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Abstract. Antiferromagnetic Hamiltonians with short range, non-frustrating
interactions are well known to exhibit long range magnetic order in dimensions
d ≥ 2 but exhibit only quasi-long-range order, with power-law decay of
correlations, in d = 1 (for half-integer spin). On the other hand, non-frustrating
long range interactions can induce long range order in d = 1. We study
Hamiltonians in which the long range interactions have an adjustable amplitude
λ, as well as an adjustable power law 1/|x|α, using a combination of quantum
Monte Carlo and analytic methods: spin-wave, large N non-linear σ model, and
renormalization group methods. We map out the phase diagram in the λ–α plane
and study the nature of the critical line separating the phases with long range and
quasi-long-range order. We find that this corresponds to a novel line of critical
points with continuously varying critical exponents and a dynamical exponent,
z < 1.
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1. Introduction

The ground state (GS) of the nearest neighbour antiferromagnetic (AF) Heisenberg model
on a bipartite lattice,

H =
∑

〈i,j〉

�Si · �Sj , (1)

is generally expected to have long range order (LRO):

〈�S0 · �Sr〉 → ±m2
AF, (r → ∞), (2)

for any spin magnitude, S and any dimension d ≥ 2 [1]. On the other hand, in dimension
d = 1, the behaviour depends on whether S is integer or half-integer [2]. In the half-integer
case the spin–spin correlation function

〈�S0 · �Sr〉 ∝
(−1)r

√
ln r

r
, (3)

is expected [3], characteristic of a quasi -long range order (QLRO). (In the integer spin,
Haldane gap case, correlations decay exponentially.) This behaviour in d = 1 for half-
integer S is believed to be universal, not depending on the magnitude of S or on the
details of the Hamiltonian as long as it is short range and not too frustrating. Long
range interactions (i.e. power law decaying with the relative distance between interacting
moments) can be introduced in spin models either for some experimental reasons like
dipolar or RKKY interactions or simply because of some theoretical relevance. For
instance, a famous example is the Haldane–Shastry model [4] with AF frustrating 1/r2

interaction which exhibits an exact RVB GS. Another theoretical interest comes from the
possibility to interpolate between discrete dimensions by tuning continuously the exponent
that governs the decay of the interaction with the distance. Indeed, the possibility for
true LRO to occur in d = 1 with long range interactions has motivated many studies
during the last decades [5]–[14] and is the subject of the present paper. While a long
standing debate about the critical behaviour of the Ising model in d dimensions with long
range ferromagnetic interaction decaying like r−d−σ has been quite intense during the
last 30 years [6, 11, 12], the N -vector model has also been a subject of interest for many
authors [7]–[10]. Concerning the Heisenberg model with long range interaction ∼r−α, the
seminal paper of Mermin and Wagner [5] proving the absence of LRO at finite temperature
T in d ≤ 2 for α > d + 2 has been recently reconsidered by Bruno [13], who gave stronger
conditions for the absence of spontaneous magnetic order at T > 0 in d ≤ 2. For instance,
he proved that the AF non-frustrating one-dimensional model

H =
∑

i

[
�Si · �Si+1 − λ

∞∑

j=2

(−1)j
�Si · �Si+j

jα

]
(4)

does not have Néel order for any temperature T > 0 if α ≥ 2. Actually, much less is
known about the T = 0 case, except the work of Parreira et al [15], where the authors
signalled the existence of the bound α = 3 over which T = 0 LRO is ruled out1. A

1 The proof for non-existence of LRO at T = 0 for λ = 1, if α > 3 [15], can be trivially extended and shown to
hold for all λ �= 1.
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particular case, the model (4) with λ = 1, was recently analysed at both T = 0 and T > 0
in [14], using the lowest order spin-wave (SW) approximation, expected to be valid for
large enough S and small enough α. There it was shown that the SW dispersion relation
takes the sublinear form, at low k:

ω(k) ∝ |k|(α−1)/2, (5)

for α < 3. Consequently the quantum 1/S reduction of the order parameter,

∆mq ∝
∫

dk

ω(k)
, (6)

is finite for any α < 3. By requiring that ∆mq < S, a consistency condition on the
SW approximation, it is concluded that LRO occurs for any S at sufficiently small α.
(However, such an estimate is presumably only reliable for S 
 1.) After correcting a
numerical error in [14], the SW prediction for the S = 1/2, λ = 1 case is existence of Néel
order at T = 0 for α < αsw

c = 2.46.
In this work, we extend the results of Yusuf et al in several ways, focusing on the

zero-temperature behaviour of the non-frustrating spin 1/2 Hamiltonian (4) with long
range interaction of adjustable strength λ and exponent α. In section 2, we consider the
relevance of the long range term as a perturbation to the nearest neighbour interaction,
using a simple heuristic argument of mean-field type as well as the power-counting of the
scaling dimension of the perturbation. For λ � 1, we find that the long range perturbation
is marginal if α = 2 and relevant (irrelevant) for α < 2 (α > 2). We then investigate
the α- and λ-dependence of the critical behaviour using various techniques. We begin, in
section 3, with semi-classical calculations: the SW expansion and a large N approximation
based on the non-linear σ model. Both approximations give qualitatively similar phase
boundaries, and sublinear dispersion like in equation (5) in the ordered phase. Some
of the critical exponents can also be estimated within these approximations. However,
the results obtained in the SW or large N approximations are not quantitatively correct.
We therefore use large scale numerical simulations to investigate more precisely the phase
diagram of this model in sections 4 and 5. We study systems of up to L = 4000 sites using
quantum Monte Carlo (QMC) methods, based on a stochastic series expansion (SSE) of
the partition function [16, 17]. We verify that for S = 1/2 there are indeed stable phases
with both QLRO given by equation (3) and with true Néel LRO (equation (2)). We
accurately determine the phase boundary, as well as some of the critical exponents which
are found to vary continuously along the critical line. In section 6, we also apply analytic
renormalization group (RG) methods to investigate the case λ � 1. Section 7 contains
conclusions. In two appendices we gives further details on the spin-wave theory and large
N calculations.

2. Relevance of the perturbation: mean field and scaling arguments

Let us consider a short range spin 1/2 chain with an additional long range perturbation
of the form

∑

r,r′

J(r, r′)�Sr · �Sr′ , (7)
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with

J(r, r′) = −(−1)|r−r′|

|r − r′|α . (8)

Following an argument given by Cardy [18] for the relevance of a long range perturbation,
we can in first approximation look at the mean field correction to the free energy coming
from this long range term (7):

δF =
∑

r,r′

J(r, r′)〈�Sr · �Sr′〉, (9)

where 〈· · ·〉 is evaluated in the unperturbed system where we know the behaviour of the
correlation function

〈�Sr · �Sr′〉 ∼
(−1)|r−r′|

|r − r′|z+η−1
. (10)

In a finite system of length L, the change in the free energy per site δf thus scales like

δf ∼
∫ L

1

dr

rα+z+η−1
. (11)

The integral above will give a constant term and a size dependent term

δf(L) ∼ L2−α−z−η ∼ L−α, (12)

where we have used the fact that z = η = 1 in the short range QLRO regime of the spin
1/2 chain. Then, we can compare this with the usual finite size corrections to the free
energy of the conformally invariant short range S = 1/2 chain which are known to scale
like L−2 to lowest order [19]. This tells us that (to first order perturbation) if α < 2
the long range perturbation creates a correction which dominates the L−2 correction of
the unperturbed fixed point and is probably a relevant perturbation for the short range
model.

Another way of deriving this result is to compute the scaling dimension of the
perturbation, based on the usual continuum formulation of the short range model in which
uniform and staggered magnetization density operators, ( �JL + �JR) and �n, are introduced:

�S(x) ≈ ( �JL + �JR) + (−1)x�n(x). (13)

Only slowly varying Fourier modes of the fields �JL/R(x) and �n(x) are present in the low

energy effective Hamiltonian. �JL/R are the conserved left/right-moving spin densities.
Ignoring a marginally irrelevant interaction, the staggered magnetization field, �n, has the
Green’s function

〈na(z)nb(0)〉 =
δab

|z| , (14)

with z ≡ τ + ix. The long range perturbation adds to the low energy, continuum limit of
the imaginary time action, a term of the form

δS[�n] ∼ −λ

∫
dτ dx dy

|x − y|α �n(τ, x) · �n(τ, y). (15)

Utilizing the fact that, from equation (14), �n has a scaling dimension of 1/2, a simple
power counting tells us that the perturbation is irrelevant for α > 2, relevant for α < 2,
and marginal for α = 2. Also note that λ > 0 corresponds to non-frustrating interactions
which favour the Néel state with 〈nz〉 �= 0.
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3. Spin-wave expansion and large N approximation

3.1. Spin-wave expansion

This calculation simply generalizes that of Yusuf et al in [14], to λ �= 1. We summarize
here the main steps. Some further results are given in appendix A. On the LRO side of
the transition, we use the Holstein–Primakoff approximation [20]:

Sz
i = S − a†

iai, S+
i ≈

√
2Sai, S−

i ≈
√

2Sa†
i ,

for i odd and

Sz
j = b†jbj − S, S+

j ≈
√

2Sb†j , S−
j ≈

√
2Sbj ,

for j even, and retain only the quadratic terms in the Hamiltonian (4). After a Fourier
transform over the reduced Brillouin zone k ∈ (−π/2a, π/2a), we find

HSW ≈ S
∑

k

[
(γ − f(k))

(
a†

kak + b†kbk

)
+ g(k)

(
a†

kb
†
−k + b−kak

)]
+ · · · (16)

where, for an infinite chain2,

γ = 2 + 2λ

∞∑

n=2

1

(2n − 1)α

f(k) = 2λ
∞∑

n=1

cos(2kna) − 1

(2n)α

g(k) = 2 cos(ka) + 2λ

∞∑

n=2

cos[k(2n − 1)a]

(2n − 1)α
.

This quadratic Hamiltonian can be diagonalized with a Bogoliubov transformation to

HSW ≈ S
∑

k

ωk

(
χ†

k,1χk,1 + χ†
k,2χk,2

)
(17)

with an SW spectrum

ωk =

√
[γ − f(k)]2 + [g(k)]2

k→0−→ k(α−1)/2, (18)

as discussed above. At T = 0, the correction to the staggered magnetization at any site
is

∆mq = 〈a†
iai〉 = 〈b†jbj〉 =

a

2π

∫ π/2a

−π/2a

dk

[
γ − f(k)

ωk
− 1

]
.

The consistency condition ∆mq < S then allows us to find the SW approximation for
the value of αsw

c below which long range Néel order is established. As already stated, for
S = 1/2 and λ = 1, we find αsw

c = 2.46. A plot of αsw
c versus λ, for S = 1/2, is shown in

figure 1.

2 These equations are the analogues of equations (6) of [14]. We use γ instead of α since in our work α defines the
spatial variation of the exchange (the parameter called β in [14]). The definition of f(k) is corrected by a factor
of 2.
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Figure 1. Spin-wave approximation prediction for the value αsw
c below which

long range Néel order is expected at T = 0, as a function of λ and for S = 1/2.
The critical curve saturates at α � 2.9032 when λ → ∞.

This phase boundary given by the lowest order SW approximation turns out not to be
quantitatively correct, as we are going to see with the QMC results presented in section 4.
In particular, it happens that SW predictions miss the fact that the critical line goes to
α = 2 when λ → 0. Nevertheless SW predictions are, to some extent, shared by large N
calculations as we are going to see below.

3.2. Large N approximation

The details of this calculation are given in appendix B. Here we present the main steps
and discuss the results which come from this approximation. We generalize the Néel
order parameter field, �n(τ, x) appearing in equation (13), to an N -component field and
take the limit of large N . In this approximation two phases occur in the λ–α plane. The
critical line terminates at α = 1, as in the spin-wave approximation. These two phases
are a phase with Néel order and a disordered phase with a finite correlation length. (The
unusual quasi-long-range ordered phase is special to the case N = 3 and is not captured by
the large N approximation.) Along the critical line separating these two phases the mean
field result, η = 3−α, is obtained. The dynamical exponent takes the value z = (α−1)/2,
corresponding to the dispersion relation ω ∝ |k|(α−1)/2 also obtained in spin-wave theory.
The correlation length diverges with an exponent ν defined by

ξ ∝ |λc − λ|−ν , (19)
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with

ν =

{
1/(α − 1), (1 < α < 5/3)

2/(3 − α), (5/3 < α < 3).
(20)

4. Quantum Monte Carlo results I: finite size effects

In this section, we present results obtained using the QMC SSE method based on directed
loop updates [16]. This algorithm, used here to investigate the model (4), has been
proposed recently by Sandvik [17] to study spin Hamiltonians with non-frustrating long
range interactions.

4.1. Finite size corrections

We first focus on the λ = 1 case, studied by SW in [14], governed by the following
Hamiltonian:

H = −
∑

i,j≥1

(−1)j

jα
�Si · �Si+j. (21)

In order to detect a Néel instability at the thermodynamic limit, we compute the staggered
structure factor, normalized per site, on finite length spin S = 1/2 chains, defined by

Sπ(L) =
1

L2

∑

i,j

(−1)i−j〈�Si · �Sj〉 =
3

L2

〈(
L∑

i=1

(−1)iSz
i

)2〉
. (22)

We have performed SSE simulations for different system sizes, up to Lmax = 4096, at
temperatures β−1 = 1/2L low enough to get the GS properties. Results for Sπ(L) are
shown versus 1/L in the left panel of figure 2 for different values of the power-law exponent
α. The staggered structure factor displays two types of behaviour: for small values of α
it saturates to a finite non-zero number, whereas for large enough α, Sπ(L) vanishes when
L → ∞. Then, in order to extract the thermodynamic limit behaviour of Sπ, we perform
a finite size analysis in order to get the AF order parameter, given by

√
Sπ(L) → mAF, (L → ∞). (23)

Utilizing the fact that in the QLRO regime the spin–spin correlation functions decay as
stated in equation (3), we therefore expect in this regime the following behaviour for the
staggered structure factor per site:

Sπ(L) =
1

L

∫ L

1

(−1)r〈�S0 · �Sr〉dr ∼ (ln L)3/2

L
, (L → ∞). (24)

On the other hand, in the Néel phase, the finite size scaling of the order parameter can
be evaluated using the small k SW spectrum (see appendix A), leading to

Sπ(L) − m2
AF ∼ L(α−3)/2 + O(Lα−3). (25)

We used second order polynomial fits in L(α−3)/2 to extrapolate the finite size data to their
thermodynamic limit values, shown in the right panel of figure 2. The quantum phase
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1/L

S π(L
) α=0

α=1
α=1.5
α=2
α=2.1
α=2.15
α=2.2
α=2.25
α=2.4
α=2.5
α=3
N.N only

0.001

0.01

0.1

0.0001 0.001 0.01 0.1
α

m
A

F Neel

QLRO

SW

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

'

Figure 2. Left panel: T = 0 QMC results for the staggered structure factor per
site Sπ(L) computed in the GS for the Hamiltonian (21) and plotted versus the
inverse system size L−1 in a log–log scale. Different symbols are used for different
values of the power-law exponent α, as indicated on the plot. The case with only
nearest neighbour interactions is also shown (N.N green crosses) for comparison.
Right panel: infinite size AF order parameter mAF plotted versus α, obtained
using finite size scaling of Sπ(L) (shown on the left panel). The quantum phase
transition between the Néel phase (mAF �= 0) and the QLRO phase (mAF = 0)
occurs at αc = 2.225 ± 0.025. The SW estimate (αsw

c � 2.46) is indicated by the
arrow.

transition between the AF Néel order and the QLRO phase is clearly visible for a critical
value 2.2 < αc < 2.25. It is also interesting to compare this estimate with the one from
the SW approximation giving αsw

c � 2.46.
Let us now concentrate on the α- and λ-dependent Hamiltonian (4) by keeping a fixed

value for α while varying λ. We first focus on the case with α = 2.1, which is expected
to display a transition for a non-zero value of λ. As pointed out by Reger and Young,
studying finite size AF clusters in d = 2 [21], the sublattice (infinite size) magnetization
can be obtained either from the staggered structure factor (equation (23)) or from the
correlation functions at the largest separation

C(L) = 〈�Si · �Si+L/2〉 → ±m2
AF, (L → ∞). (26)

In the Néel phase, both estimators Sπ(L) and C(L) are expected to converge to m2
AF with

a similar power-law behaviour but with different pre-factors. This feature is illustrated by
the computation of C(L) and Sπ(L) for α = 2.1 and four different values of the long range
term strength λ = 3, 2, 0.9 and 0.6, as shown in figure 3. Using second order polynomial
fits in L(α−3)/2, we can obtain infinite size extrapolated values for mAF(λ) from Sπ(L) or
C(L), as reported in table 1. Finite size effects are more pronounced for the staggered
structure factor than for the mid-chain correlation function because Sπ(L) is the result of
the integration of the staggered correlation function along the entire chain and therefore is
sensitive to short distance terms. However, the estimates for the sublattice magnetization
obtained from C(L) and Sπ(L) (see table 1) are both in good agreement, especially when
the system is deeply in the Néel regime (large values of λ). On the other hand, when the
system is approaching the quantum critical point (QCP) where mAF → 0, the finite size
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0.4

Sπ(L)

0

0.1

0.2

0.3

0.4

C(L)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

L(α-3)/2L(α-3)/2

C
(L

) 
an

d 
S π

(L
)

(a)  λ = 3 (b)  λ = 2

(c)  λ = 0.9 (d)  λ = 0.6

Figure 3. Staggered structure factor per site Sπ(L) (equation (23)) and mid-
chain correlation function C(L) (equation (26)) computed at T = 0 with QMC
for α = 2.1 and four different values of λ, as shown in plots (a)–(d). Finite size
scaling has been performed on finite systems up to Lmax = 128 for the largest
values of λ ((a) and (b)) and up to Lmax = 256 for the smallest ((c) and (d)).
The dashed lines are polynomial fits of the form m2

AF + a1L
(α−3)/2 + a2L

α−3.

Table 1. Infinite size extrapolated values of the sublattice magnetization mAF

obtained for α = 2.1 and λ = 3, 2, 0.9, and 0.6 from power-law fits of the
staggered structure factor Sπ(L) and the mid-chain correlation function C(L)
(see figure 3).

λ mAF from Sπ(L) mAF from C(L)

3 0.353 0.356
2 0.295 0.301
0.9 0.106 0.091
0.6 0 0.02

effects are significant enough to prevent us from obtaining a very precise estimate of the
critical coupling λc where the AF LRO vanishes.

Of course, in principle it is possible to perform very large scale numerical SSE
simulations on the largest reachable system sizes, as we did for the λ = 1 case with
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Figure 4. T = 0 QMC results for the mid-chain correlation function C(L)
computed for α = 2.1 and different values of λ, as indicated on the plot. (a)
C(L) is plotted versus the system size L for 0 ≤ λ ≤ 1.15. (b) Both x- and y-axis
are rescaled using two parameters: the crossover length scale ξλ and Ψλ. The
data collapse results in two universal curves: one for the Néel ordered phase (top
one) and one for the QLRO regime (lower one). Note that for clarity the QLRO
universal curve has been shifted downwards. The red dashed line materializes the
critical separatrix between the two regimes, decaying with an exponent �0.63.
Inset: crossover length scale ξλ extracted from the data collapse in the QLRO
(full circles) and Néel regimes (open squares). The dashed lines are power-law
fits of the form |λ − λc|−ν with λc � 0.45 (indicated by vertical dotted line) and
ν ∼ 15.

Lmax = 4096. However, since our goal here is to investigate the quantum critical
phenomena in the λ–α plane, we need a good sampling of this parameter space and
we therefore restrict the simulations over systems of maximum size Lmax ≤ 1024. We
then use another strategy, based on scaling arguments, to perform a better data analysis
close to criticality. This is described next.

4.2. Scaling analysis

As previously discussed, the finite size effects are bigger for the staggered structure factor
than for the mid-chain correlation function. Therefore, we now focus on C(L), which is
expected to saturate to a constant value in the Néel phase, whereas in the QLRO regime
the behaviour C(L) →

√
ln(L/a)/L is expected, a being a non-universal constant.

In order to illustrate the scaling analysis, let us continue to study the case with
α = 2.1, as in the previous subsection. We have computed C(L) for several values of the
long range coupling strength λ in the range [0, 1.15], for sizes up to L = 256. The results,
shown in figure 4(a), clearly show the existence of a finite critical value λc which separates
the QLRO and the Néel regimes. In order to locate precisely this QCP, let us assume that
a typical length scale ξλ governs a crossover from the QCP to the Néel phase if λ > λc

and from the QCP to the QLRO regime if λ < λc. Precisely at the critical point, the
spin–spin correlation function decays like a power law

CQCP(L) ∼ L1−z−η, (27)
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thus defining the critical exponents η and z, the critical dynamical exponent. Without
making any assumption about the values of the aforementioned critical exponents, let us
now define scaling functions f±(x), with x = L/ξλ, for λ > λc and λ < λc, respectively,
by

f±(x) =
C(L)

CQCP(L)
. (28)

Hence, the scaling functions obey

f−(x) ∝ x−2+z+η
√

ln x if x 
 1 and λ < λc (QLRO)

f+(x) ∝ x−1+z+η if x 
 1 and λ > λc (NEEL)

f±(0) = 1 if λ � λc (QCP).

(29)

It is convenient to also rescale the y-axis with the unknown function Ψλ in order to get
C(L) × Ψλ = f(x) × x1−z−η. We then expect Ψλ to be proportional to ξz+η−1

λ . Using
such scaling forms, we have obtained the collapse of the data shown in figure 4(a) into
two universal curves shown in figure 4(b). The parameters ξλ and Ψλ have been chosen
to give the best data collapses. Using such a scaling analysis, we find a critical coupling
λc = 0.45 ± 0.05 that we can compare to the overestimated value λc = 0.6 previously
found using the simpler finite size scaling equation (25). The critical correlation (given by
the separatrix between the two regimes in figure 4(b)) is characterized here by a power-
law decay with an exponent (z + η − 1)QCP � 0.63. Note also that the crossover length
scale ξλ, plotted in the inset of figure 4(b), diverges on both sides of the transition with
a large exponent ν ∼ 15.3 These and other issues related to the critical exponents will be
discussed in detail in section 5.3.

5. Quantum Monte Carlo II: phase diagram and critical behaviour

The scaling analysis described above has been repeated for several values of α in order to
explore and construct the phase diagram of the model (4) in the λ–α plane.

5.1. α = 2: marginal case

Let us first focus on the marginal case with α = 2, for which a similar data collapse
analysis is performed and shown in figure 5 for the mid-chain correlation function.

Using QMC simulations results for chains up to L = 512 sites, with λ ∈ [0, 3], we
have been able to get a universal curve (see figure 5) which shows a crossover towards
a Néel order phase (i.e. C(L) → constant if L 
 ξλ). Note that for λ < 0.1 the
typical length scale necessary to get a good collapse becomes very large so that there
is no overlap between our different curves and the data collapse analysis is impossible
to achieve. Nevertheless, the crossover length scale ξλ, plotted in the inset of figure 5,
displays an exponential divergence when λ → 0. Guided by the RG calculations presented

3 A precise determination of the exponent ν is actually impossible to achieve because of large error bars for ξλ

due to some natural uncertainties in the data collapse procedure.
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Figure 5. T = 0 QMC results at α = 2 for the mid-chain correlation functions
C(L). As in figure 4, both x- and y-axes have been rescaled in order to get
the best data collapse. For the different values of λ indicated on the plot, the
data collapse on a unique crossover curve towards the Néel ordered phase. Inset:
crossover length scale ξλ plotted in a linear–log scale versus λ−0.4. The dashed
line is a fit of the form equation (30) with σ = 0.4.

in section 6, we can fit the λ-dependence of the crossover length scale by

ξλ ∼ exp(C/λσ), (30)

with σ = 0.4 and C being a free parameter. It is however important to note that since
ξλ suffers from large error bars, and so does the fitting parameter, we have forced σ to its
value found in equation (66).

Unambiguously, ξλ is found to diverge when λ → 0, which means that at the marginal
point α = 2 any λ > 0 will drive the system towards the Néel phase. In other words, the
long range interaction perturbation of strength λ is marginally relevant at α = 2. This
result agrees with the RG calculations presented in section 6.

5.2. Phase diagram

As previously stated, when α ≤ 2 the long range interaction is a relevant perturbation and
any λ > 0 will drive the QLRO phase towards a AF ordered Néel phase with mAF �= 0.
On the other hand, when α > 2 a simple power-counting tells us that the perturbation
is irrelevant, which should imply that the QLRO is stable against a small perturbation
λ > 0. It turns out that such a simple argument is not sufficient to provide a correct
description of the quantum critical behaviour of the system (see the next section for a
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Figure 6. T = 0 phase diagram of the long range S = 1/2 model (equation (4))
computed by large scale QMC simulations and plotted in the λ–α plane. A line of
critical points (circles) separates a long range ordered phase (Néel) and a quasi-
long-range ordered phase (QLRO). The error bars, due to some uncertainties in
the finite size scaling analysis of the numerical data, are explicitly show on the
plot. The dashed line is a guide for the eyes.

more advanced field theoretical description). Based on large scale numerical simulations,
we provide hereafter a picture which is consistent with the existence of a non-trivial line
of fixed points in the λ–α plane.

Using QMC simulations on systems of up to L = 1000, we performed the scaling
analysis for the mid-chain correlation function C(L) as well as for the staggered
susceptibility (see below) and computed the phase diagram for 2 ≤ α ≤ 2.7. For each
value of α, the QCP λc is found by the separatrix between the two crossover functions
(see figure 4(b)) with some error bars due to the discrete sampling in the λ space as well
as the strong divergence of the crossover length scale close to the critical point which
makes the data collapse delicate. We present in figure 6 the QMC phase diagram in the
λ–α plane. As discussed, λ is marginally relevant at α = 2, driving the system towards
a Néel phase with LRO. At small λ, the critical line increases sharply from α = 2 and
displays a negative curvature. By contrast, spin-wave theory (see figure 1) and the large
N approximation predict that αc(λ → 0) = 1. In the range of λ considered here (λ < 8),
the critical line stays well below the value α = 3 and we expect this feature to remain
true for all λ. This behaviour is consistent with the proof of absence of LRO at T = 0 for
α > 3 [15] (see footnote 1).
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5.3. Critical exponents

The transition line between Néel LRO and QLRO is a non-trivial line which displays
continuously varying critical exponents, as we show now.

5.3.1. Divergence of the crossover length scale. The standard theory of quantum phase
transitions involves a set of critical exponents which govern the universal behaviour
of various quantities close to or at the QCP. One of them is ν, which tells us how
the correlation length diverges in the real space direction close to the critical point.
Usually this correlation length is defined in the disordered phase by the exponential decay
∼ exp(−r/ξ) of the correlation function associated with the order parameter. In our
case, the non ordered regime λ < λc is already critical and thus the correlation length is
intrinsically infinite. Nevertheless, the typical length scale ξλ which governs the crossover
phenomenon diverges at the QCP (on both sides) with an exponent which we call ν by
analogy:

ξλ ∝ |λ − λc|−ν. (31)

As already discussed, an accurate numerical evaluation of the exponent ν is difficult,
because of some intrinsic uncertainties in the data collapse procedure. Nevertheless, at
our level of precision we observe this crossover length scale exponent increasing when
α → 2+. In particular, at the marginal point α = 2, we find an exponential divergence
of ξλ near λ = 0 (equation (30)), formally corresponding to ν = ∞. This divergence of
ν when α approaches 2 is actually in good agreement with the results of field theory and
RG calculations presented in section 6.

5.3.2. Staggered magnetization exponent and hyperscaling relation. The other scaling
parameter Ψλ, used for the collapse of the correlation function data, also contains some
information. First, if the scaling hypothesis used above with the help of the crossover
functions is correct, we expect Ψλ ∼ ξz+η−1

λ , which gives another estimate for the critical
exponent of the decay of the correlation function (equation (27)). This is illustrated in
figure 7, where Ψλ is plotted versus ξλ for α = 2.1. Data, presented for both sides of the
transition in figure 7, clearly display power-law dependences with an exponent η + z − 1
in very good agreement with the value of 0.63 previously found along the separatrix in
figure 4(b). Note also that the agreement is even better when getting closer to the QCP.

In the ordered phase, according to equation (26), we expect for the AF order
parameter

mAF ∝ ξ
(1−z−η)/2
λ ∝ (λ − λc)

(ν(1−z−η))/2. (32)

This implies the usual hyperscaling relation involving the critical exponent β governing
the onset of the order parameter

mAF ∝ (λ − λc)
β, (33)

which must therefore satisfy

2β = ν(z + η − 1), (34)

i.e. the usual hyperscaling relation in d = 1.
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Figure 7. Log–log plot of the scaling parameters Ψλ and ξλ obtained from the
collapses shown in figure 4(b) for α = 2.1 in both phases: Néel (◦ ) and QLRO
(�). Within error bars (explicitly shown on the plot), data are fitted by power-
laws (dotted lines) of the form ξ0.617

λ for the Néel regime and ξ0.636
λ for the QLRO.

5.3.3. Analytical estimate of the exponent η. Following the same philosophy as in the mean
field argument given in section 2, we can calculate the expectation value of the long range
perturbation

J(r, r′)〈�Sr · �Sr′〉 ∼
1

|r − r′|α+z+η−1
, (35)

at the QCP, with some unknown critical exponents z and η. The finite size correction to
the free energy density now scales like L2−α−z−η. The singular part of the free energy at
some non-trivial QCP is expected to scale like L−1−z for a finite size system. Thus the
two corrections will scale in a similar way if

η = 3 − α. (36)

The same condition is also obtained by demanding that the long range interaction be
invariant under the RG transformation involving a scale factor s:

�n(τ, x) → s−(z−1+η)/2�n(τ/sz, x/s). (37)

(The rescaling factor of s−(z−1+η)/2 for �n implies the equal time correlation exponent of
z − 1 + η.) Rescaling x and τ inside the integral equation (15) (which represents the
contribution of the long range term in the action), the condition for invariance under this
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RG transformation leads to 2 + z − α − (z − 1 + η) = 0, which gives the expression (36)
for η. As already shown in section 3, large N calculations also give the same value for η.4

Let us mention that the RG analysis, presented below in section 6, also agrees with such
an estimate, up to order (α − 2)2.

5.3.4. Numerical determination of the exponent η: scaling of the staggered susceptibility. The
T = 0 staggered susceptibility, defined on a finite ring of size L by

χ(π) =
1

L

∑

ij

(−1)|i−j|
∫ ∞

0

〈�Si(0) · �Sj(τ)〉 dτ, (38)

obeys the standard finite size scaling at the QCP:

χ(π) ∝ L2−η. (39)

Also we know, for instance from SW calculation (see appendix A), that in a Néel ordered
state the staggered susceptibility will scale quadratically with the size L. On the other
hand, in the QLRO characterized by η = 1, we rather expect a linear scaling of χ(π) with
L. Consequently, there are three distinct regimes for the staggered susceptibility:

χ(π) × L−2 ∼






constant if λ > λc (NEEL)

L−1 if λ < λc (QLRO)

L−η if λ = λc (QCP).

(40)

We use the same scaling procedure as for the correlation functions, to obtain data collapses
onto two different curves, as illustrated in figure 8 for α = 2.2. Indeed χ(π), computed
with QMC on chains of up to L = 1000 sites, displays clearly a crossover phenomenon on
both sides of the transition, also characterized by a crossover length scale which is directly
proportional to the one previously extracted in the analysis of the correlation functions.
Note also that such an analysis provides a second physical observable way to locate the
QCP: in fact, the analyses of C(L) and χ(π) both agree (within the error bars) on the
value of λc. Moreover, we expect the scaling hypothesis to be valid if Θλ ∼ ξη

λ. This is
actually the case, as illustrated in the lower inset of figure 8 where we find η = 0.8±0.015.
We can also obtain the quantum critical exponent η from the separatrix between the Néel
and QLRO regimes (see figure 8), which is expected to decay as L−η. For α = 2.2, we
find η = 0.8 ± 0.01. We have repeated this computation of χ(π) for several other values
of α ∈ [2.1, 2.7] to calculate the corresponding η(α). The results are plotted in figure 9,
and compared to the previously discussed estimate η = 3 − α. It is very remarkable to
see how this rough estimate reproduces quite well the actual value. Only for α > 2.3 a
deviation starts to appear.

5.3.5. Dynamical exponent z < 1. The dynamical critical exponent z, involved for
instance in the critical decay of the correlation function equation (27), can be evaluated
from the spin–spin correlation function at the QCP. From the fit of the separatrix

4 It is important to note that, up to small corrections, this estimate equation (36) was also found three decades
ago by several authors for the related n-vector model with long range interaction [7, 9, 22].
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Figure 8. QMC results for the T = 0 staggered susceptibility χ(π) (equation (38))
computed for α = 2.2 on systems up to L = 1024 spins. The upper inset shows
χ(π) versus L for various λ ∈ [0.1, 1.9]. The main plot shows the results of a data
collapse onto two universal curves, after a rescaling of both x- and y-axes using
two parameters ξλ and Θλ. Asymptotically, the LRO curve (top one with data
for 0.95 ≤ λ ≤ 1.9) saturates towards a constant whereas the QLRO one (lower
one with data for 0.1 ≤ λ ≤ 0.85) displays an L−1 behaviour, characteristic of
η = 1. Between them the separatrix shows the critical behaviour around the
transition at λc � 0.9, decaying like L−0.8±0.01. The lower inset shows a log–log
plot of the scaling parameters Θλ and ξλ used to achieve the collapses in both
phases, Néel (◦ ) and QLRO (�). Within error bars, data can be fitted for the
entire range by power laws (dotted lines) of the form ξ0.785

λ for the Néel regime
and ξ0.815

λ for the QLRO.

between the two data collapses (see for instance figure 4 where for α = 2.1 we estimated
η+z−1 = 0.63±0.03) we obtain an estimate for η+z−1. Then, using the estimates of η,
determined separately with the staggered susceptibility, we obtain a numerical evaluation
of z. Results are shown in figure 10 for 2 ≤ α ≤ 2.7. For α = 2, the QCP at λ = 0 displays
the critical behaviour of the short range model, with η = z = 1. Surprisingly, when moving
from α = 2 along the transition line, z becomes very rapidly <1 and, within the error
bars, seems to saturate around a value ∼0.75. It is actually natural to expect z �= 1 since
the long range interaction breaks Lorentz invariance. However, unlike for the estimate of
η, the dynamical exponent obtained within the large N expansion z = (α− 1)/2 does not
agree with the QMC results. As we discuss in the next section, using an ‘RG improved’
perturbation theory, z is found to be <1 but does not display such a big reduction.
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Figure 9. Numerical estimate for the critical exponent η along the critical line
obtained using the critical behaviour of χ(π) computed with QMC (red symbols).
The red dashed line is a guide to the eyes. The blue full line is the analytical
estimate η = 3 − α.

6. Field theory/renormalization group results

The low energy, continuum limit, imaginary time action takes the form

S[�n] = S0[�n] − g

∫
dτ dx φ(τ, x) − λaα−2

∫
dτ dx dy

|x − y|α �n(τ, x) · �n(τ, y). (41)

�n(τ, x) is the antiferromagnetic order parameter field defined by the continuum limit
expression of equation (13). Here S0 is the action for a free massless relativistic boson, in
terms of which �n may be represented in a non-linear way. Equivalently, we may regard
it as the action of the k = 1 Wess–Zumino–Witten non-linear σ model. The field φ is
defined as

φ = 2π �JL · �JR, (42)

and is normalized so

〈φ(z)φ(0)〉 =
3

16π2|z|4 . (43)

The corresponding coupling constant, g, has a bare value of order unity for the short range
AF chain and is marginally irrelevant. It is responsible for various logarithmic corrections
such as the one in the correlation function of equation (3). Note that the dimensionless
coupling constant for the long range interaction λ is only proportional to the one used
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Figure 10. Numerical estimates for the dynamical critical exponent z along
the critical line obtained using the critical behaviour of the correlation function
(equation (27)) computed with QMC, and the numerical estimate of η (see
figure 9). The numerical results (open circles) suffer from large error bars, as
shown on the plot. The green dashed line is a guide to the eyes.

before for the lattice microscopic model in equation (4), and a is a short distance cut-off
with dimensions of length. As already noted in section 2, since �n has a scaling dimension
of 1/2 from equation (14), λ is irrelevant for α > 2, relevant for α < 2, and marginal for
α = 2. Also note that λ > 0 corresponds to non-frustrating interactions which favour the
Néel state where 〈nz〉 �= 0. Our strategy is to study this model when 0 < α − 2 � 1 and
0 < λ � 1 using perturbation theory in g and λ. Since g renormalizes to zero at large
length scales, when λ = 0 (i.e. in the short range model) this can give useful results, for
small bare λ, even when the bare value of g is O(1). We will find that an interplay between
the local marginal coupling constant g and the irrelevant non-local coupling constant λ
governs the critical behaviour in this regime.

We now consider the low energy effective field theory for the long range model in
equation (41), in the limit of small g and λ, using RG methods. When λ = 0, the RG
equations reduce to the standard ones for the short range model. These take the form

dg

d ln a
= −g2 − (1/2)g3 + · · · . (44)

Here we define our RG transformation by increasing the short distance cut-off a. The bare
value of g is positive for any non-frustrated short range model and is typically O(1). The
basin of attraction of the g = 0 fixed point is known to extend to such large bare values
of g so that g = 0 is the universal stable fixed point for short range models. The flow of
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g towards zero at long length scales is controlled by the quadratic term in the β-function
of equation (44), giving

g(a) → 1

ln(a/a0)
, (45)

where a0 is the original cut-off and a is a larger value obtained from integrating out
modes with wavelengths between a0 and a. This logarithmically slow flow of g(a) to zero
is responsible for logarithmic corrections to the correlation function and other properties
of the short range models. A linear term in the β-function for λ follows immediately from
the factor of aα−2 in equation (41), which in turn is a consequence of the fact that n has
scaling dimension 1/2:

dλ

d ln a
= (2 − α)λ + · · · . (46)

So, ignoring the effects of g, λ grows larger at long length scales for α < 2 but smaller
for α > 2. Long range interactions are irrelevant for α > 2. However, it is necessary to
consider higher order terms in the β-functions for both g and λ to understand the phase
diagram, even at α ≈ 2.

To calculate additional terms in the β-functions, we define our ultra-violet cut-off
by forbidding any two points in space-imaginary time from getting closer than a, in a
perturbative calculation of the partition function (or long distance Green’s functions). In
particular, this means that the long range term in the action is cut off as

Sλ = −λaα−2

∫

|x−y|>a

dτ dx dy

|x − y|α �n(τ, x) · �n(τ, y). (47)

When the cut-off is increased from a0 to a = a0 + δa, there is an additional change in S
of first order in δa, which comes from the change in the integration region:

δS = −λaα−2
0

∫
dx dτ

[∫ −a0

−a

+

∫ a

a0

]
du

|u|α�n(τ, x) · �n(τ, x + u). (48)

Since both factors of �n are very close together, we may use the operator product expansion.
This follows from the three-point Green’s function:

〈na(z1)φ(z2)n
b(z3)〉 =

1

8π

|z13|
|z12|2|z23|2

. (49)

This implies the operator product expansion (OPE):

na(z)nb(0) → δab2π

3
|z|φ(0) + · · · . (50)

Using this in equation (48) gives

δS = −λaα−2
0

∫
dτ dx φ(τ, x)4π

∫ a

a0

du

|u|α−1
≈ −δa

a
4πλ

∫
dτ dx φ(τ, x). (51)

This corresponds to a renormalization of g,

δg = 4π
δa

a
λ (52)
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Figure 11. Renormalization group flow of equations (53) and (55) in the case
α = 2.3. The dotted line represents, schematically, the values of the bare
couplings in the field theory as the parameter λ in the lattice model is varied.
The unstable fixed point at λc = 0.0286, gc = 0.6 separates the flow to the stable
fixed point at λ = g = 0 which represents the quasi-long-range ordered phase
and the flow to infinite λ, g, which represents the long range ordered phase. The
black lines with double arrows denote the separatrixes between these two phases.
(The corrections to the flow equations are presumably significant for this large a
value of α − 2, but we graph this case for ease of visualization.)

and hence to another term in the β-function for g:

dg

d ln a
= 4πλ − g2 + · · · . (53)

There is one more term in the RG equations that is important at small α−2, corresponding
to a correction to λ of order λg. This can be calculated from the OPE:

φ(z)na(0) → 1

8π|z|2na(0) + · · · , (54)

giving

dλ/d ln a = −(α − 2)λ + (1/2)λg + · · · . (55)

The RG equations, equations (53) and (55), have an unstable fixed point for α > 2, at

gc ≈ 2(α − 2)

λc ≈
1

π
(α − 2)2.

(56)

For α < 2, a positive λ always runs away to large values as we lower the cut-off (i.e. increase
a), corresponding to LRO. On the other hand, for α > 2, a small enough positive bare
λ flows to zero while a larger bare value flows to large values (see figure 11). These
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statements remain true even when the bare value of g is O(1) as we expect it to be in
general for a short range spin chain. For a small bare λ, g initially renormalizes towards
small values as it would in the short range chain until eventually equations (53), (55)
becomes valid. The stable λ = g = 0 fixed points correspond to the standard QLRO
phase of the short range spin chain. The non-trivial unstable fixed point separates the
ordered and quasi-long-range ordered phases. Of course, there are higher order terms in
both RG equations, but they do not invalidate our conclusions on the location of the fixed
point, for small enough α − 2. Both terms on the right-hand side of equation (53) are
O[(α − 2)2] at the fixed point; any possible higher order terms such as g3 or λ4 are at
least of O[(α − 2)3]. Similarly, both terms on the right-hand side of equation (55) are
O[(α − 2)3] at the fixed point; higher order terms are at least O[(α − 2)4]. To reach this
conclusion it is important to realize that there cannot be any terms in dλ/d ln a which
contain no factors of λ; a purely short range interaction cannot generate a long range one,
although the reverse is not true.

Thus we appear to have a rare example of a non-trivial fixed point which can be
accessed perturbatively. (But see the discussion below of potential problems with this
approach.) We note that a similar expansion for long range classical spin models was
introduced in [7]. See also [23, 24]. Our quantum spin model, in the continuum limit, non-
linear σ model approximation, appears rather similar, in the imaginary time path integral
formulation. An important difference, however, is that our model has an action which is
long range in the space direction but short range in the time direction. Thus it corresponds
to a classical model in two space dimensions with short range interactions in one direction
and long range interactions in the other. It is this asymmetry which leads to a dynamical
critical exponent z < 1. Another important difference from a two-dimensional Heisenberg
model is the topological term in the short range part of the action which is responsible for
the quasi-long-range order. We remark that an integer-spin quantum Heisenberg chain
with long range interactions could be expected to have identical critical behaviour to a
classical Heisenberg model in two dimensions with interactions which are long range in one
dimension. We also remark that an xxz quantum spin chain with long range interactions
could be expected to have the same critical behaviour as a two-dimensional classical xy
model with interactions which are long range in one dimension.

The phase boundary (or separatrix) can be found by determining the line in the g–λ
plane which renormalizes to the critical point. Combining equations (53) and (55) gives

∫ λc

λ0

dλ

λ
= (1/2)

∫ g0

gc

dg(g − gc)

g2 − g2
c (λ/λc)

, (57)

where λ = λ(g) is a function of g along the RG flow in the integral on the right-hand side
of equation (57). g0 and λ0 are the values at arbitrary points on the separatrix. Since λ
increases monotonically to the value λc with increasing a, we may obtain an upper and
lower bound on the right-hand side by replacing λ(g) by λc and zero respectively inside
the integral on the right-hand side of equation (57):

(1/2) ln(g0/egc) + gc/2g0 < ln(λc/λ0) < (1/2) ln[(g0 + gc)/2gc]. (58)

Now using the fact that gc � g0, this becomes
√

g0/egc < λc/λ0 <
√

g0/2gc, (59)
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Figure 12. QMC phase diagram at small λ compared to the RG prediction of
equation (61) with C = 0.14 and 0.11.

that is

0.637(α − 2)5/2/
√

g0 < λ0 < 0.743(α − 2)5/2/
√

g0. (60)

Thus on the separatrix λ0 is O[(α − 2)5/2]. (A numerical solution of the RG equations
indicates that λ0 is very close to the lower bound in equation (60).) Assuming a bare g
of O(1), it is then possible to predict the shape of the phase boundary in the λ–α plane
close to α = 2. There is an unknown multiplicative factor relating the lattice coupling λ
to the continuum coupling λ. However, we can predict that

αc(λ) → 2 + Cλ2/5, (61)

for some unknown constant factor, C, as α → 2. As mentioned above, we expect that
2 < αc(λ) < 3 for all λ and all S. While our QMC results also predict that αc → 2
when λ → 0, but otherwise equation (61) does not agree well with the QMC result as
shown in figure 12. It is interesting to note that lowest order SW theory and the large N
approximation make the mean-field prediction that αc → 1 as λ → 0, in clear disagreement
with our RG and QMC results.

Linearizing the β-functions at the critical point gives

d

d ln a

(
λ − λc

g − gc

)
≈

(
0 (α − 2)2/(2π)
4π −4(α − 2)

) (
λ − λc

g − gc

)
. (62)
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This matrix has one positive (unstable) right eigenvalue, (
√

6 − 2)(α − 2), implying a
crossover length scale

ξ ∝ |λ − λc|−ν , (63)

with a critical exponent

ν =
1

(
√

6 − 2)(α − 2)
, (64)

which diverges as α → 2. The corresponding unstable direction is

λ − λc =
(α − 2)

2π(
√

6 − 2)
(g − gc). (65)

For α = 2 exactly, LRO occurs for any λ > 0 but behaviour characteristic of the quasi-
long-range ordered fixed point occurs out to a cross over length scale:

ξ ∝ exp[C/λ
2/5
0 ], (66)

for a constant factor C.
We may also determine the critical exponent, η + z − 1, controlling the equal-time

correlation function at the non-trivial critical exponent:

〈Sa
0S

b
j〉 ∝

δab

|j|η+z−1
, (67)

when α − 2 � 1. Since λ and g are both small at the critical point, for α − 2 � 1, we
may simply use ‘RG improved’ perturbation theory. That is, we calculate the correlation
function to first order perturbation theory in g, replace g by gc, and interpret the result
as the expression equation (67) with

η + z = 2 + O(gc). (68)

(To lowest order in (α − 2) we only need consider g, not λ, since λc ∝ g2
c .) The Green’s

function, up to first order in perturbation theory in g, the bare coupling, is

〈na(z)nb(0)〉 =
δab

|z| + g

∫
d2z′〈na(z)nb(0)φ(z′)〉

=
δab

|z| +
g

2
√

3
δab

∫
d2z′

|z|
|z′|2|z − z′|2 + · · · . (69)

The integral in equation (69) must be restricted to the region |z′| > a, |z − z′| > a. For
|z| 
 a, the integral is dominated by the two regions, |z′| � |z| and |z′ − z| � |z|, giving

〈na(z)nb(0)〉 ≈ δab

|z|

[
1 +

g

2
√

3
2

∫
d2z′

|z′|2

]

≈ δab

|z|

[
1 +

g

2
√

3
4π ln(|z|/a)

]
. (70)

Now replacing g by gc, its fixed point value, we obtain

〈na(z)nb(0)〉 =
δab

|z|
{
1 + (α − 2) ln(|z|/a) + O[(α − 2)2]

}
. (71)
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Now, using the fact that the correlation function should have a pure power-law form at
the fixed point, we may interpret this result as the leading term in the expansion of

〈na(z)nb(0)〉 =
δabA

|z|1−(α−2)
. (72)

To this order in (α − 2) we obtain the same exponent for z = ix or z = τ , implying that
the corrections to the dynamical exponent, z = 1, are higher order in (α − 2). Thus

η = 1 − (α − 2) + O[(α − 2)2]. (73)

This is the same value of η as found in the large N approximation and by a simple scaling
argument in section 5.3.3. It agrees well with QMC results for α < 2.3 as shown in
figure 9. It is natural to expect that z �= 1 since the long range interaction breaks Lorentz
invariance. Since ω ∝ |k|(α−1)/2 in the ordered phase it is natural to expect that z < 1 at
the critical point, as is found in the large N approximation. However, clearly 1 − z must
be at least O[(α− 2)2] since the long range coupling constant, λ, is of that order. In fact,
we suspect that 1 − z is even higher order than quadratic in (α − 2). This conclusion
does not fit well with the QMC results for z, presented in figure 10. There it was found
(although with large error bars) that z appears to have a nearly constant value, z ≈ 0.75,
for α ≥ 2.1. As α is further decreased z appears to rise very rapidly towards unity.

So far, we have ignored another possible interaction:

S → S − (g′π/3)

∫
dτ dx( �J2

L + �J2
R). (74)

This interaction is, in fact, present for the short range spin-chain with a large coefficient.
Since the Hamiltonian for the k = 1 WZW model can be written quadratic in currents,
this ‘interaction’ term can be regarded as simply shifting the velocity, which we have so
far set equal to unity, to

v → 1 − g′/2. (75)

The RG equations for the short range model, including g′, take the form, to cubic order,

dg

d ln a
= −g2 − (1/2)g(g2 + g′2) (76)

dg′

d ln a
= (3/4)g3. (77)

Starting with g, g′ > 0 and O(1), these equations predict that g → 0 and g′ flows to a
value of O(1). The large value of g′ at the fixed point can simply be interpreted as a
large renormalization of the velocity, provided that g′ < 2. In fact, this is what happens,
for example in the Hubbard model at half-filling. The spin velocity is reduced by the
Hubbard interactions. An alternative approach is to adjust v to the correct value and
drop g′ completely from the RG equations. In fact, equation (77) depends strongly on the
renormalization and cut-off scheme. With a Lorentz invariant cut-off and renormalization
procedure, the non-Lorentz-invariant term, proportional to g′, will not be generated under
the RG if it is initially absent. Breaking of Lorentz invariance in this problem at low
energies just means shifting the velocity. If we work directly with the exact velocity, then
it is apparently permissible to set g′ = 0 and use a Lorentz invariant renormalization
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procedure so that g′ remains zero under renormalization. In fact, using this procedure
in equation (76) leads to various predictions of logarithmic corrections which are in good
agreement with the Bethe ansatz and numerical results for the S = 1/2 chain. If we set
g′ equal to some arbitrary non-zero value in equation (76) the coefficients and powers of
log corrections would change, resulting in worse agreements with numerical results. Thus,
this procedure of ignoring g′ seems to be a valid and useful one.

We now consider the interplay of the long range coupling constant, λ, with the non-
Lorentz invariant local coupling, g′. The needed OPEs can be obtained from the general
conformal field theory result for the three-point Green’s function of the energy momentum
operator with a primary field of left-dimension 1/4:

〈T (z)na(z1)n
b(z2)〉 =

1

2π

2∑

i=1

[
1/4

(z − zi)2
+

1

z − zi

∂

∂zi

]
δab

|z1 − z2|
. (78)

Here T = (2π/3) �J2
L is the left-moving part of the Hamiltonian. This gives

〈T (z)na(z1)n
b(z2)〉 =

1

8π

δab(z1 − z2)
2

|z1 − z2|(z − z1)2(z − z2)2
. (79)

Also using the two-point function of T ,

〈T (z1)T (z2)〉 =
1

2(2π)2(z1 − z2)4
, (80)

we can deduce the OPE:

na(z)nb(0) → δabπz2

|z| T (0). (81)

Now consider the case where the separation is in the space direction, z = ix,

na(x)nb(0) → δabπ|x|[(2/3)φ(0) − T (0) − T̄ (0)] + · · · . (82)

Here we have included the identical OPE coefficient for T̄ ≡ (2π/3) �J2
R and also

the coefficient deduced earlier, in equation (50). Using the same cut-off and RG
transformation procedure as above, this implies a term in the β-function:

dg′

d ln a
= −6πλ. (83)

This drives g′ towards negative values, corresponding to increasing the velocity. If we
continue to use our previous RG transformation, we find that the dλ/d ln a does not pick
up a term ∝λg′. The difference from the non-zero λg term in equation (86) arises from
the fact that the OPE is now

T (z)na(0) → 1

8πz2
na(0). (84)

The RG transformation gives

δλ ∝
∫

d2z

z2
, (85)
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where, as before, the integral is over a circular shell with radius between a and a + δa.
This integral vanishes by rotational invariance. Thus the complete set of RG equations
to low order is

dλ

d ln a
= −(α − 2)λ + λg/2

dg

d ln a
= 4πλ − g2 − (g + g′)g2/2

dg′

d ln a
= −6πλ.

(86)

These equations have an unstable fixed point at

λc = 0

gc = 2(α − 2)

g′
c = −2 − 2(α − 2) ≈ −2.

(87)

In this approximation, we obtain the same prediction for η ≈ 1 − (α − 2) as before and
still get z ≈ 1. There is a shift in the velocity of O(1).

The large value of g′ at the fixed point makes the predictions of this RG analysis
intrinsically suspect. As in the short range case, we might agree to set v equal to its
renormalized value and then drop g′ from the RG equations. This leads to the same
predictions about the value of λ on the separatrix and ν as obtained above.

However, there are some worrisome features of this RG analysis which arise from
the long range interaction. We expect a dynamical exponent z < 1 at the critical point.
It then does not make sense to use a rotationally invariant (i.e. Lorentz invariant) RG
transformation. We would then get back a g3 term in dg′/d ln a and, very importantly,
a λg′ term in dλ/d ln a. We would then generally find that g is not small, O(α − 2), at
the fixed point. λ would also not be small at the fixed point. In this case we would lose
all perturbative control over the critical behaviour even for α only slightly larger than 2.
In this case, the unstable critical point would not be close to the QLRO fixed point, for
α close to 2. One possibility is that the effects associated with z < 1 can be ignored to
lowest non-trivial order α − 2. Then our use of a Lorentz invariant RG transformation
may be justified. In this case, the fixed point really is close to the QLRO critical point
for α sightly larger than two and our predictions for η and ν are correct in this limit.

The QMC results seem to give at least partial confirmation of the validity of an RG
approach based on the α − 2 expansion. Most importantly, αc → 2 as λ → 0 and the
critical exponents η and z appear to approach their values in the quasi-long-range ordered
phase (η = z = 1) in this limit, with ν diverging. Furthermore, excellent agreement with
the prediction for η was obtained, over a rather large range of α (up to 2.2), as shown
in figure 9. We were not able to obtain accurate estimates of ν from QMC to test the
RG prediction. On the other hand, z showed rather surprising behaviour, in figure 10,
dropping rapidly from 1 to about 0.75 as α is increased from 2 to 2.1. This suggests that
the asymptotic, small α−2 behaviour may only occur for very small values of α−2 � 0.1.
Numerical difficulties preclude obtaining QMC data in this region. Furthermore, the phase
boundary as determined by QMC, αc(λ), could not be fitted well to the RG prediction
of equation (61), except possibly at very small αc (where we have no data) as seen in
figure 12. This could be interpreted as meaning that our RG approach based on an
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α − 2 expansion is correct in principle but is only valid in practice for extremely small
values of α − 2. (The good agreement for η then appears fortuitous.) Alternatively, the
discrepancies may indicate a problem with our RG approach, perhaps resulting from our
cavalier treatment of the non-Lorentz-invariant interaction in equation (74).

7. Conclusions

We have studied long range non-frustrating S = 1/2 antiferromagnetic chains using
spin-wave theory, the large N approximation, quantum Monte Carlo and analytic
renormalization group methods based on an expansion in α − 2. All methods predict a
line of critical points in the λ–α plane with continuously varying critical exponents. This
critical line separates phases with true Néel long range order and quasi-long-range order.
Quantum Monte Carlo and renormalization group methods indicate that this critical line
terminates at λ = 0, α = 2 and suggest that, along the critical line as α → 2+, η ≈ 3−α,
while ν diverges and z → 1−.
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Appendix A. Calculation of finite size corrections from SW: contributions from the
k = 0 and finite k modes

A.1. General method

Let H(h) = H− hÔ, where Ô is an operator and h is a field. If we denote by |h〉 the GS

of H(h), it follows that the GS energy is EGS(h) = 〈h|H − hÔ|h〉. Since 〈h|h〉 = 1, it is
straightforward to show (in direct analogy to Feynman’s theorem) that

〈Ô〉 = 〈h|Ô|h〉 = −∂EGS(h)

∂h
. (A.1)

In general we need the expectation values of various operators Ô in the unperturbed
GS, i.e. in the limit h → 0. It follows that all we have to do is to compute the change in
the ground-state energy, due to the perturbation −hÔ, to first order in h.

In the remainder of this appendix, the Hamiltonian H is that of equation (4). We
are interested in finite-size chains with an even number of sites L, and periodic boundary
conditions.

A.2. Staggered susceptibility

Let Ô =
∑

i(−1)iSz
i . Then, according to equation (A.1), the staggered magnetization at

T = 0 is

Mπ =

〈
∑

i

(−1)iSz
i

〉
= − dEGS

dh

∣∣∣∣
h→0
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and therefore the staggered susceptibility is

χ(π) =
1

L

dMπ

dh

∣∣∣∣
h→0

= − 1

L

d2EGS

dh2

∣∣∣∣
h→0

.

A.2.1. The k = 0 contribution. We Fourier transform the spin operators, �S2n =
2/L

∑
k exp (ik(2na))�Se

k,
�S2n+1 = 2/L

∑
k exp (ik(2n + 1)a))�So

k, and collect only the k = 0

components. Let us denote by �S1 = �Se
k=0 =

∑
n

�S2n and �S2 = �So
k=0 =

∑
n

�S2n+1 the total
spins of the two magnetic sublattices, of L/2 spins each. Since we are in a Néel ordered

state, �S1 and �S2 are spins of total magnitude SL = LS/2 = L/4 for spins S = 1/2. Then,
up to some constants that do not depend on h,

Hk=0(h) = Hk=0 −H1 (A.2)

where

Hk=0 = j �S1 · �S2, (A.3)

H1 = h (Sz
1 − Sz

2) (A.4)

and

j =
2

L

[
1 + λ

∑

n≥1

1

(2n + 1)α

]
=

2Jeff

L
. (A.5)

We need to use perturbation theory to second order in h, to find the staggered
susceptibility. The ground state of Hk=0 is the state

|0〉 = |ST = 0, MT = 0, SL, SL〉 =
1√

2SL + 1

SL∑

m=−SL

(−1)m|m,−m〉 (A.6)

where �ST = �S1 + �S2. The perturbation links this only to other states with MT = 0 (see
below). Let us denote

|ST 〉 = |ST , 0, SL, SL〉 (A.7)

where ST = 0, 1, . . . , 2SL. With this notation, the second-order correction to the ground-
state energy is

∆E
(2)
GS =

2SL∑

n=1

|〈n|H1|0〉|2
E0 − En

. (A.8)

However,

H1|0〉 =
2h√

2SL + 1

SL∑

m=−SL

(−1)mm|m,−m〉. (A.9)

Interestingly enough, one can show that

|1〉 = α1

SL∑

m=−SL

(−1)mm|m,−m〉 (A.10)
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where the normalization constant is

α1 =

√
3

SL(SL + 1)(2SL + 1)
. (A.11)

It follows that

〈1|H1|0〉 =
2h√

2SL + 1α1

(A.12)

and 〈n|H1|0〉 = 0, ∀n ≥ 2. By direct calculation, we find

E0 = −jSL(SL + 1); E1 = j − jSL(SL + 1) (A.13)

and therefore

∆E
(2)
GS =

|〈1|H1|0〉|2
E0 − E1

= − 4h2

(2SL + 1)α2
1j

= −4h2

3j
SL(SL + 1). (A.14)

Since j = 2Jeff/L, SL = LS/2, we find

∆E
(2)
GS = − h2

3Jeff

L2S

(
L

2
S + 1

)
. (A.15)

As a result, the contribution of the k = 0 modes to the staggered susceptibility is

χk=0(π) = − 1

L

d2EGS

dh2

∣∣∣∣
h=0

=
2

3

LS

Jeff

(
L

2
S + 1

)
∼ L2. (A.16)

A.2.2. The contribution of finite k modes. Within the spin-wave approximation, the
contribution of the k �= 0 modes to the ground-state energy of H− hÔ is the zero-mode
energy:

EGS ∼
∑

k �=0

ωk =
∑

k

√
(γ − f(k) + h)2 − g2(k). (A.17)

Here, the spin-wave dispersion is changed by the addition of the perturbation
−h

∑
i(−1)iSz

i . The second derivative of EGS with respect to h can now be calculated
trivially, and in the limit h → 0 we find

χk �=0(π) ∼ 1

L

∑

k

g2(k)

ω3
k

(A.18)

where g(k) was defined before equation (17). As k → 0, g(k) → γ = const, ωk ∼ k(α−1)/2,
and therefore

χk �=0(π) ∼ 1

L

1−3((α−1)/2)

∼ L(3α−5)/2. (A.19)

If α < 3, this is a smaller power than the L2 contribution obtained from the k = 0 mode.
It follows that within the Néel ordered state, the staggered susceptibility scales like L2

(at least within the spin-wave approximation).
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A.3. Transverse correlation function

We now choose

Ô =
∑

i

S+
i+nS−

i (A.20)

so that its expectation value 〈Ô〉 is the transverse contribution to C(n). For simplicity,
we assume n to be even (calculations can be done similarly for odd n). Since this is not
a Hermitian operator, let

ÔA =
∑

i

(
S+

i+nS−
i + S+

i−nS−
i

)
(A.21)

ÔB = i
∑

i

(
S+

i+nS−
i − S+

i−nS−
i

)
. (A.22)

Both these operators are Hermitian. According to equation (A.1) and using invariance to
translations, we then have

L〈S+
n S−

0 〉 =

〈
∑

i

S+
i+nS−

i

〉
= 〈ÔA〉 − i〈ÔB〉 → 〈S+

n S−
0 〉 = − 1

L

[
dE

(A)
GS

dh
− i

dE
(B)
GS

dh

]
(A.23)

where E
(A/B)
GS are the ground-state energies in the presence of perturbations −hÔA/B.

A.3.1. The contribution of finite k modes. After a Fourier transform, we use the Holstein–
Primakoff representation for all k �= 0 modes. Keeping only quadratic terms, we find

ÔA = 4S
∑

k

cos(nka)
(
b†kbk + a†

kak

)
(A.24)

ÔB = 4S
∑

k

sin(nka)
(
b†kbk − a†

kak

)
. (A.25)

After adding this to the unperturbed Hamiltonian (in the SW approximation) and
diagonalizing, we find the ground-state energies to be

E
(A)
GS = JS

∑

k �=0

ωk,A + 4sh
∑

k �=0

cos(nka) (A.26)

E
(B)
GS = JS

∑

k �=0

ωk,B − 4sh
∑

k �=0

sin(nka) (A.27)

where

ωk,A =
√

[γ − f(k) − (4h/J) cos(nka)]2 − [g(k)]2 (A.28)

ωk,B =
√

[γ − f(k) + (4h/J) sin(nka)]2 − [g(k)]2. (A.29)
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After taking the first derivatives and setting h = 0, we find the k �= 0 modes’
contribution to the transverse correlation to be

〈S+
n S−

0 〉 =
2S

L

∑

k �=0

(γ − f(k))eikna

ωk

− 2S

L

∑

k �=0

eikna. (A.30)

In the limit k → 0, f(k) → 0, ωk → k(α−1)/2 and therefore

〈S+
n S−

0 〉 = a1L
(α−3)/2(1 + · · ·) + 2S/L. (A.31)

The second term is the second sum (
∑

k �=0 eikna = δn,0L/2 − 1 = −1, since n > 0). For

α > 2, the L(α−3)/2 term is dominant.

A.3.2. The k = 0 mode. Keeping the full k = 0 contributions, we find

Hk=0(h) = j �S1 · �S2 −
2h

L

(
S+

1 S−
1 + S+

2 S−
2

)
. (A.32)

The notation was introduced in the previous section. The ground state |0〉 of Hk=0 is
known (see the section on staggered susceptibility), so the first order contribution to
EGS(h) can be evaluated directly:

L〈S+
n S−

0 〉 = − dEGS

dh

∣∣∣∣
h=0

→ 〈S+
n S−

0 〉 =
2

L2
〈0|S+

1 S−
1 + S+

2 S−
2 |0〉. (A.33)

The calculation is trivial, and we find

〈S+
n S−

0 〉 =
2S2

3

[
1 +

2

LS
· · ·

]
∼ 1

L
. (A.34)

It follows that for this correlation function the finite k modes give the dominant L
dependence, which is L(α−3)/2.

This calculation can be repeated for the parallel contribution to the correlation,
〈Sz

nSz
0〉. The L dependence remains the same, so we conclude that in the Néel state

and within the SW approximation C(L) ∼ L(α−3)/2.

Appendix B. Large N calculation

Considering the order parameter �φ is a N -component unit vector field

|�φ(τ, x)|2 = 1, (B.1)

the action can be written as

S =
N

2g

∫
dτ dx[(∂�φ/∂τ)2 + (∂�φ/∂x)2] − λN

∫
dτ dx dy �φ(τ, x) · �φ(τ, y)/|x− y|α. (B.2)

We have set v = 1. g ∝ 1/s is a coupling constant, not related to what we called g in other
sections. g and λ are scaled by N in order to have a smooth large N limit. Inside a path

integral, we may integrate over all fields �φ(τ, x), without the constraint of equation (B.1),
provided that we introduce a Lagrange multiplier field, σ(τ, x):

S → S +
iN

2g

∫
dτ dx σ(�φ2 − 1). (B.3)
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The action is now quadratic in unconstrained fields, so that we may, in principle, do the

Gaussian integration over �φ. For this purpose it is convenient to write the long range
term in ω–k space using

∫ ∞

a

dx
eikx

|x|α ≈ 2

(α − 1)

(
a−(α−1) − |k|α−1Γ(2 − α) sin[(2 − α)π/2]

)
. (B.4)

Here a is a short distance cut-off and this equation is valid for |k|a � 1. Γ is
Euler’s Gamma function. Note that the prefactor blows up, ∝1/(α − 1) as α → 1.
Note also that for 1 < α < 2 both Γ(2 − α) and sin[π(2 − α)/2] are >0, so that
the second term in equation (B.4) is >0. As α → 2, Γ(2 − α) → 1/(2 − α) so that
Γ(2−α) sin[π(2−α)/2] → π/2. For 2 < α < 3, both Γ(2−α) and sin[π(2−α)/2] < 0 so
that their product is positive, blowing up as α → 3.

The first term in equation (B.4) can be eliminated by shifting σ by a (imaginary)
constant. Thus we may write

S =
NV

2g

∫
dω dk

(2π)2
�φ(ω, k) · �φ(−ω,−k)[ω2 + k2 + Cλ|k|α−1] +

iN

2g

∫
dτ dx σ(�φ2 − 1).

(B.5)

Here

C ≡ 4

α − 1
Γ(2 − α) sin[π(2 − α)/2] (B.6)

and V is the space–time volume. Now we do the functional integral over �φ. This gives
an effective action for the field σ, which has an overall factor of N in front of it, and no
further dependence on N . At large N the functional integral over σ is dominated by a
saddle point corresponding to a constant and purely imaginary value of σ. Assuming σ is
constant, this effective action is

Seff/V =
N

2

{∫
dω dk

(2π)2
ln[ω2 + k2 + C|k|α−1 + iσ] − iσ

g

}
. (B.7)

The saddle point is found by looking for a stationary point of Seff . Setting iσ = m2 at the
saddle point gives the self-consistent equation which determines m2:

1

g
=

∫
dω dk

(2π)2

1

ω2 + k2 + Cλ|k|α−1 + m2

=

∫ Λ

−Λ

dk

4π

1√
k2 + Cλ|k|α−1 + m2

. (B.8)

Here we have introduced an ultra-violet cut-off, Λ, of O(a−1). For any α, λ and g for
which this equation has a solution with m2 > 0, the system is in the disordered phase,
with a finite gap, m. Note that, for α > 3, the integral diverges as k → 0 when m = 0.
For small finite m it behaves as ln(Λ/m). Since this diverges as m → 0, there will always
be a solution for m, no matter how small is g. On the other hand, for 1 < α < 3, there
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will be a solution for λ < λc only. At the critical value of λ, m = 0, so λc is determined
by

1

g
=

∫ Λ

−Λ

dk

4π

1√
k2 + Cλc|k|α−1

. (B.9)

As α → 1, C → 4/(α − 1) and this becomes

1

g
=

∫ Λ

−Λ

dk

4π

1√
k2 + 4λc/(α − 1)

. (B.10)

Thus we see that λc ∝ (α − 1), as α → 1. α = 1 is the critical value of α, for which
λc → 0. The behaviour of λc(α) is qualitatively similar to what is obtained from SW
theory, including the behaviour near α = 1. Right at the critical point, the AF spin-

correlation function is determined by the effective action with m = 0, and �φ treated as
a non-interacting, free field, in the large N approximation. This implies a dispersion
relation

ω =
√

k2 + Cλ|k|α−1, (B.11)

and hence a dynamical exponent

z = (α − 1)/2. (B.12)

This dispersion relation is the same as in SW theory, but there is no long range order at
the critical point and hence no ambiguity in the value of z. The spin correlation function
is given by

〈φa(τ, x)φb(0, 0)〉 = δab g

N

∫
dω dk

(2π)2

ei(ωτ+kx)

ω2 + k2 + Cλ|k|α−1
. (B.13)

In particular, the equal-time correlation function is

〈φa(0, x)φb(0, 0)〉 = δab g

N

∫
dk

(4π)

eikx

√
k2 + Cλ|k|α−1

. (B.14)

At large x, we may approximate this by dropping the k2 term. It then follows from a
rescaling that this decays as

〈φa(0, x)φb(0, 0)〉 ∝ δab

|x|(3−α)/2
. (B.15)

The standard definition of the critical exponent η then implies

z − 1 + η = (3 − α)/2, (B.16)

giving

η = 3 − α. (B.17)

Note that this is simply the behaviour of the transverse correlation function in the ordered
phase, according to SW theory.

To calculate ν, we need to calculate how m vanishes with λc−λ as λ → λc, from below.
It turns out that there are two different behaviours, depending on whether 1 < α ≤ 5/3
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or 5/3 ≤ α < 3. A small change in λ leads to a change in 1/g which is linear in δλ.
Consider the effect of a small non-zero m on the gap equation. For 1 < α ≤ 5/3, we may
Taylor expand the gap equation:

1

g
≈

∫ Λ

−Λ

dk

4π

[
1√

k2 + Cλ|k|α−1
− (m2/2)

1

[k2 + Cλ|k|α−1]3/2

]
. (B.18)

(Note that this integral is finite at k → 0 for (3(α − 1)/2 < 1 only, implying α < 5/3.)
Setting λ = λc, we see that

1/g − 1/gc ∝ −m2. (B.19)

Thus m2 ∝ −δλ in this case. Now consider the equal time correlation function for a small
m2.

〈φa(τ, x)φb(0, 0)〉 = δab g

N

∫
dk

(4π)

eikx

√
k2 + Cλ|k|α−1 + m2

. (B.20)

At large distances and small m2 we should be able to drop the k2 term and ignore the
ultra-violet cut-off. A rescaling of the k-integration variable then implies a correlation
length

ξ ∝ m−2/(α−1) ∝ (δλ)−1/(α−1) (B.21)

and hence an exponent

ν = 1/(α − 1), (1 < α ≤ 5/3). (B.22)

Now consider the case 5/3 ≤ α < 3. Keeping a small non-zero m2, we find

d

dm2

(
1

g

)
=

−1

2

∫
dk

4π

1

[λC|k|α−1 + m2]3/2
. (B.23)

Since the integral is dominated by |k| of O(m2/(α−1)), we have taken the cut-off to infinity
and dropped the k2 term. By scaling, we see that

d

dm2

(
1

g

)
∝ m(5−3α)/(α−1). (B.24)

Integrating with respect to m2 gives

1

g
≈ 1

gc
− Am(3−α)/(α−1), (B.25)

for a constant, A. Thus we see that

m ∝ (−δλ)(α−1)/(3−α). (B.26)

This gives

ξ ∝ m−2/(α−1) ∝ (−δλ)−2/(3−α). (B.27)

Thus

ν =
2

3 − α
, (5/3 ≤ α < 3). (B.28)
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