN’s FUNCTION OF THE HOLSTEIN POLARON PHYSICAL REVIEW B 74, 245104 �2006�

245104-3



F1 =
�1

1 −
�2�1

1 −
�3�2

1 − ¯

F0. �11�

Allowing the continued fraction to be infinite instead of trun-
cated after n steps gives the exact solution. Recalling that
F0�G=G0�1+g�NF1�, one can now solve for G. With the
original notation, we find

G�
� =
G0�
�

1 −
g2G0�
�G0�
 − ��

1 −
2g2G0�
 − ��G0�
 − 2��

1 − ¯

. �12�

After some further work, this can indeed be shown to equal
the Lang-Firsov expression of Eq. �6�.

This exact hierarchy of coupled equations �Eqs. �8� and
�10�� can also be solved in the general case of finite g and
finite t by iteratively solving for F1, then F2, etc., and remov-
ing them from this coupled system. It is straightforward to
verify that the solution obtained in this case is the diagram-
matic expansion, which can be partially resummed to the
expected form

G�k,
� =
1

�G0�k,
��−1 − ��k,
�
, �13�

where the self-energy ��k ,
� is the sum of all proper self-
energy diagrams, the first few of which are shown in Fig. 1.
While this solution as a sum of an infinite number of dia-
grams is exact, it is clearly not very useful if the sum cannot
be performed. One typical strategy in such cases is to sum
only a subset of these diagrams �e.g., the noncrossed ones, in
the self-consistent Born approximation�. This is reasonable
when one can argue that the diagrams kept contribute much
more than the neglected diagrams, which is not the case for
SCBA in this problem �see below�. We propose another strat-
egy, explained in the next subsection, to find an approximate
solution of these equations in the case of finite t and finite g.

B. Momentum average approximation

To obtain an approximate solution in the case of finite t
and g, we proceed as follows. We first note that G�k ,
�
depends on F1 only through its average over the Brillouin
zone f1�k ,
�= �1 �N ��q1

F1�k ,q1 ,
�,

G�k,
� = G0�k,
��1 + g�Nf1�k,
�� . �14�

We define the momentum averaged Green’s functions:

fn�k,
� =
1

Nn �
q1,. . .,qn

Fn�k,q1, . . . ,qn,
� , �15�

where all momenta sums run over the BZ, and attempt to
express Eq. �10� in terms of these simpler quantities, by per-
forming the corresponding momenta averages on both sides.
While the first term on the right-hand side can be written in
terms of fn−1 exactly, the second term requires an approxi-
mation, which we choose to be

1

Nn �
q1,. . .,qn+1

Fn+1�k,q1, . . . ,qn+1,
�G0�k − qT,
 − n��

� Nḡ0�
 − n��fn+1�k,
� , �16�

where

ḡ0�
� =
1

N
�
k

G0�k,
� �17�

is the free propagator momentum-averaged over the BZ. One
justification for replacing G0�k−qT ,
−n�� by its momen-
tum average ḡ0�
−n�� in Eq. �16� is that qT=�i=1

n qi takes,
with equal probability, any value in the BZ. Moreover, in the
impurity limit t=0, where all Green’s functions are momen-
tum independent, Eq. �16� is exact. This suggests that our
approach should be reasonable at least in the strong-coupling
limit t�g. In a more practical sense, this approximation al-
lows us to write fn�k ,
� in terms of fn−1�k ,
� and fn+1�k ,
�
only, which is what we require to be able to obtain an ana-
lytical expression for G�k ,
�. We discuss the meaning and
consequences of this approximation in more detail below.

After the approximation of Eq. �16�, Eq. �10� becomes

fn�k,
� =
gḡ0�
 − n��

�N
�nfn−1�k,
� + Nfn+1�k,
�� .

Together with Eq. �14� these simplified recurrence relations
can be solved similarly to the t=0 case. We find

G�k,
� =
1


 − �k − �MA�
� + i�
, �18�

where the self-energy is, within the MA approximation,

�MA�
� =
g2ḡ0�
 − ��

1 −
2g2ḡ0�
 − ��ḡ0�
 − 2��

1 −
3g2ḡ0�
 − 2��ḡ0�
 − 3��

1 − ¯

. �19�

This is the main result of this work. As discussed, the MA
approximation becomes exact in the limit of zero hopping
�t=0�, where ḡ0�
�→G0�
�= �
+ i��−1, but also for zero
coupling, g=0. In the following sections, we show that the
range of validity of this approximation extends well beyond
these asymptotic limits, and that in fact the MA expression is
reasonably accurate over the entire parameter space.

FIG. 1. The diagrammatic expansion for the self-energy.
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Note that although the MA self-energy looks similar to the
DMFT self-energy,34,35 this is in fact a very different ap-
proximation. This issue is discussed in the Appendix.

III. MEANING OF THE MA APPROXIMATION

A. Diagrammatics

To understand the diagrammatical meaning of the MA
approximation, we expand Eq. �19� in powers of g2:

�MA�
� = g2ḡ0�
 − �� + g4�2ḡ0
2�
 − ��ḡ0�
 − 2���

+ g6�4ḡ0
3�
 − ��ḡ0

2�
 − 2�� + 6ḡ0
2�
 − ��

�ḡ0
2�
 − 2��ḡ0�
 − 3��� + O�g8� �20�

and analyze the various terms. First, one can verify that the
MA approximation generates the correct number of proper
self-energy diagrams to all orders. Indeed, there is one term
of order g2, two terms of order g4, 4+6=10 terms of order
g6, and so on �see Table I�. Moreover, to each of these terms
we can associate an MA diagram. These have the same to-
pology as the exact proper self-energy diagrams. The differ-
ence is that each free propagator G0�k ,
� in the exact self-
energy diagrams is replaced with a momentum averaged free
propagator ḡ0�
� �with the correct frequency� in each MA
diagram.

Using Eq. �17�, the first-order self-energy diagram is �see
Fig. 1�

��1��k,
� =
g2

N
�
q

G0�k − q,
 − �� = g2ḡ0�
 − �� ,

i.e., ��1��k ,
�=�MA
�1� �
�, and thus MA is exact to first order.

Differences appear from the second order diagrams, where
the two exact contributions �see Fig. 1�

g4

N2 �
q1,q2

G0�k − q1,
 − ��G0�k − q1 − q2,
 − 2��

��G0�k − q1,
 − �� + G0�k − q2,
 − ��� �21�

are replaced, within MA, by two equal contributions:

2g4ḡ0
2�
 − ��ḡ0�
 − 2�� =

2g4

N3 �
q1,q2,q3

G0�q1,
 − ��

� G0�q2,
 − 2��G0�q3,
 − �� .

�22�

Comparing Eq. �21� to Eq. �22�, we see that the MA self-
energy diagrams have the correct number of free propagators
with the correct frequencies: however, the momenta of the
free propagators are uncorrelated and individually averaged
over. It is as if there is no connection between the momen-
tum carried by a cloud phonon when it is emitted and when
it is reabsorbed by the electron. Precisely the same holds for
all higher order self-energy diagrams.

To gain a better understanding of the difference between
the exact and the MA diagrams, let us further analyze the
dependence on t of Eqs. �21� and �22�. For t=0 the expres-
sions are identical, because the free propagators become in-

dependent of momenta and, as already discussed, MA be-
comes exact. For finite t, we expand each free propagator as

G0�k,
� = G0�
��1 + �kG0�
� + „�kG0�
�…2 + ¯ � ,

where G0�
�= �
+ i��−1. Inserting this expansion into Eqs.
�21� and �22� and collecting powers of t yields the following.
All O�t� terms vanish in both the exact and the MA diagrams
because they are proportional to a �q�q=0. In fact, all odd-
order powers in t vanish because �q�q

2n+1=0. Next, consider
terms of order t2. Such terms arise either from expanding one
free propagator to O�t2� or from expanding two different free
propagators to O�t�. The former case leads to the same result
for both the exact and the MA diagrams, and we obtain six
contributions proportional to �1/N��q
q

2 =2dt2. The latter
case, however, reveals a difference. Five of the six O�t2�
such contributions from the exact diagrams vanish because
they involve propagators carrying different momenta and, for
example, �q1,q2

�k−q1
�k−q1−q2

=0. The exception comes from
the two outside free propagators of the noncrossed diagram,
which carry the same momentum and result in another
�1/N��q1

�k−q1

2 =2dt2 contribution. This is absent in the MA
approximation, where different propagators always carry dif-
ferent momenta. It follows that the MA second order self-
energy diagrams capture six out of the seven finite O�t2�
contributions correctly. Similar considerations apply for
higher order t powers and for higher order diagrams, differ-
ences between the MA and the exact self-energy diagrams
coming only from terms involving free propagators carrying
equal momenta in noncrossed diagrams. However, the error
from such missed terms becomes smaller and smaller as one
goes to higher order diagrams because the percentage of self-
energy diagrams with one or more pairs of free propagators
of equal momenta decreases exponentially.

We conclude that the MA approximation captures most of
the t dependence of each self-energy diagram, while sum-
ming over all diagrams. This analysis suggests that MA
should be quite accurate for any finite g and t values. In the
next section, we reinforce this conclusion by analyzing the
sum rules of the spectral weight.

B. Sum rules

For an even better idea of the accuracy of the MA ap-
proximation, we consider the sum rules for the spectral
weight A�k ,
�=−�1/��Im G�k ,
�, defined as

Mn�k� = �
−�

�

d
 
nA�k,
� . �23�

For a problem of this type �single dressed particle�, the sum
rules can be calculated exactly to arbitrary order. The usual
approach is based on the equation of motion technique.45 We
review it briefly here in order to make a few useful observa-
tions. The key step is to rewrite 
n= �(i�d /d��)ne−i
���=0, so
that we have
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Mn�k� = −
1

�
Im��i

d

d�

n�

−�

�

d
 e−i
�G�k,
��
�=0

.

The integral is now simply G�k ,�→0+�. Using the definition
of Eq. �4�, we find, for any ��0;

�i
d

d�

n

G�k,�� = − i	����0�ckHne−iH�ck
†�0	 ,

so that the sum rules simplify to

Mn�k� = �0�ckHnck
†�0	 . �24�

These vacuum expectation values can be evaluated directly
with some effort. We find M0�k�=1, M1�k�=
k, M2�k�=
k

2

+g2, M3�k�=�k
3 +2g2�k+g2�, etc.

One very important conclusion that can be drawn from
this derivation is that these sum rules have the same func-
tional dependence on the energy scales t ,� ,g anywhere in
the parameter space. Of course, in various asymptotic re-
gimes, different terms dominate the overall value �e.g.,
M2�k��g2 if g� t, while M2�k��
k

2 if g� t�. However, this
shows that if one can evaluate the sum rules exactly in any
asymptotic regime, for instance by using perturbation theory,
the results hold true everywhere in the parameter space, even
where perturbation fails.

The second important conclusion one can draw from Eq.
�24� is that each term in Mn�k� is proportional to tp�mgn−m−p,
where 0� p ,m ,n−m− p�n are integers, i.e., the sum rule
Mn is a polynomial of total order n in the energy scales of the
problem. More complicated dependence on t ,� ,g, for ex-
ample through exp�−g2 /�2�, simply cannot appear �see be-
low�.

The first conclusion suggests an alternative derivation of
the sum rules, which can also be used for the MA and SCBA
sum rules. Namely, we use the diagrammatic perturbational
expansion of the Green’s function valid for g� t to evaluate
directly the integrals �−�

� d
 
nG�k ,
� and retain the imagi-
nary part. In this case, G�k ,
�=�n=0

� �i=1
sn Dn,i�k ,
�, where

Dn,i�k ,
�, i=1,sn are all Green’s function diagrams of order
n, i.e., containing n phonon lines. The multiplicity sn= �2n
−1�!!=1�3. . . �2n−1�. Each diagram Dn,i�k ,
� is a product
of 2n+1 free propagators, summed over internal phonon mo-
menta. Since for large frequency each G0�k ,
�→ �
+ i��−1,
it follows that for �
�→�, each Dn,i�k ,
�→g2n / �

+ i��2n+1. Since any integrand that decreases faster than 1/
2

has a vanishing contribution to Eq. �23�, it follows that the
diagrams of order n only contribute to the sum rules Mp�k�
with p�2n. Thus, even though G�k ,
� is the sum of an
infinite number of diagrams, only a finite number of them, of
low order, contribute to any given sum rule and the calcula-
tion can be done. The same holds true for the MA sum rules,
the only difference being that the self-energy parts in the
Green’s functions diagrams are replaced with the corre-
sponding MA self-energy parts.

Let us analyze the differences between contributions of
the exact and of the MA diagrams to the sum rules. It is
straightforward to verify that

−
1

�
Im �

−�

�

d
 
2ng2n �
i=1

2n+1

G0�qi,
 − �i� = g2n,

−
1

�
Im �

−�

�

d
 
2n+1g2n �
i=1

2n+1

G0�qi,
 − �i�

= g2n �
i=1

2n+1

��i + 
qi
�

and

−
1

�
Im �

−�

�

d
 
2n+2g2n �
i=1

2n+1

G0�qi,
 − �i�

= g2n� �
i=1

2n+1

��i + 
qi
�2 + �

i�j

��i + 
qi
��� j + 
qj

�� .

Both the exact and the MA diagrams of order n contain prod-
ucts of the general form g2n�i=1

2n+1G0�qi ,
−�i�. Some of the
free propagators are actually G0�k ,
� �always the first and
the last one, but there can also be intermediary ones connect-
ing proper self-energy parts�. All other free propagators have
momenta dependent on the phonon momenta, which are
summed over �in the exact diagrams�, or are individually
averaged over �in the MA diagrams�. Since there is one-to-
one correspondence between the number of exact vs MA
diagrams and their topologies, and since �q
q=0, it follows
that the exact and the MA diagrams of order n give precisely
the same contributions to M2n�k� and M2n+1�k�. Differences
appear in the contribution to M2n+2�k� if there is at least one
pair of propagators in any of the self-energy parts of the
exact diagram that carry the same momenta. In this case, the
corresponding 
qi


qj
averages to 2dt2 when the sums over

phonon momenta are carried for the exact diagrams; whereas
these terms always average to zero for the MA diagrams.
Since most free propagators in the self-energy parts have
different momenta, such differences are quantitatively small.
This is especially true for large phonon frequencies �, where
the contributions proportional to � captured correctly by
MA scale like some power of 2n+1. This analysis can be
continued for higher sum rules, with similar conclusions.

We can now summarize our findings. Only the zeroth or-
der Green’s function diagram �the free propagator G0�k ,
��
contributes to M0�k� and M1�k�. Since this is included cor-
rectly in the MA and the SCBA cases, both give the correct
M0�k� and M1�k�. In fact, this diagram contributes an 
k

n to
Mn�k�, which is always the leading power in t contribution.
The first order diagram is also exact in both the MA and
SCBA cases, therefore both give the correct M2�k� and
M3�k� sum rules as well. Differences appear from M4 on-
wards. Because SCBA only keeps two out of the three sec-
ond order Green’s function diagrams, and five out of 15 third
order diagrams, etc., the leading terms in g are 2g4 instead of
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3g4 in M4�k�, 5g6 instead of 15g6 in M6�k�, etc. This shows
that SCBA fails badly all sum rules with n�3 in the strong
coupling regime where the term proportional to g2n gives the
most significant contribution to M2n�k� �similar conclusions
hold for odd sum rules�. So even though SCBA always sat-
isfies exactly the first four sum rules, it is a bad approxima-
tion for large g, where big discrepancies appear for n�3.

MA satisfies M4�k� and M5�k� exactly as well, because
these only depend on having the correct number and topol-
ogy for the second order diagrams. MA fails from M6�k�
onward, however, in a very different manner than SCBA.
The leading term in g6 has the correct prefactor, because MA
has the correct number of third order diagrams. The error
comes from the second order diagram containing the non-
crossed self-energy diagram, as discussed. Indeed, instead of
the exact sum rule

M6�k� = �k
6 + g2�5�k

4 + 6t2�2d2 − d� + 4�k
3� + 3�k

2�2

+ 6dt2��k
2 + �k� + 2�2� + 2�k�3 + �4�

+ g4�18dt2 + 12�k
2 + 22�k� + 25�2� + 15g6,

�25�

MA finds a sum rule M6
MA�k�=M6�k�−2dt2g4. The leading

terms in the g� t and g� t limits are always exact �as ex-
pected, since MA becomes exact in these limits�, and this is
true for all orders n. For n�6 some of the cross terms are
missing, but these are a minority related to noncrossed dia-
grams, as explained. We therefore expect the MA sum rules
to remain highly accurate for larger n values. That this is
indeed true for higher sum rules is shown numerically in
Figs. 2 and 3, where we plot the ratio of the MA, respec-
tively, SCBA sum rules, and the exact sum rules of the same
order n. The results shown are for one dimension �1D� and
k=0 and �, but similar trends are found in the other cases.
For k=0, all the spectral weight is at negative frequencies,

therefore Mn�0� alternate signs for even/odd n, and this is
reflected in the nonmonotonic behavior with n. For k=�,
most of the weight is at positive frequencies and sum rules
are always positive. The magnitude of the exact sum rules
increases roughly exponentially with n; for instance, for �
=2 and �=0.5t, M14�0�=119 516 000. For k=0 and �=0.5,
both MA and SCBA are reasonably accurate, with a slight
edge for MA at higher n. However, MA is clearly much more
accurate for all the other cases shown, and its accuracy is
expected to improve even more as one moves further into the
asymptotic regions of weak or strong coupling.

Before ending this section, one more issue needs to be
addressed. It is obvious that the MA sum rules must capture
correctly the contributions to Mn�k� proportional to tn and to
gn, since MA is exact for both g=0 and t=0. One may as-
sume that this alone is sufficient for a good interpolation at
finite t and g. That this is not so is shown by the generalized
LF approximation, which is also exact for t=0 or g=0. How-
ever, in this approximation one finds M0

LF�k�=1,M1
LF�k�

=�k exp�−g2 /�2�, etc. M1 and all higher sum rules have un-
acceptable dependence on the energy scales g and � �see
second observation above�, even though they become exact
asymptotically. As shown in the next section, this approxi-
mation indeed performs rather poorly for finite t and g.

We conclude that while MA satisfies exactly the first six
sum rules, it remains accurate for all higher order sum rules,
and is asymptotically exact. This is another argument in fa-
vor of the accuracy of this approximation over the whole
parameter space. In the next section, we compare the MA
predictions to those of existing numerical simulations to fur-
ther support this claim.

IV. RESULTS

We first list the explicit expressions of the momentum
averaged Green’s function ḡ0�
� of Eq. �17�. For nearest-

FIG. 2. �Color online� Ratio of MA �squares�, respectively
SCBA �circles� sum rules and the exact sum rules vs order n. Re-
sults are for 1D and k=0, �=0.5t, and �=0.5, 1, and 2.

FIG. 3. �Color online� Ratio of MA �squares�, respectively
SCBA �circles� sum rules and the exact sum rules vs order n. Re-
sults are for 1D and k=�, �=0.5t, and �=0.5, 1, and 2.
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neighbor hopping, it is straightforward to derive

ḡ0
1D�
� =

sgn�
�
��
 + i��2 − 4t2

,

ḡ0
2D�
� =

2

��
 + i��
K� 4t


 + i�

 ,

and

ḡ0
3D�
� =

1

2�2t
�

0

�

dkz sgn ����K��� ,

respectively, where

� =
4t


 + 2t cos�kza� + i�

and

K��� = �
0

�/2 d�

�1 − �2 cos2�

is the complete elliptical function of the first kind.46 These
integrals can be performed numerically very efficiently.
More generally, for any free electron dispersion 
k to which
corresponds the free electron density of states �DOS� �0�
�
= �1/N��k��
−
k�, we have ḡ0�
�=�−�

� d
 �0�
��
−
+ i��−1

�also see the Appendix�.
In our calculations we employ a small but finite value for

�. This moves the poles of the Green’s function off of the
real axis and changes the � peaks of the spectral weight
A�k ,
�=������ck

†�0	�2��
−E�� into Lorentzians. In practice,
it is necessary to choose � small enough to allow detection
of the Lorentzian peaks in regimes where the qp weight Z is
extremely small. This is relevant when ground-state and low-
energy properties are investigated. In such cases, we typi-
cally use � / t�10−5. For cases where A�k ,
� is plotted for a
large frequency range, we use � large enough to allow de-
tection of the Lorentzian peaks with modest resolution in the
step �
. The values used in these cases are listed explicitly.

The self-energy �MA�
� is then calculated easily from Eq.
�19� by truncating the continued fraction to a high-enough
level. For an error of order 
, it is necessary to go to a level
with n such that ng2ḡ0(
−n��ḡ0�
− �n+1��)�
. Using the
fact that for large enough n we can approximate ḡ0�

−n��� ḡ0(
− �n+1��)�−1/ �n��, it follows that we must
have

n �
1




g2

�2 .

This result is expected, since g2 /�2 is roughly the average
number of phonons in the polaron cloud �see below�. This
condition shows that all diagrams with at least that many
phonons have to be included. In practice, we always use n
large enough so that the change in �MA�
� after doubling n
is below a threshold much smaller than �. All MA error bars
in the figures we show are less than the thickness of lines/
symbols used for the plots.

With an explicit form for �MA�
� we are now in a posi-
tion to calculate the Green’s function GMA�k ,
� and extract
various polaron properties.

A. Polaron ground state properties

We begin by discussing polaron GS properties. Most of
these are already known from numerical studies, but they
give us an opportunity to further test the accuracy of the MA
approximation. Given the simplicity and efficiency of the
MA approximation, we can also investigate higher dimen-
sionality and larger parameter ranges than typical numeri-
cally intensive approaches. In this section, we use for com-
parison 1D and 2D numerical results obtained from
diagrammatic quantum Monte Carlo �QMC� simulations
from Ref. 32 unless otherwise noted.

For k=0, we track the energy and weight of the lowest
pole in the spectral weight, which give the ground-state en-
ergy E0 and the ground-state quasiparticle weight Z0
= ��GS�ck=0

† �0	�2. Using the Hellmann-Feynman theorem,47

we then find the average number of phonons in the ground
state to be

Nph � �GS��
q

bq
†bq�GS� =

�E0

��
. �26�

Note that one can also calculate the correlation function

�GS��
i

ci
†ci�bi

† + bi��GS� =
�E0

�g
�27�

just as easily. We do not show it here because we do not have
the corresponding numerical data for the comparison; how-
ever, some typical results for this quantity are shown at the
end of this section. Also note that all these quantities can be
calculated similarly for other eigenstates. We will show such
results in other sections.

We also show the effective mass, m*. Because the MA
self-energy is momentum independent for this simple Hol-
stein model, one has43

m*

m
=

1

Z0
= 1 − �d�MA�
�

d

�


=E0

. �28�

This result also gives us a consistency check on our calcula-
tions. For MA, we generally show effective mass results ob-
tained from the first equality.

A comparison of the 1D results for these four quantities as
obtained with QMC �black circles� and the different approxi-
mations is shown in Fig. 4. As expected, SCBA �blue line�
fares well at small couplings � but very poorly at strong
couplings. The generalized LF �green line� is asymptotically
exact, but quite wrong at finite �. Because these are GS
properties, we can also use perturbation theory in the two
asymptotic limits to estimate them. At weak coupling we use
the Rayleigh-Schrödinger �RS� perturbation theory �violet
line�, which gives the lowest energy for a state with total
momentum k as48
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Ek = �k −
1

N
�
q

g2

� + �k−q − �k
. �29�

At strong couplings, we use the second order perturbation
theory �PT� result �cyan line�:16,37

Ek = −
g2

�
+ 
ke−g2/�2

−
d�t2

g2 . �30�

The GS energy is simply E0=Ek=0. Nph is obtained from E0
as before; m* can be evaluated from the second derivative of
Ek with respect to k, and Z0 is extracted from the effective
mass �Eq. �28��.

Figure 4 shows that one or the other of these perturba-
tional values describe the GS energy E0 quite well, especially
for the larger � value. However, the agreement for the other
quantities is somewhat poorer, especially at strong couplings
�PT and LF give identical results for Z0�. Part of the reason is
that the t2 term in Eq. �30� has in fact a more complicated
dependence of g and �, which is only asymptotically equal
to the one used here.16 More importantly, neither perturba-
tional theory describes well the crossover regime, or can be
easily applied to high energy states.

Clearly, MA �red line with red symbols, for easier com-
parison with QMC data� has the best agreement with the

QMC data. As expected from the sum rule analysis and the
discussion on the convergence of �MA, MA improves for
larger �. The worst disagreements we ever found are the
ones shown in the intermediary � regime for � / t=0.1. Even
there, the error in the GS energy is always below 5%. The qp
weight has a more significant disagreement; however, note
that it indeed becomes asymptotically correct for ��0.2 and
��0.8. The second claim is supported by the m* data, which
indeed shows convergence towards the expected PT values.
Most importantly, even though it is quantitatively somewhat
wrong in this intermediary regime for small �, the MA ap-
proximation is the only one that clearly captures the cross-
over from the large to the small polaron, which is accompa-
nied by the collapse of the qp weight and the increase in the
number of phonons trapped in the cloud, and thus of the
effective polaron mass.

The comparison with the QMC data for 2D polarons is
shown in Fig. 5. Here MA gives excellent agreement at all
couplings �. �Some of this is because the results correspond
to larger � / �4dt� values. We do not show � / t=0.2 results
because we lack QMC data for comparison. Given the sum
rule arguments, we expect the agreement to be better than for
the 1D, � / t=0.1 case.� The agreement is all the more re-
markable when considering what a numerically trivial task it
is to evaluate the MA results compared to the QMC simula-

FIG. 4. �Color online� Ground state results in 1D. Shown as a function of the coupling � are the ground state energy E0, the qp weight
Z0, the average number of phonons Nph, and the effective mass m* on a logarithmic scale. The left panels correspond to � / t=0.1 and the
right ones to � / t=0.5.
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tions. The physics is similar to that seen in 1D; however, the
crossover from the large �light� polaron at weak couplings to
the small �heavy� polaron at strong couplings becomes some-
what sharper, especially for smaller � / t values.

Given the simplicity of MA, we can also generate contour
plots of these quantities as a function of both � and � / t, and
investigate the entire parameter space. Such results are
shown in Figs. 6 and 7 for d=1 and 2, respectively. The
crossover from the large to the small polaron can now be
tracked �for instance, from the collapse of Z0� and one can
quantitatively trust the results to a high degree. The cross-
over occurs for ��1, slowly shifting to higher values of � as
� increases, in agreement with numerical results.27,28

We also show MA results in 3D; see Fig. 8. There are very
few numerical three-dimensional results available for the
Holstein polaron, due to the computational effort required to
investigate such cases. Ground state properties of the three-
dimensional polaron have been calculated using variational
methods21 and QMC �Ref. 26� for a single phonon frequency
of � / t=1.0. Comparison of the MA ground state energy and
effective mass to those found in Ref. 26 shows excellent
agreement. The good agreement with one or the other per-
turbational theories for most coupling strengths further sup-
ports the accuracy of MA in 3D. The crossover from large to

small polaron becomes even sharper, especially for lower �.
It is still located in the neighborhood of ��1. This influence
of dimensionality on the crossover regime of the Holstein
polaron has also been reported by Ku et al. in Ref. 21.

Using the Hellmann-Feynman theorem like in Eqs. �26�
and �27� also allows us to separate the individual contribu-
tions of

Telec = �GS��
k


kck
†ck�GS� ,

Eph = �GS���
q

bq
†bq�GS� = �Nph,

and

Vcorr = �GS�g�
i

ci
†ci�bi

† + bi��GS�
to the total GS energy. Plots of these individual contributions
as a function of coupling strength � are shown in Fig. 9 for
d=1, 2, and 3. The results for the kinetic energy of the elec-
tron are in good agreement with those found in Ref. 27 for
d=1, 2, and 3, using QMC cluster sizes of 32, 12, and 6,
respectively. We expect that the agreement for d=2,3 would

FIG. 5. �Color online� Ground state results in 2D. Shown as a function of the coupling � are the ground state energy E0, the qp weight
Z0, the average number of phonons Nph, and the effective mass m* on a logarithmic scale. The left panels correspond to � / t=0.5 and the
right ones to � / t=1.0.
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be further improved with larger cluster sizes; however, this is
computationally prohibitive for QMC simulations.27 As ex-
pected, the kinetic energy is close to −2dt at weak couplings,
but it becomes vanishingly small in the strong coupling limit,
where the polaron becomes very heavy. The phonon energy
Eph increases roughly like g2 /� in the strong coupling limit,
where Nph�g2 /�2. It follows that the decrease in the total
GS energy is due to the interaction term, as expected. Note
that this energy is proportional to the correlation of Eq. �27�.
Since E0�−g2 /� in the strong coupling limit �see agree-
ment with PT results�, it follows that this correlation be-
comes asymptotically equal to −2g /� in the strong coupling
limit.

B. Low energy states: Momentum dependence

We can also calculate the same properties for the lowest
energy state corresponding to each given momentum k�0 to
find the low-energy behavior of the polarons. In this section,
we present comparisons with available QMC results32 for 1D
and 2D systems, and with variational results for the 3D
systems.21

In Fig. 10 we show 1D results for the polaron dispersion
Ek, the associated qp weight Zk, and average phonon number
Nph�k� for two couplings. For the very weak �=0.25, we see
that MA and SCBA are equally good at small k, however, for
large k, MA overestimates the energy, such that the con-
tinuum which is expected to appear at a distance � above the
GS energy E0 is in this case pushed somewhat higher. We

will return to a discussion of this discrepancy later on. As
expected, the qp weight is large for small k, where the main
contribution to the eigenstate comes from the free electron
state ck

†�0	. Zk goes to zero for larger k, since these are pri-
marily linear combinations of states of type ck−q

† bq
†�0	, as con-

firmed also by the average phonon number of about unity.
Note that the RS perturbation works well for small k. How-
ever, it breaks down at a finite k where 
k�−2t+�, i.e., the
free electron dispersion crosses into the continuum of elec-
tron plus one phonon states. Here, RS predicts an unphysical
peak in the polaron dispersion �denominator of Eq. �29�� and
it fails for larger k.

The second coupling �=1 is roughly in the crossover re-
gime; see also Fig. 4. Here MA gives a much better agree-
ment with QMC than SCBA or the perturbational theories.
The polaron bandwidth is already renormalized and well be-
low the weak coupling value of �. In fact, as we show later,
there is another bound state between these states and the
continuum. This is not captured in SCBA, which always pre-
dicts a polaron bandwidth of � with a continuum above, and
roughly between zero and one average number of phonons as
k increases from 0 to �. For the strong coupling �=1.96,
low-energy properties become almost k independent, as ex-
pected since the Lang-Firsov impurity limit is being ap-
proached.

A second such comparison is possible for the 2D case
with �=0.5t and �=0.845, where QMC data is available;
see Fig. 11. This coupling is on the weak side of the cross-
over, with the GS qp weight still large, Z0�0.6. Here MA is
already doing better than SCBA. As in the 1D weak-coupling

FIG. 6. �Color online� Ground state energy E0, the qp weight Z0, the average number of phonons Nph, and the effective mass m* as a
function of � and of � / t, for d=1.
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case, one can again see that the MA polaron bandwidth is
slightly larger than �. MA also somewhat overestimates the
average number of phonons for large k values. Overall,
given that all this data is in the crossover regime where the
MA is at its worst, one can conclude that MA is also reason-
ably accurate in capturing low-energy polaron behavior.

In the 3D case, momentum-dependent data is available for
energies and qp weights, when �=2.0t and �=1.0833.21 Al-
though this coupling is in the center of the crossover regime,
MA is in excellent agreement with the variational results for
all momenta k along the high-symmetry cuts of the Brillouin
zone, as shown in Fig. 12. The agreement is particularly
good in this case because MA is highly accurate for large
phonon energies.

C. High-energy states

The main motivation in trying to find an approximation
for the Green’s function is that this quantity gives not only
low-energy information, but the whole spectrum. We now
compare MA predictions with various high-energy results
available in the literature. Unfortunately, there are much
fewer of these, because the computational effort to obtain the
whole spectrum through the usual numerical approaches is
generally forbidding.

We begin with a comparison against exact diagonalization
�ED� 1D data, from Ref. 18. The results are shown in Fig.
13. As already discussed, for weak coupling there is a con-
tinuum starting at E0+�, but for stronger coupling a so-

called second bound state appears below the continuum. In
Fig. 13�a� we track the energy E1 of the second k=0 state.
For small couplings, the data actually shows the maximum
DOS in the continuum, not its edge �the maximum is gener-
ally located close to the lower edge. This data shows again
that MA somewhat overestimates this energy, which should
be ���. When E1�E0+�, there is a true discrete state.
Note that panel �a� is in very good quantitative agreement
with similar data shown in Fig. 8 of Ref. 18. The only dif-
ference is for strong coupling, where the ED data shows
E1�E0+� again, however, with significant finite-size de-
pendence on the chosen Hilbert space cutoff.

We can thus find the coupling g / t where the second bound
state appears, for different values of � / t. This line is shown
in panel �b�, together with the ED results. The agreement
between the two data sets is excellent, even at small � / t
values where we expect MA to be less accurate. We also
show in panel �c� the qp weight of this second bound state,
where stable. This data is not given in Ref. 18; however, one
QMC point is available in Ref. 32, in good agreement with
the MA prediction.

We now move to comparisons for the entire spectral
weight A�k ,
�. In Figs. 14–16, we show comparisons for a
1D system with �=0.4t and three different coupling
strengths �=0.5, 1, and 2, respectively. In each case, data for
five values of k, namely 0, � /4, � /2, 3� /4, and �, are
shown. The numerical data �black line� is obtained using a
variational method by De Filippis et al.23 Numerical data
obtained through exact diagonalization of a finite system and
by QMC, for the same parameters but somewhat different k

FIG. 7. �Color online� Ground state energy E0, the qp weight Z0, the average number of phonons Nph, and the effective mass m* as a
function of � and of � / t, for d=2.
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values, is also presented by Hohenadler et al. in Refs. 39 and
40. These sets of numerical data are in good agreement with
one another.

In all three cases, the agreement between MA results and
the numerical data is very good. As expected, it is best for
the largest �, but even for the smaller � values, which are
just below and within the crossover region, the agreement is
very satisfactory. For �=0.5 and k=0 �upper panel of Fig.
14� we see the polaron state as a Lorentzian peak �a broad-
ening �=0.1 � was used�, which accounts for most of the
weight, and a small continuum at a higher energy. MA over-
estimates the gap between the two, which should be �. As k
increases, the polaron peak disperses but also loses signifi-
cant weight, as discussed in the previous section. Most of the
weight is now in the high energy continuum, located roughly
near the corresponding 
k value. This simply shows that
these higher energy states are not significantly affected by
this rather weak coupling. The VM data shows somewhat
more structure in these continua than the MA data, but most
of the weight occupies similar frequency ranges.

For �=1 and k=0 �upper panel of Fig. 15�, the MA data
shows three Lorentzian peaks plus a continuum starting at

 / t=−1.6. For the rather large � used, it is hard to distin-
guish which peaks come from individual poles, and which
are true continua. This can be easily done by studying their

behavior as a function of the broadening �, as shown in Fig.
17. The height of peaks corresponding to discrete states
scales precisely like 1/�, as expected for Lorentzians. The
continuum is affected very little by changes in �, except the
peak near its lower edge where the finite � smoothes out a
singularity in the DOS. Since this singularity is not of the
1/
 type, its scaling with � is different from that of the
Lorentzians. The two lower states are closer to one another
than �, however, the MA data shows no sign of the con-
tinuum that is expected to start at E0+�. Note that the nu-
merical data in Fig. 15 shows more structure that could be
consistent with this continuum. We will address the issue of
this continuum below. As k is increased �see Fig. 15�, the
low-energy peaks show some dispersion, but with a strongly
renormalized bandwidth. At higher k most weight shifts
again at high energies, in a rather broad continuum. Finally,
for �=2 and k=0, Fig. 16 shows even more discrete peaks
spaced by �. The GS is at E0�−4.25t, but its weight is so
small that it cannot be seen on this scale, unless � is de-
creased significantly. A continuum is seen above 
=−1.6t.
As k is now increased, there is almost no dispersion of the
discrete peaks; however, the weight shifts again to an even
broader high-energy continuum.

The issue of the continuum at E0+� in the exact case and
of its absence in the MA approximation for moderate and

FIG. 8. �Color online� Ground state results in 3D. Shown as a function of the coupling � are the ground state energy E0, the qp weight
Z0, the average number of phonons Nph, and the effective mass m* on a logarithmic scale. The left/right panels are for � / t=0.5 and 1. QMC
data is from Ref. 26.
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large couplings can be understood from Fig. 18. Here we
show a comparison of A�k=0,
� in 2D obtained from exact
diagonalization,41 vs MA results, for various couplings �.
The first remark is that MA captures quite well all the large-
weight features, both as far as their energy and their weight
are concerned. This is expected, given the good sum rules
agreement demonstrated previously. However, the ED results
clearly show more states than MA predicts. There is always a
low-weight peak at precisely E0+� �the GS and this state
are marked by arrows in the insets�. For couplings of up to
��1, this peak is followed by several nearby peaks with
comparably low weight, which can be argued to be part of
the expected continuum. For larger �, however, only the state
at E0+� can still be seen, although more states suggesting
more continua are seen between the large higher-energy
peaks. The gradual disappearance of the first continuum is
not surprising, since one expects its width to narrow expo-
nentially as the coupling increases. Moreover, one expects
that the largest contribution to this continuum is from states
with one or more phonons, explaining their low qp weight.

As far as MA is concerned, Fig. 18 suggests that for cou-
plings where there is more than one discrete state, the very
little weight in the E0+� and similar higher-energy continua
is absorbed in the discrete states predicted by MA. This is

consistent with the systematic upshift of the MA peaks com-
pared to the ED data.

In fact, it is straightfoward to see that the MA approxima-
tion can only predict a continuum starting at −2dt+�. A
continuum is signaled by a finite imaginary part of �MA�
�,
and the lowest frequency where this can occur is that for
which ḡ0�
−�� acquires a finite imaginary part �see Eq.
�19��. However, the imaginary part of ḡ0�
� is proportional
to the total density of states of the free model, i.e., it is finite
for 
� �−2dt ,2dt� for nearest-neighbor hopping. It follows
that the MA continuum always starts precisely at −2dt+�.
This explains why for small �, where there is only one peak
below this continuum, the gap between the two is somewhat
larger that the expected � value: The GS energy decreases
below −2dt with increasing �, whereas the continuum edge
is pinned at −2dt+�, in the MA approximation. As the cou-
pling increases, bound states start to split from this con-
tinuum, and spectral weight is shifted to lower energies, in
good agreement with the sum-rule predictions of the exact
solution. These new bound states have to account for the
�small� weight that is present in lower energy continua, in the
exact solution, and this is precisely what Fig. 18 shows.
Clearly, a self-energy that would account for these continua

FIG. 9. �Color online� GS expectation values for the electron kinetic energy �violet�, the phonon energy �cyan�, and the electron-phonon
interaction �orange� as a function of �, for �=0.5t and d=1, 2, and 3. Circles represent numerical results for the kinetic energy, from Ref.
27.
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as well would have to be a lot more complicated than that of
Eq. �19�.

This shows again that MA is remarkably successful in
predicting the main features of the Green’s function, given
its simplicity and trivial numerical cost. This should make it
�and generalizations of it to other models� of large interest
for comparison against experiments.

In the following, we use MA to investigate more proper-
ties of the Green’s function. We begin with Fig. 19, where
we plot the qp weight and average phonon numbers for a few
of the higher-energy peaks, once they appear below the con-
tinuum. For comparison, we also show the already discussed
GS results �black line�. Results in higher dimension are
qualitatively similar and we do not show them here. Unlike
for the GS, both these quantities are nonmonotonic functions
of � for all higher-energy bound states. Each of these states
disperses with k, as in Figs. 15 and 16 �more data for this is
shown below�, so an effective mass can be associated with

FIG. 10. �Color online� Lowest polaron eigenenergy for a given
k, Ek, and the corresponding qp weight Zk and average phonon
number Nph�k�. Results are for 1D, � / t=0.5, and �=0.25 and 1 �for
Ek and Zk� as well as 1.96, for Nph�k�. Only half of the BZ is shown.

FIG. 11. �Color online� Lowest polaron energy for a given k,
Ek, and the corresponding qp weight Zk and average phonon num-
ber Nph�k�. Results are for 2D, � / t=0.5, and �=0.845. Three high-
symmetry cuts in the Brillouin zone are shown.
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each such band. This effective mass satisfies m* /m=1/Z,
and therefore also shows nonmonotonic behavior, first de-
creasing and then increasing as � is increased. The average
phonon number in the nth state must approach n+g2 /�2 as-
ymptotically, as can be verified in the Lang-Firsov limit. This
is indeed observed in Fig. 19, however, the plateaus seen at
moderate � suggest some crossover from one to another type
of wave function associated with these higher levels. As �
→�, an infinite sequence of such bound states appear, as
expected in the Lang-Firsov limit.

For a better illustration of the appearance of these bound
states and of their evolution, we show contour plots of the

spectral weight A�k ,
�. We begin by plotting A�k ,
� as a
function of k and 
, for fixed parameters g , t, and �. In Fig.
20 we show 1D results corresponding to �= t and �=0.4, 1,
and 2, respectively. Only half of the BZ is shown, since
time-invariance guarantees that G�k ,
�=G�−k ,
�. Each of
these MA contour plots takes below ten seconds to generate.
Note that similar plots for the same parameters were pro-
vided by Hohenadler et al. in Ref. 39, based on a cluster
perturbation theory approach. The agreement between the
main features of our and their plots is excellent. As expected,
their data does show a few more low-weight features at
lower energies, below −2t+�=−t, in this case, where our
continuum starts. Such contour plots are richer versions of
plots like those shown in Figs. 14–16. They illustrate basi-

FIG. 12. �Color online� Lowest polaron energy for a given k,
Ek, and the corresponding qp weight Zk. Results are for 3D, � / t
=2.0, and �=1.0833. Three high-symmetry cuts in the Brillouin
zone are shown. Variational data is from Ref. 21.

FIG. 13. �Color online� �a� Energy gap �=E1−E0 between GS
and first excited k=0 state. A second bound state is stable if �
�� �here �=0.5t�; �b� line below which a second bound state
appears: ED �Ref. 18� �circles� and MA �squares�; �c� MA qp
weight of the second bound state when stable �red squares�, and that
of the GS �black squares�, for � / t=0.5. The circle is the one QMC
result available for the qp weight of the second bound state �Ref.
32�. These results are for 1D.

FIG. 14. �Color online� 1D spectral weight A�k ,
� vs 
, for k
=0, � /4, � /2, 3� /4, and �. MA results �red line� vs data from Ref.
23 �black line�. Here �=0.4t, �=0.5, and �=0.1 �.

FIG. 15. �Color online� 1D spectral weight A�k ,
� vs 
, for k
=0, � /4, � /2, 3� /4, and �. MA results �red line� vs data from Ref.
23 �black line�. Here �=0.4t, �=1, and �=0.1 �.
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cally the same points, although one can now also see clearly
the dispersion of various features. For the lowest �, the free
electron dispersion 
k=−2t cos�ka� is still almost visible, ex-
cept that electron-phonon interactions split it into the lower
polaron band and the higher continuum. This continuum is
not featureless, instead one can already see weight accumu-
lating near its lower edge. As � increases, a new bound state
will split off from it. This is seen for �=1, where there are
two bound states below the continuum starting at −1 �for
these parameters�. The bandwidth of each of these states is
now narrowed below �. The weight in the continuum at
higher energies is redistributed suggesting the impending for-
mation of yet more bound states. Indeed, the �=2 data shows
four even narrower bound states below the continuum, which
is showing yet more resonances at multiples of the phonon
frequency.

Similar behavior is expected, and indeed seen, in higher
dimensions. Here we only show similar 2D contour plots, for
�=2t and �=0.5, 0.945, and 2, in Fig. 21. The middle panel
again agrees very well with data shown in Ref. 39. In this

FIG. 16. �Color online� 1D spectral weight A�k ,
� vs 
, for k
=0, � /4, � /2, 3� /4, and �. MA results �red line� vs data from Ref.
23 �black line�. Here �=0.4t, �=2, and �=0.1 �.

FIG. 17. �Color online� MA 1D spectral weight A�k=0,
� vs 
,
for �=0.4t, �=1, and � /�=0.1, 0.05, 0.02, and 0.01. The first
three peaks are discrete states �Lorentzians�, whereas the fourth
marks the band-edge singularity of the continuum.

FIG. 18. �Color online� 2D spectral weight A�k=0,
� for �
=0.5t, �=0.01t, and various � values, from exact diagonalization
�Ref. 41� �black� and MA �red�. For ��1.125, the arrows point to
the GS location. The insets show the same data on a smaller scale,
so that low-weight states are more visible. The arrows show the GS
and the state appearing at precisely � above GS, in the ED results.
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case, the MA continuum starts at −4t+�=−2. As � in-
creases, we see again first 1, then 2, and then 4 bound states
below the continuum. Their bandwidths decrease with in-
creasing �, so that the lowest band for �=2 is already almost
dispersionless, even though its weight still varies with k. As
in the 1D case, as the interaction becomes stronger, the
weight in the continuum also redistributes itself, with strong
resonances seen around multiples of the phonon frequency.

Another way to understand the dependence on the cou-
pling � �or any other parameter� is to plot a contour of the
spectral weight A�k ,
� vs � and 
 for a fixed value of k.
Such a task is equally trivial at the MA level. In fact, one can
also just as easily calculate and plot the total density of states
or spectral weight,

A�
� =
1

N
�
k

A�k,
� ,

since within the MA approximation this is given by

A�
� = −
1

�
Im� 1

N
�
k

1


 − �k − �MA�
� + i��
= −

1

�
Im
ḡ0�
 − �MA�
��� .

In Fig. 22, we show four such contour plots for the 1D case.
Panel �a� shows A�k=0,
� vs 
. For �=0 �noninteracting
case�, only one state exists at −2t, as expected. As the cou-
pling turns on, the energy of this state �the ground state�
decreases, but k=0 weight is also transferred to higher ener-
gies, due to hybridization with the states in the electron-plus-
one-phonon continuum. The MA continuum here starts at
−1.5t. For moderate and larger � one can clearly see how
weight is rearranged inside the continuum as � increases, and
new bound states split from it and move toward lower ener-
gies. The apparent “break” in the slope of the GS energy, as
� increases, is now seen to occur when the first bound state
approaches the GS, and is suggestive of an avoided crossing.
From this point on, the GS lowers its energy much faster, but

its weight also decreases dramatically and it becomes diffi-
cult to see. Panel �b� of Fig. 22 shows A�k=� ,
� vs 
, on a
linear scale. At �=0, there is only one peak at +2t, as ex-
pected. As the coupling is turned on, this weight seems to
spread around in a rather featureless, broad continuum. In
fact, on a logarithmic scale �panel �c� of Fig. 22� one can see
that k=� weight is pulled down into all the bound states, in
agreement with the previous data we showed. This weight,
however, is so small that it is not visible on the linear scale.
Finally, panel �d� of Fig. 22 shows the total spectral weight
or DOS. At �=0, we see the usual 1D DOS, with the singu-
larities near the band edges rounded off because of the finite

FIG. 19. �Color online� qp weight and average number of
phonons in the GS �black line� and the next three higher k=0 bound
states, when they become stable according to MA. Results are for
1D, �=0.5t.

FIG. 20. �Color online� Contour plots of the 1D spectral weight
A�k ,
� as a function of k and 
. The intensity scales are shown to
the right of each plot. Parameters are �= t, �=0.4, 1, and 2, respec-
tively, and �=0.02. These results are in excellent agreement with
the results of Hohenadler et al. �Ref. 39� and the GS results of
Bonca et al. �Ref. 18�.
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� used. As � is turned on, one can recognize both the con-
tribution from the k=0 and k=� states to the total DOS:
Each bound state has a finite bandwidth due to its dispersion
�this is to be contrasted to the upper panels, where the bound
states are true delta functions, with a width defined by the
broadening ��. As the coupling strength increases, the num-
ber of bound states increases; they are spaced by roughly �,
their bandwidths narrow down, and their weights also de-
crease. In other words, they approach the expected Lang-
Firsov behavior.

Thus this figure actually answers the question posed in the
Introduction, regarding the evolution of the spectral weight
from that of a free electron toward that of the impurity limit.
While the MA results are certainly not exact, we can claim
with a high degree of certainty that the main features are

accurately captured, especially in the weak and in the strong
coupling limits. This suffices to understand the physics of
this problem and, given the simplicity of the approximation,
to investigate in detail a number of other quantities we have
not shown here, such as the self-energy. Of course, if one is
interested in exact results for some particular set of param-
eters, numerical methods have to be used.

Qualitatively similar plots are obtained in 2D and 3D, as
shown in Figs. 23 and 24. Of course, the �=0 DOS is very
different, with a van Hove singularity at 
=0 for the 2D
case, and the characteristic nearest-neighbor hopping DOS in
the 3D case. However, the appearance of multiple bands be-
low the continuum as � increases and all the remaining phe-
nomenology is very similar. Thus we see no evidence of any
qualitative differences in the polaron physics due to different
dimensionality.

V. SUMMARY AND CONCLUSIONS

In this paper, we analyzed the Green’s function of the
Holstein polaron, using the momentum average approxima-
tion, which consists in summing all the self-energy diagrams,
but with each individually averaged over all its free propa-
gator momenta. The resulting self-energy can be written as
an infinite continuous fraction that is numerically trivial to
evaluate. This procedure becomes exact in the limits g=0
and t=0.

We gauged the accuracy of this approximation by com-
puting its corresponding spectral weight sum rules and com-
paring them against the exact sum rules, which are known
for this type of Hamiltonian. We showed that the MA spec-
tral weight satisfies exactly the first six sum rules. Even
though this is quite impressive at first sight, it is actually no
guarantee of overall accuracy, as the case of SCBA demon-
strates. The SCBA spectral weight always satisfies exactly
the first four sum rules, even at large couplings � where it
predicts very wrong results. The meaningful criterion of ac-
curacy for the sum rules is to show that the vast majority of
terms in all sum rules, and in particular the dominant terms
in the various asymptotic limits, are captured by the approxi-
mation. MA indeed satisfies this very restrictive criterion.

The accuracy of the approximation was also tested by
direct comparison with data obtained through numerically
intensive methods. In all cases, we obtain remarkable agree-
ment, especially considering the ease of evaluation of the
MA results. The MA approximation is not exact and some
features are not correctly captured �for example, the con-
tinuum starting at E0+��; however, in all cases, all the
higher-weight features in the spectral weight are quantita-
tively and qualitatively well described by the MA approxi-
mation. Trading some of the accuracy of numerically exact
but often time consuming methods in exchange for very fast
results which capture the main features accurately is a useful
approach when trying to understand the main aspects of the
physics of a problem, as well as when one is concerned about
comparison with experiments. It is very unlikely that ARPES
could capture very low-weight features; these would be lost
in the noise background. Thus an approximation like MA,
that quickly but accurately estimates results, is very useful,

FIG. 21. �Color online� Contour plots of the 2D spectral weight
A�k ,
� as a function of k and 
, along several cuts in the BZ. The
intensity scales are shown to the right of each plot. Parameters are
�=2t, �=0.5, 0.945, and 2, respectively, and �=0.02. The middle
panel is in excellent agreement with the results of Hohenadler et al.
given in Ref. 39.
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to be followed, of course, by detailed numerics for the pa-
rameter sets of interest.

It is important to note that the existence and accuracy of
approximations like MA is not guaranteed; in fact, it can be
regarded as a surprise for the case of the Holstein polaron,
that has been under investigation for almost five decades.
However, this demonstration of its existence and efficiency
in the Holstein polaron problem gives some hope for making
progress for the general class of strongly correlated systems
problems. One can always use some flavor of perturbation
theory to understand behavior in asymptotic limits, but the
really challenging problems are set in regimes where pertur-
bation does not apply. The MA approximation suggests that
one way to make nontrivial progress is to sum all diagrams,
with each simplified enough so as to make the calculation
feasible, but not so much as to really alter the physics. This is
a very different approach from the usually employed summa-
tion of a subclass of diagrams. Note that there are many
classes of problems with diagrams similar to the ones arising
in the single polaron problem, although of course with dif-
ferent propagators and/or vertices.

A first possible generalization of this work is to models
with several phonon branches, and/or momentum-dependent
coupling gq, and/or dispersive phonons �q. The way to
achieve this for a single polaron is briefly discussed in Ref.
42. Given the length of this article, we postpone this discus-
sion for future publications where results can also be shown.
Other directions of generalization are to finite particle densi-
ties and/or finite temperatures, and indeed to Hamiltonians

which also include electron-electron interactions.
Such work is currently in progress. It is still far from clear

which cases will admit useful generalizations; however, the
proof of existence of this method for the Holstein polaron
problem is in itself encouraging.
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APPENDIX: COMPARISON WITH DMFT

The MA self-energy of Eq. �19� looks similar to the
DMFT self-energy, discussed in Ref. 35. This is not so sur-
prising, since both become equal to the exact Lang-Firsov
limit if the bandwidth goes to zero, and this can be rewritten
as an infinite continued fraction, as shown in Eq. �12�. How-
ever, this similarity may raise questions about the relation-
ship between the two approximations. In this Appendix, we
briefly show that the two approximations are very different at
all finite t and g.

The meaning of the MA ḡ0�
� and of corresponding
DMFT G0�
� �notation of Ref. 35� is very different. The
DMFT G0�
� is obtained by solving exactly the problem of

FIG. 22. �Color online� 1D results for �=0.4t and �=0.04t. �a� A�k=0,
� vs 
 and �; �b� A�k=� ,
� vs 
 and �, on a linear scale; �c�
A�k=� ,
� vs 
 and �, on a logarithmic scale; �d� total spectral weight A�
� vs 
 and �. The intensity scales are shown to the right of each
plot.
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an impurity coupled to an environment in the d→� limit,
and then imposing the self-consistency condition that the im-
purity site behaves similar to all other sites in the environ-
ment. The DMFT G0�
� is calculated self-consistently using
the following steps:35 �i� With some initial guess for G0�
�,
one calculates the DMFT self-energy, given by a formula
similar to Eq. �19�, with ḡ0�
� replaced by G0�
�; this self-
energy is then used to calculate the total Green’s function

G�
� = �
−�

�

d
 �0�
�
1


 − 
 − ��
� + i�
,

where �0�
� is the density of states of the noninteracting
electrons. The usual procedure is to take d→� and use as
DOS the semielliptical formula corresponding to an infinitely
branched Bethe tree,

�0�
� =
2

��W

2

2��W

2

2

− 
2,

where W is the bandwidth for the noninteracting system.
Then �iii� the new G0�
� is extracted from the condition that
G�
�= �G0

−1�
�−��
��−1 and the procedure is repeated until
self-consistency is reached. Reaching self-consistency is a
nontrivial numerical task, especially compared to obtaining
the MA ḡ0�
� �see below�. More importantly, the DMFT
G0�
� is an explicit function of g and �.

In contrast, the MA ḡ0�
� is the momentum average of
the free propagator: Thus it is a known function, independent
of the parameters g and �. In particular, for the semielliptical
DOS, we have simply

ḡ0�
� = �
−�

�

d

�0�
�


 − 
 + i�

=
8

W2 �
 + i���1 −�1 −
W2

4�
 + i��2� .

FIG. 23. �Color online� 2D results for �=0.5t and �=0.04t.
Top: A(k= �0,0� ,
) vs 
 and �. Bottom: Total 2D spectral weight
A�
� vs 
 and �. The intensity scales are shown to the right of each
plot.

FIG. 24. �Color online� 3D results for �=0.5t. Top: A(k
= �0,0 ,0� ,
) vs 
 and �, for �=0.15t. Bottom: Total 3D spectral
weight A�
� vs 
 and �, for �=0.04t. The intensity scales are
shown to the right of each plot.

FIG. 25. �Color online� Comparison between the function G0�
�
entering the DMFT self-energy, for 
 / t=0.5 and �=0.5 �green� and
�=1.5 �yellow�, and ḡ0�
� entering the MA self-energy, for the d
→� semielliptical DOS.
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A comparison of these functions is provided in
Fig. 25. They are clearly different. Moreover, note that in the
MA approximation, G�k ,
� is an explicit function of the
momentum. The MA self-energy for the Holstein polaron
happens to be independent of the momentum, but this

a consequence of the simplicity of the model, not
an “in-built” feature as in DMFT. Generalizations to
models with a momentum-dependent coupling and/or
dispersive phonons lead to momentum-dependent
self-energies.42
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