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Magnetic susceptibility of diluted magnetic semiconductors at low carrier densities
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We calculate the static longitudinal and the transverse dynamic magnetic susceptibilitieMaf)V diluted
magnetic semiconductors, using the random phase approximation, for a simple impurity band model appropri-
ate for the low charge carrier concentration regime. The magnetic susceptibilities are shown to depend sensi-
tively on the amount of positional disorder of the Mn impurities. The results we obtain are consistent with
previous studies of the spin wave spectrum and of the spatially inhomogeneous ferromagnetic state of these
materials.
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I. INTRODUCTION model we studi?'#is an impurity band model. It is ex-

Diluted magnetic semiconductof®MSS) are obtained by pected to beat least qualitativelyvalid at low concentra-
doping a semiconductor with magnetic impurities. To datetions, below and near the MIT, where the disorder effects are

Ga,_,MnAs has been the most studiedl-V DMS because likely to be largest and thus most easy to identify. Although
it has the highest reliable critical temperatures recordedV€ Use GaMnAs as a prototype, other insulators, such as
160 K for bulk samples and 172 K in digitally doped GaMnN and GeMn, may exhibit similar physics, if they are

H 6,17 I-
heterostructuredin Ga,_ Mn,As, substitution of a fraction ~ Indeed DMSS>7In order to understand the effects of posi

of the Ga with Mn introduces both local Mn spifS=5/2) tional disorder, we contrast the behavior of ordered samples
and holes into the system. It is widely accepted that magne(-Where the Mn are assumed to be placed on an ordered cubic

tization is due to charge-carrier mediated, effectively ferro_superlattmaa with weakly, moderate, and fully disordered

magnetic(FM), interactions between the Mn spihdt is configurations, where we allow the randomness in the Mn

K that th I heavil ted. with a hol ositions to increase gradual.lt should be emphasized
nown that these afloys are heavily compensated, with a N0l 4t the resuilts for the ordered systems also apply to itinerant
concentration much smaller than the Mn concentration

= v , models!®—20 provided that the appropriate mapping of pa-
DMSs are alloys, with inherent positional disorder of Mn rameters(discussed belowis performed. The method we
atoms. Other types of defects, such as As antisites and Mgmploy is the random phase approximati&PA); this, and
interstitials, are also preseht.The spin-orbit coupling may the low density regime we consider distinguish our work
play a significant role by making these interactionsfrom other recent computations of magnetic susceptibilities,
anisotropic” although it is not clear to what exteh!. A pased on Boltzmann equatiofis.

theoretical treatment which fully takes into account all these The paper is organized as follows: in Sec. Il we briefly

factors is not yet available. Instead, theoretical work tends teeview the model and the self-consistent mean-field solution.

focus on different aspects of the problem. In Sec. Il we discuss the static longitudinal susceptibility. In
Our recent work®>~'® has been focused on understandingSec. IV we derive the generalized random phase approxima-

the effects ofpositional disorderof the Mn impurities on the tion equations, which are used in Sec. V to compute the

magnetic properties of these compounds. Disorder is knowdynamical transverse susceptibility for ordered and disor-

to induce localization of the states lying at the bottom of thedered systems. Finally, Sec. VI contains our conclusions.

band, below the mobility edge. When the Fermi energy

crosses the mobility edge, the system undergoes a metal- l. THE MODEL AND THE MEAN-FIELD

insulator transition(MIT), at x~0.03 in GaMnAst Since APPROXIMATION

transport propertiesmetal versus insulatprare determined The model we investigate has been described in detail in

by the nature of the states near the Fermi en¢egyended Refs. 10-13. We briefly review it here. The host is assumed

versus localizedone might argue that for the samples with to have zinc-blende structurdly Mn dopants are placed at

the highesfl,, which are also the most metalllc_on?edlgor—_ positionsR, i=1,... Ny on anNxNXN fcc sublattice, of

der effects are unimportant. However,. the maln_apphcathnq;attice constan@ (=5.65 A for GaAs$, corresponding to a

of t'hese materials are based on their .magnetlc. pmpert'eaopingx:Nd/4N3. The number of charge carriers is fixed to

Unlike transport properties, the magnetic properties depethZde, wherep<1 due to compensation. We use periodic

on the nature ofill the occupied states, not only the onespqyndary conditions. The Hamiltonian we investigate is:
near the Fermi energy, sin@l the charge carriers interact

with the Mn spins. Disorder may thus influence magnetic H(t) = >, t;cl,cj, + > J;S - § - gus> B, - (§ +S).
properties considerably, certainly on the insulating side, but ijo i i
also above the MIT(even the most metallic GaMnAs (1)
samples have very short mean free paths ; o - . .

In this work, we investigate the effects of positional dis- Here,c;, creates a charge carrier with spirin the impurity
order on the magnetic susceptibility of these materials. Thatate centered aR. The first term describes hopping of
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charge carriers between impurity states, whére2(1 B — B ta _ B
+r/ag)exp(—r/ag) Ry, with r=|R;=R;|.?2 For Mn in JGaAs, ko= ] oCioCio 2 HS, @
1 Ry~110 meV andag~8 A.1023 This particular hopping R

Hamiltonian has been shown to describe an impurity banavhich minimizes the free ener§fyF(K®) = F, where
which has a mobility edge, as well as a characteristic energy ~ o ~

for the occupied states in agreement with physical expecta- F(KB) = —kgT In 2B+ Tr{DE[HB - KBT}. (4)
tions (a detailed discussion of these issues is presented in the . .
Appendix of Ref. 11, as well as Ref. 14The second term Here, /\/=Ei,gc7r Ci, is the particle number operatoD(B,

o

describes the antiferromagnetic exchange between the Nmexd—B(I%B—MBM]/ZE is the trial density matrix, where

P . - 1 - - ~ ~ 3 .
spin § and the charge carrier Spii= 3¢/, 04sCi (7 are the  zB=Tr{ex-B(KB-uBA)]}, and u® is the chemical poten-
Pauli spin matrices which is proportional to theaprobablllty tial. We use the upper indeR to distinguish between solu-

of overlap between the charge carrier trappe®aand the tions in different static external magnetic fielBs,. If B=0
Mn spin atR: J;=Jexp-2R -Rj|/ag). The exchange be- We will drop this index.

tween a hole and its own Wﬁsﬁj) is J=15 meV1023The We define the expectation values:

third term describes the coupling to an external magnetic 5 -
field. For simplicity, we assume that both types of spins have Pji,o = TH{DgCisCiot =
the sameg-factor. The value of the holeg is unimportant,

because the magnetic properties are dominated by the Mn R .
spins!! (S)=Tr{DES} = ()&, (6)

This Hamiltonian obviously neglects several other pos-

ij,o0

19In 25

ij,o

sible terms. Since the system is heavily compensated, it mug\{here
contain a significant amount of charged compensation cen- 14In gg 5
ters. The electric potential created by these charged defects S == =Bg(BH}). (7)

B
leads to the appearance of a disordered on-site energy, of B H;
type 3;,€c/,Ci,. The spread in the distribution efis depen-  and By(x)=(s+ 3)cotH (S+2)x]-2coth(x/2) is the Brillouin
dent on the amount of correlations between the positions of nction (S=2 for Mn). We then have:
these charged defects, established during gréfvtiA 2
Hubbard-like term UZin;;n;; should be added to limit
double-occupancy of the impurity states. Since the charge
carrier density is low, one could argue that in fact longer
range electron-electron repulsions are needed. We have stud- _ - 9B |_ B B
ied the effect of adding such terms, as well as modeling gMBB; l$”(|)+§ 2p""’] 215 o7
differently the hopping term, in Ref. 11. They are found to
lead to some quantitative changes, but no qualitatively new + E HiBﬁm(i).
physics. As we propose to focus on the effects of positional i
disorder on the magnetic susceptibilities, we ignore such eXThe variational
tra terms here. In Hamiltoniafl) we also assume that the
impurity states have the simple s-wave symmetry typical o
donor levels, ignoring the more complicated structure of im- B_ 0. g
purity acceptor levels due to the multi-band valence Hi" = gueB - E E‘Jiipliﬂ’ (8)
band-structuré® Unless the spin-orbit coupling is very e
strong, we believe that this approximation also leads to only
quantitative changes. The formalism we develop here can be hiEJ.‘ o=t 25” E Jik§,m(k) - g,u,BB]_ 9
straightforwardly generalized to take all these extra terms ' 2 k

into account; however, we do not expect qualitative Ch"’Img('l?’hese are the self-consistent mean-field equations. They can

to the r_esults we report. . be written in the familiar form if the electronic part of the
We first consider a homogeneous, static external magnetic.

i - - g ) tfial (or mean-field Hamiltonian is diagonalized:

field, B(i,t) =B€,. The mean-field solution, based on the cus-

tomary factorization of the interaction term, was investigated K§=2h clcip= 2 Enal an, (10

in Refs. 10 and 11. We rederive it here using a variational ij.o no

approach. Then, we generalize this approach to spatial/timthough a unitary transformation:

dependent external fields, to find the RPA equations and dy-

namic response functions. al => yf (i)c . (12)
The idea is to replace the full interacting Hamiltonian, i

B = 2 tijCiTUCjo-+ E Jijé § - gMBBE (F+S), (2 The diagonalization condition is:
L],o 1,] I . .
202 (i) = Enytfi (). (12)
]

(oa

F(KB)=—kgTIn 28+ tipj o+ > Ji S 2ijj,0'

ij,o ij,o

ij,o

parametersi” = and HP are obtained
fstraightforwardl?6 from the minimizationsF=0:

with the particular quadratic forfh
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These equations determine the self-consistent solutiofunctions which are plane-waves for 4l inside the first
We start with an initial guess for the values (i) (see  Brillouin zone. We find:
Ref. 11 for details We use Egs(9) and (12) to find the
fermionic energiesE,; and Wa\_/e fun_ctlons//no(l). Using EE(T:€IZ+_(‘]O$In_gMBB)! (16)
Egs.(5), (10), and(11), the fermionic fields become: 2

B _ B B /]2
p“,o_zf(E o')|¢ o’(J)' 3 (13) 1
oA e 5= o ot (ER), (17)
d )0'
where f(E)={exd B(E- uB)]+1} 7! is the Fermi distribution :
and the chemical potential® is given by:
potential“is 0 g Svin = BLB(g1eB — Josp) . (18)

2 pf o= 2 f(ER,) =Ny, (14)

Here,eg=2(§¢ot5exp(ilz-3) is the kinetic energy of the non-
interacting electrons, whetg=t;; for which Ri—R;=46. Also,
Jo=25J5 WhereJ;=J;;.

From Eq.(18), we find the spin contribution:

Once the fermionic fields are known, using E¢&. and (8)
we can obtain the new spin expectation val&s(i). We

repeat the iterations until self-consistency is reached.
XMn

Xun _ — 3.0 \gr—
lll. THE STATIC LONGITUDINAL SUSCEPTIBILITY Ous (g“B JOgMB>Bs( Ao, (19

This response function characterizes the change in the tavhereBg(x) =(d/dx)Bg(x). From Eq.(17), we have:
tal magnetization, when a static external magnetic field is

applied parallel to the magnetization axis. We can separate it gus (dEEU dMB) £ 00
into two componentsy = xun+ xn Where Xnh= 2N, 2 "\ 48 " 4B B:OQ( i) (20
ds;,( dsi(i
XMin = %E M . Xh= %E ﬂ whereg(E)=(d/dE)f(E). From Eq.(16) we find:
Ng 5 dB g0 Ng T dB [g=0 ;
(To obtain the susceptibility per unit volume, one needs to d&, b= 2<JOXMH —QMB)- (22)
multiply by ny,,=4x/a%. The charge carrier spin expectation dB |gg 2\ gug
values ardEgs.(5) and (13)] (i) == ,0p; /2. . - . .
One method to calculate these susceptibilities is by direcP'fh:‘\n:“m'at'ng Eq.(14) with respect toB, we find:
numerical evaluation of this derivative, e.g., AP ) EIZUE%,)Q(ERU) o)
S~ Su B a0 S0k
Xvn = Qg — B s : (15 B0 k9(E)
gugB/I<1 Substituting Eqs(21) and(22) in Eqg. (20) we get:
where S, =S5,(i)/Ng and Sy,=S- are the average Mn o
spin with and without a static magnetic field, which can be Xh = 9#57’(9#3—30 n>, (23
obtained directly from the mean-field solutions. The main 9ks
issue with this approach is the proper choiceBond the \where
proper self-consistency criterion to be used. Cled&y, and ) 5
S, must be computed to very high accuracy so that errors in _ 1 [Ege0o9(Egp)]” - [Zro9(Egy)] (24

the numerator of Eq(15) are small relative to the small y= 4N4 >, 9(Eg,)
value of B chosen. We obtain good convergence with results _ o
of another methoddescribed belowfor gugB=10"% meV From Egs.(23) and(19), we obtain the Mn susceptibility in
and self-consistency defined by the condition that the variathe ordered case to be:
tion of the total magnetization in successive iterations is less (1 - J47)BY~ BloS)
than 10°. While reaching such high accuracy is time con- Yo = B(0up)? 027 S 70
suming, this method is the most efficient way to compute the 1-BIyBs(— BIosn)
static susceptibility for large systefiy>500). _ while the hole susceptibility, is:

The more customary way to compute a linear response
function, however, is to express it in terms of expectation _ , 1-JoBBg(~ Bosn)
values of the unperturbed systeire., B=0 quantities. Let Xh = (9us) VL= BB Bl (26)
us first derive the longitudinal susceptibility for an ordered BIoyBe(= Blosh
system, i.e., one where the Mn impurities are assumed to be These static longitudinal susceptibilities are plotted as a
placed on a simple cubic superlattice inside the host semfunction of temperature in Fig. 1. As expected, the critical
conductor. In this case, due to invariance to translations, weemperatureT, is marked by a singularity. Sincg,=0 for
have S§.()=S5,,, s2(i)=s5, 0i. The charge carrier part of T=T,andB40)=S(S+1)/3, the denominator in the suscep-
the mean-field HamiltoniafEgs. (9) and (10)] has eigen- tibilities gives:

(25
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Xh _ _ Xwn 3-JoBS(S+1)
Xpaui BOure)?(1-39Y)S(S+1)

This increase can be formally assigned to an enhanced effec-
tive g-factor. Consistent with this phenomenology, huge Zee-
man shifts have been measured in both 1I-VI and IlI-V
DMSs?27:28 Spintronic applications based on this higjhef-
fect have been proposed recertfly®
The longitudinal susceptibilities in the disordered case are
i i calculated similarly. However, we now compute each contri-
200l | bution (i) =ds5,(i)/ dBlg-o and xy(i) =dsi(i)/ dBlg-o [for
simplicity, we segug=1, i.e., measure the susceptibilities in
0 ol 02 03 o4 os units of(g,uB)Z_]. This calculatiqn is detaileq in the A_ppendix.
K, T/9 }/x%ﬁnd up with a system of linear equations fgf,(i) [Eq.

400

FIG. 1. xun(T) (full) and x,(T) (dotted ling, for an ordered Mn o B ,
configuration withNg=512, x=0.00926, andp=10%. The inset 2 [8;+ Rylxun(}) = B(L ~ P)Bg(BH)
shows the corresponding magnetizations. !
The matricesR~ J?> and P~ J depend only orB=0 mean-

S(S+1) field quantitied see the discussion following E¢A8)].
kTe= 735 3 (27) It is instructive to compare this result with the “conven-
tional” statistical formula for static susceptibility:
For T=T,, X,09(Eg,)=0 (spin degeneracy is restoped 8
Then [Eq. (24)],  y=-2g0(Eg,)/4Ng=dEZE,S(E T = o S (SS) - (SHSH] (29)
—-E,)[—(d/dE)f(E)]/4Ny=p(Ep)/ 4ny, (if ksT<Eg), where M Ng ] 3 3

p(Eg) is the density of states per unit volume at the Fermi .. L.

energyEg. This value can also be obtained directly from Eq.At the mean-field leveKSS)=(SXS) if i#j, since the
(23), since in the absence of interaction=0), the hole mean-field density matriy=exd -B(K - uN)] is diagonal
susceptibility per unit volumeny,y(gug)®> must equal the for different spins[see Eq.(3)]. It follows that Yy,

Pauli susceptibility. =3 Xmn()/Ng, where
In an effective mass approximatiog;=#2k?/2m’, p(Eg) R R
~m'ke~m (n)3— y~m'(px)3/x (the factors contain Tun() = BUS) - (S)2] = BBYBH)).

only constants Such an approximation can be used in two
cases{(i) for itinerant model$®-2%in which casem =m, is
the mass of the heavy hole band, algel> nyJ,q in order to
obtain the same one-electron dispersisae, e.g., Ref. 18
In this case, we regain the expecfBd~ x(px)*/® mean-field
scaling with the Mn and hole concentrationand (px).18-20
(ii) For an impurity model on an ordered lattice, for only
nearest neighbor hopping and E-<t, we have m’
~1/(ta?), wherea =a/x® is the superlattice constant. It
then follows thatTC~p1/3J§/t. Both J, andt depend ornx
through the distance between neighbors Mn. In Ref. 11 w
showed numerically that at constgmtin the ordered impu-
rity band caseT.~ X, so one can infer that hefle ~ xp*. In
any event, disorder and thermal fluctuations considerabl
change these mean-field estimates. . B
Before discussing disordered systems, it is worth empha- X~
sizing why x,,<0. Each hole interacts antiferomagnetically

with many Mn spins, each of which has its magnetization,here(.. ) is the exact thermal average, which can be evalu-

increased by the magnetic field. This favors an increased;eq with Monte Carlo simulations. This susceptibility can be

p(_)larlz_anon of the hol_es, in a direction opposne_to the aPgecomposed into Fy, and similary, as in Eq.(28), but

plied field. Thus, the direct effect of the external field on the . - 2
there is also a cross term containing terms lik&s;)

holes is more than offset by its indirect effect mediated
through exchange with the Mn spins. As a result, in the para=(S)(§;), which are not necessarily small negy. Ignoring
magnetic phasey, is strongly enhanced from its non- these terms, i.e., approximatiig=’yu, in Monte Carlo
interacting, T-independent Pauli value. From Eq85) and  simulationd?3133js questionable, especially wh&nis em-
(26), we see that ployed precisely to identifyl..

This is the solution one obtains if one sets the matriRasd
P to zero, in the full system of linear equations shown above.
Equivalently, comparison with Eq(A1l) shows that this
“conventional” formula does not account for the contribution
from the supplementary polarization of the holes. Since this
is considerablésingula) nearT,, the “conventional” expres-
sion gives very wrong results fofF~ T, although it works
well for T—0 or T>T,, where the hole susceptibilities are
very small. The reason for this failure is the fact that &)
holds wherx...) denotes the thermal average with the exact
ensity matrix, not with the approximate mean-field density
matrix. To be more precise, for a Hamiltonian such as of Eq.
)gl), the total susceptibility of the system is actually

2§ +8) (§+8) - (S +8)§ +9)]
ij
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XMn

100

x(T)
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Xn

0.2 0.4 0.6 0.8 1
FIG. 2. Weak, medium and full disorder systems’ susceptibilities k. T/J
vs T, for Ng=216, x=0.00926, anch=10%. Inset focuses on the B

low-temperature region. FIG. 3. xun(T) and x,(T) for single fully disordered impurity

We analyze now the effect of disorder on the longitudinalconfigurationNy=512,x=0.00924,p=0.10.

susceptibility. We solve numerically the full system of

coupled equations and fingy, ~ =ixmn(i). (x, can be found clusters are shown in Fig. 4. Different clusters polarize at
similarly. However, sincey,< xwn, it follows that y = xun)- different “T;,” depending on their local environment. The
The results shown in Fig. 2 are averaged over 30 disorddpcal hole spin inside a cluster also becomes finite at the
realizations. We denote by,(T), xi(T), and x;(T) the sus- sameT.>* From Fig. 4 we see that these “loca!" of indi-
ceptibilities of systems with weak, moderate and full disor-vidual clusters are the temperatures wherehas peaks,
der, as defined in Ref. 10. Unlike the ordered susceptibilitpvhich thus signal the establishing of local FM correlations.
which has only one peak &t (see Fig. 1, the susceptibility ~The average over many disorder realizations results in a
of disordered systems has two distinct peaks. One fEat Proad peak over the temperature range where these local FM
while the second peak appearsTak T, and is seen best in correlations build up in the system. This range is larger for
the inset. With increased disorder, this Idwpeak has in- Mmore disorder, which implies more inhomogeneity. On the
creased weight and amplitude and shifts to lower temperaother hand, it decreases with increasiqy since for higher
tures. It is due to the weakly coupled Mn spins which areX fluctuations in the local concentration are reduced.
positioned far from the regions of the sample where the holes Strictly speaking, the tru&. of a sample is not related to
are located with high probabilif§:15 These behave like free this mean-fieldT, estimate where various strongly coupled
spins yun(i) ~1/T except at extremely low temperatures clusters begin to polarize. Instead, several magnetized c_Ius-
keT~ H;, where they finally polarizésee Eqgs(7) and(8)].  ters must appear all th_roughout the sample, and correlations
The highT peak iny(T) marks the mean-field.. The high- between their magnetizations must be establlshled)u_gh

T peak is determined by the behavior of the strongly couple@*change of polarized holebefore long-range magnetic or-
spins, from the regions where the holes are locAtd8As der_ develops. This is quglltatlvely like the picture of mag-
observed previoush?12increased disorder leads to higher netic polz;rons(each polarized _cluster represents a r_nagnehc
T.. With increased disorder the highpeak also broadens polaron,*? except that therd; is marked by percolation of
considerably. The explanation is provided below.

In Fig. 3 we showyyn(T) and x,(T) for a singledisorder 00— 15 '
realization. Unlike the broad peak néRrof the averagen Sy T)
shown in Fig. 2, here we see several narrow peaks in a range 150k ] "
limited from below by the temperature where all holes be- Lo
come fully polarized. The highe3tpeak occurs at th&; of < ANAN
the individual sample. These narrow peaks appear symmetri- 100} . AN
cally in both susceptibilitieshowever, x| < xmn). The num- RN
ber of such peaks and their positions are different for differ- 0.5 NN s
ent samples. Less disordered samples have fewer peaks, ina 50| 7] [~ TN
smaller temperature range; the number of peaks increases \
with system siz&? The origin of these peaks can be inferred — ‘ “\J
from examining the values ofy,(i) at temperatures where 0.55 0.6 0.65 0’8 55 0.6 0.65
peaks form. We find that each narrow peak is due to contri- kg T k. T/J
butions from a distinct cluster of Mn spins, which are spa-
tially close to one another and in a region where holes are FIG. 4. Left: total susceptibility of a disordered sample, nBar
found with large probability(these are strongly coupled Right: Sy,(i,T) for spins belonging to two different clustersly
sping. The magnetization§,(i) of spins from two different =125,x=0.00924,p=0.10.
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the growing polarons, since the polarons cannot exchange

polarized holes. This susceptibility peak at the mean-figld

PHYSICAL REVIEW B 71, 125203(2005

+§—é

hig,js(t) = tijj Oup E 3 Sk, ) - gueB(ib) |,

therefore denotes the characteristic temperature where the

clusters(magnetic polarons, or local FM correlatiorizegin
to form, also denoted by in other studie$®3>Monte Carlo
simulations are needed to determifefor the phase transi-
tion to long-range magnetic order.

IV. THE RANDOM-PHASE APPROXIMATION

We now consider the magnetic response to a general time-

dependent magnetic field:

B(i, 1) :e”tf g:lE g(GRot) B(G, ) (29

turned on adiabatically at=-o (>0 is infinitesimally
smal). The proper equations of motion for any operattt)
and for the density matri(t) are obtained from the mini-
mization of the actiorf®

t dD
Sy=- dtTr{AﬁE + iA[H,D]} + TrD(t) Alty),

{j
subject to the constrain®D(t;) = A(t;) =0. Here H(t) is the
full Hamiltonian of the systenmiEq. (1) in this casé Ap-
proximation schemes are obtained by solvidg,=0 for
various classes of trial density matrices.

For a time-dependent mean-field calculation, the trial den-

sity matrix D(t) =e ALO-#M) z(t) is defined by a variational

quadratic HamiltoniarkC(t) and satisfies the initial condition
D(—»)=D,, whereD, is the mean-field density matrix of the
unperturbed system. Like for the static mean-field derivation

we define the expectation valugompare with Eqs(5) and

©)]

Piajp(t) = THD(DC/ 414}, (30

Si,t) = TH{D®)S}.

A is taken to have a general quadratic dependence:
AW = X 81,500, Gs~ Z A - S,
i i

aB

(31)

(32)

In terms of these quantitieS;, becomes:

d
[Z%;ﬁ(t)—lL“(t) S Ay - 430

i
t iiaB dt i dt

£
_i f
4 iajBkn

dt > hig,i s(DL0j g1 (D ia(t)

t
— g (DprniaD] + ﬁf

[t

A 80,0 - [A (b x Fi)]

+ 2 aiipt)pigialty)

ia,jB

- 2 At - S,

where[compare with Eqs(8) and (9)]

(33

-

Hi(t) = gueB(i,H - = J;
jaB

p]ﬁja(t) (34)

Ij2

From 58S,/ 5, ;5=0, where da;, s(t))=0, we obtain the
equation of motion fop;z;(1):

d B,
i pdlta(t) E[hlﬁ'“(t)”km(t) PiginOhia(D],

(35
which is just the matrix form of the expecteiddp/dt
=[H,p]. Similarly, the condition 8S,/8A(t)=0, where
5E\i(tf):0, leads to the expected equation of motion:
Hi(®) X S(0,1).

dao
S Si= (36)

Equations(35) and(36) describe the general time evolution
for any value of the external field. We are interested in the
linear regime of a perturbationally small external field. As a
result, we need to solve Eq&5) and(36) to first order. We
introduce the notatiofsee Eqgs(5) and(6)]:

P],8|a(t) ,Bpjl ot 5P15|a(t) +oey

S(i,t) = €Syn(i) + 6,0 + - -+,
Wwhere we use the convention that all quantities denébed

depend linearly on the external magnetic fiéKdi,t). To first
order, the effective Hamiltonia(83) and the effective mag-
netic field (34) become Egs.(8) and(9)]:

Pig,js(t) = Sughij o+ 8ij O 4p(0) + -+,

Hi() = Hig, + oHi (D) + -+,

where
a, - -
5hi,aﬁ(t)2_§2 | 2 JwdSk,b) - gueB(ib) |,
k

_,

SHi(t) = gugB(i,0) - X J;
japB

2L 5p1pjalt)- (37

”2

We now substitute these expressions into E§$) and
(36). The zero orde(statig terms cancel out. After a time-
domain Fourier transformatiaftaking into consideration the
adiabatic terme™), we obtain

5hi,ﬁa(w),0]i ,,3]
+ % [Nik gPkgia( @) = Nii, 4 0pj g k(@) ],

fi(w +i7) Opjgjia(@) =[N gal@)pji o =

(38)
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i(@+i7)8S(i,0) = & X [H;aS(i,0) = 8Hi(0) Sun()].
(39
Let us consider first Eq.39)—after all, we are interested in

the linear changéiéé(i ,t) of the magnetization, related to
the dynamic susceptibility. Equatiai@9) projects into two
different equations for the componentdSS(i,w) and

8S,(i, )= 3S(i, ) +i 8S(i, w):
(w+i7)85(i,0) =0,

(0= Hi +i7)8S.(i, ®) = = Syn(i) H{ (). (40)

The first equation shows that fan+# 0, 8S,(i,w)=0 and
thereforeSy,(i) is conservedthe static case@=0 was inves-

PHYSICAL REVIEW B 71, 125203(2005

Mij(w) = j(w —H; +i7)

_ . Jm,mi(i)Jml,m(j)[f(EnT) B f(Eml)]

23““('),1% ha+En - Em, +ih7

(49)
bi(w) = - gﬂBS\/In(i)|:B+(iaw)
. f(EnT) - f(Eml)

" Zn’Em Jm’ml(l)ﬁw +Ey —Eqp +ifiy

x> w;l(j)wm(n&(j,w)] : (46)
J

tigated in the previous sectipnit follows that we can only
define a transverse dynamical susceptibility. To calculate it, \; THE TRANSVERSE DYNAMICAL SUSCEPTIBILITY
we need the values afH; (w), which depend orp; | j1(w)

[see Eq.(37)]. In turn, these depend on afp;, (w) com-

ponents[see Eq.(38)]. Instead of working directly with
these, it is more convenient to introduce

The transverse dynamical susceptibility is defined as:

35.Go) = 1S e85 .0 = (M8, G.0

Xam(w) = 2 Uy (1) py i1 (@) oy (), (41) (47)
i

where #,,(i) are the self-consistent mean-field eigenfunc-for each transverse component of the applied fi&ld , )

tions of Eq.(12) (here B=0, since there is no static field :e'q'ﬁ?+(q,w)/v [see Eq. (29]. Note that all bj(w)
applied which are orthonormal and complete. Equations™B+(d,®) [Eq. (46)] and thus alléS.(i, ) of Eq. (44) are
(40) and (38) (for B=| ,@=1) now become: indeed proportional td,(q, ). In other words, for eacly
and o of interest, we can setB,(f,w)=1—B,(i,w)
(0= H; +i7)8S,(i, ) = 2Syn(i) 2 Ing m ()X @) =g9R/V. We can then compute the matrix elemektg(w)
nm andb;(w) for any finite temperature, and solve Eg4) for

8S,(i, w). With this convention, the transverse susceptibility

per unit volume is

— gueSun(i)B.(i, ), (42)
(hw + Ent =Em + 17 1) Xl @)
= [f(EnT) - f(Eml)]
X | 22 I 1 (1) S ) = G ) iy (D) (DB (i, ) |,

X(G ) = g”‘ﬁ,—:m”z expl- i - R) 65,1, ).

In the ordered case, this calculation can be carried out
explicitly using Eqs.(16)—(18). The result is:

_ (91e)MunSun[1 = IgF ()]

1
hao+ Josy + ES\An|Jd|2Fd(w)

(43)

x(G, ) (48)

where Jna,mﬁ(i)zézj\]ij ap;a(j)zpmg(j), the eigenenergiek,,,

and the occupation numbefé&E,,,) depend on known static
mean-field quantitied.Note: for w # 0, the chemical poten- )
tial x remains unchanged to its static self-consistent meanwhere quzgeid“sJ(; [J5=J

; for which 6=R-R]. Fq(w)
field value, to first order, since from E@9) it follows im-

=1INGZF(Eg )~ f(Eg )]/ [+ g~ e+ IoSun] IS the
mediately thatw+in)Z; ,3piq,ia=0]- spin-polarized electron-hole “bubble” expected to appear in
The Ng+N3 Egs.(42) and(43) [or alternatively, Eqs(38)  RPA-level approximations.
and (39)] are the generalized random phase approximations Singularities in x(q,») mark the spectruntiwg of the
(RPA) equations at finite temperature. In the lifit0, they  spin-wave modes. In Fig. 5, we plgtq, w) for differentg,
indeed reduce to the RPA equations derived in Ref. 13. TheYt T=0. The valuegiw; of the singularities indeed coincide
can be replaced by a system of oMy linear equations for  yjth the spin-wave spectra of Ref. 13. At finifex/(d, w) for
3S,(i, w) by substituting th&,(w) variables from(43) into  {he ordered system still has a single peak, but its energy first
(42). The final result is: increases, then decreases ViitiThis behavior is generic, as
) shown in Fig. 6. Such non-monotonic behavior is easy to
2_ Mij(@)85.(j, ) = bi(w), (44 understand, sincksee denominator of Eq48)] fiwg=Jo|sy|
J - 3SwnlJg?F4(wg). At low-T, |s,| is constant whileSy, de-
where creases WitlT (see inset of Fig. )l and%wg increases. Once
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—q
—-q,
1x10* --- 43
£ —~
o 8
X =)
=
5x10° -
=
0 04 0.5
FIG. 5. x(4,w) for the ordered -case.G=0, G,

=(m/153)(2,0,0 andds=24,. Ng=125,x=0.00924,p=0.1, T=0.
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the holes start to depolarizéw;— 0. The exception is the

case G=0, where one findsy(0,®)=(gug)’NynSun/ (fiw).
The »=0 singularity signals the Goldstone boson at &l
< T, where one can define a transversal susceptibility.

In Fig. 7, we showy(d,w) of a single fully disordered
configuration, for four different values @f In contrast to the
ordered caséFig. 5), here we see multiple peaks g, w),
which appear at the same energies for all valuesg.cfhe
explanation is that disorder breaks translational invarianc
andd is no longer a good quantum number. As discussed iff
Ref. 13, in this case many spin-wave modes become loca
ized and even the extended modes do not carry well-define®
momentum. As a result, an external magnetic figldqg, »)
can excite all the spin-waves of energy closewtdconser-
vation of energysince conservation of momentum no longer
holds. The narrow peaks ip(q, w) for variousq occur at the
same frequencies because they couple to the same spin-wa %
modes. The differences are mostly in the amplitude of the
peaks, but even these converge a6d, ) becomes roughly
independent ofj for moderate to largg-values.

To restore invariance to translations, we have to average
over all disorder realizations. The arguments presented abov~
suggest that the averaged susceptibility is very different from

0.8 T T T T T T
0.7

ha%

qu
—ed;

0.6

x(9,0)

0.5

0.4

l=2

hw_(meV)

03 _
0.2

0.1

0.0 : '
0 0.05

1
0.1 0.2
k,T/)

0.15

FIG. 6. Spin-wave energigswg(T) for ¢;=(w/9)(1,1,0, G
=24;, anddz=3d;; Ng=216,x=0.00924,0=0.1.
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FIG. 7. x(d, ) for anindividual fully disordered configuration,
for G;=0, d;=(w/15a)(4,0,0, ds=(m/152)(8,0,0, and G,

that of an ordered system even for weak disorder. This is
indeed confirmed in Fig. 8, where we compai@, w) for
ordered and weakly disordered systefaseraged over 15
disorder configurations Short wave vectoréd;) probe long
length-scales, i.e., the extended modes. For weak disorder,
these are not strongly perturbed and the results are fairly
similar. However, at short wavelengtk@,, s, andd,), the
gesponse in the disordered system is dominated by the local-
ed modes and leads to a rougliiindependent, extremely
proad peak in the dynamic susceptibility. Note that even the
tended modes, which occupy the center of the specttum,
contain some short wavelength contributions and thus are
probed by fields with larg€.

The change is even more drastic if disorder is increased
and more modes become localized. A comparisoryfqt w)

different levels of disorder, averaged over 20 disorder

6x10°
4x10°

2%10°

0

6x10°

4><103

2x10°

ealizations, are shown in Fig. 9 on a logarithmic scale. The
curves are not yet smooth, meaning that one needs to average
over more samples. However, this is time consuming and the
main features are already apparent. With increased disorder,

=t

M Py =

k)

7 Y

=

0
0.0
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1.2 0.0
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FIG. 8. x(4,w) for ordered(dashedl and weakly disordered
(full) systems. T=0, x=0.00924, p=0.10, Ny=125, and g,
Gs=(7/15a)(4,4,0,

=(m/15a)(2,0,0,
=(w/15a)(4,4,4.
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AL LU A I A regions of the sample which have a large local Mn concen-
tration. These region&lusters or polarongolarize at much
higher temperatures than an ordered sample does, due to the
much stronger effective coupling between the spins and
holes. Charge carriers delocalized amongst several clusters
help correlate their magnetizations at somewhat lower tem-
peratures, thus leading to the appearance of long-range mag-
netic order. The concave magnetization curves we obtain
— fulldisorder | are in qualitative agreement with those obtained by other
moderate disorder . . 2 . 2
— weak disorder studies® which explicitly take into account the positional
disorder, especially for low charge carrier densities. The
large inhomogeneity induced by the localized states was also
10 10 10" 10° 10" 102 shown to influence the spin-wave spectrum, leading to local-
ho (Mev) ized modes at both low and high energigé3he low-energy
localized spin-waves are, in fact, spin-flips of the weakly
FIG. 9. x(q,w) for ordered(dasheyl and weakly disordered interacting spins, whereas the high-energy localized modes
(full) systems, forg=(=/15a)(2,0,0, T=0, x=0.00924,p=0.10,  are spin-flips inside strongly coupled clusters.
Ny=125. Inset: the high-energy tail for fully disordered configura-  Here, we show that the magnetic susceptibilities are also
tions, with G=(7/15a)(4,0,0 (N3=125 and g=(#/18a3)(4,0,0  strongly sensitive to positional disorder. In particular, even
(Ng=125). very little disorder leads to a qualitatively different behavior
of x(d,w) compared to the ordered case, as shown in Fig. 8:
the peaks become broader and shift toward lower energietstead of a Lorentzian centered at a well-defined spin-wave
This is consistent with Ref. 13, which found an increasedrequencyfwg, in the disordered case we obtain a very
density of localized spin-waves at lower energies in the moréroad, roughlyg-independent peak, which extends over the
disordered systems. Curves in Fig. 9 saturate to a finite valuentire range of the spin-wave spectrum. In the traditional
asw— 0 because we used a finite value farFrom analyz- weakly scattering case, the average over all disorder realiza-
ing the dependence on, we find* that y(4,w)~1/w as tions leads to a finite lifetime of the excitations, but momen-
w—0 for all §. This is the expected result: if one applies atum is still a good quantum number. By contrast, here even
static magnetic field transverse to the direction of the magsmall amounts of disorder induce localization of some of the
netization, the magnetization axis will rotate to become parcharge-carriers! which in turns leads to localization of some
allel to the applied field. This is a finite change in magneti-of the spin-wave mode's. Dealing with localization is well
zation no matter how small the applied field is, and the statideyond the realm of applicability of weak-scattering argu-
transverse susceptibility is infinite. In the ordered system, thenents. Indeed, as we show here, the susceptibility in the
momentum conservation prevents this singularity from beingresence of disorder is not just like that of an ordered system,
observed unles§=0. but with a finite lifetime; instead, at any givepa transversal
The high-energy tail ofy(4, ) is shown in the inset of field can couple to all the spin-waves in the system, and
Fig. 9, for two different system sizes. THe,=125/216 thereforex(d, ) is finite for all w in the spin-wave spec-
curve has been been averaged over 40/20 disorder realizéium. The only ingredient necessary for this dramatic change
tions. Because of the different system sizes, we have to inn the shape of(d, ) is the existence of some charge car-
vestigate different vectors in the Brillouin zone. However, asrier localized states. On general grounds, one expects that to
already emphasized, hexgd, ») is roughly independent of be the case at all below and near the MIT. This prediction
d. Indeed, the two curves are very similar, suggesting alseould be confirmed once neutron scattering experiments are
that finite-size effects are negligible. As discussed in Ref. 13performed on DMS.
the high-energy collective modes are spin-waves localized The formalism we developed here can be trivially ex-
inside strongly interacting clustefgnagnetic polarons In  tended to more complicated cases, for instance to include
particular, the peak a5 meV is due to clusters made of anisotropies due to strain or spin-orbit coupling, non-
two nearest-neighbor MH. collinear self-consistent ground-states or other supplemen-
On a technical note, we useg=0.02/0.03 for ordered/ tary terms such as on-site disorder, electron-electron interac-
disordered systems. A finite implies a finite spin-wave life- tions, etc. It is very unlikely that any such extra terms can
time, due to scattering on other spin-wavasglected at the completely inhibit the appearance of localization. As a result,
RPA leve) and is necessary to avoid singularities in numeri-their addition can only lead to some quantitative changes, but
cal computations. Also, all susceptibilities shown are in unitsqualitatively the susceptibilities behave as the ones we de-
of (gug)*Nyn. rived using this simple impurity-band model.

6x10°

4x10

x(q,m)

2><103
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APPENDIX: STATIC LONGITUDINAL SUSCEPTIBILITY

In this appendix we sketch the derivation of the static
longitudinal susceptibility in the disordered case. Combining

Egs. (7) and (8), we find S,(i) =B4 B(B—=,J;sa(j))], (we
setgug=1 for simplicity). Then,

o
)= S50

:/3[1 -3 Ji,-xhu)]B's(/sHi),
= J

B=0

(A1)
where B{(x) =d/dxBg(x). Let us now computeg(i). From
Eq. (9) we find, to first order irB, that

(A2)

g
hi o = i+ &15[2 Jikxmn(K) = 1] B+
k

and therefordEq. (10)] K& =/Kg+BVect- -+, where

Vex= 2 g[E Jijxvn(i) = 1]CiTacia-

i,o j

We now use perturbation theory to fil§, and £ (i) to first

order inB. In a disordered system all degeneracies are lifted,

and thusES =E,,+EB++, yB ()=, (i) + 2 ()B+ -,
where

Eﬁr) = <¢nrr|vexl ne) = 0'2 Jn(r,n(r(j)XMn(j) - %r (A3)
J

COEDD inoVedno)

Yoo o (i)

m#n Ena - Ema

E Jma,n(r(j)XMn(j)

A4
Enu - Emo ( )

wma'(i) ’

m#n,j

where Jna‘mﬁ(i):%EJJij zp;a(j)z/;mﬁ(j). Finally, differentiating
Eqg. (14), we find:

du® > EVg(E
au- — Zno n(rg( n(r) (A5)
d B B=0 ZI'lo'g( Eno)

Sincesi(i) =23 ,0]4f ()?f(ER), it follows that

PHYSICAL REVIEW B 71, 125203(2009
xn(i) =2 g{wﬁﬂ(i)w;c,(i) +c.clf(En,)

dH

Substituting the expressions forEglrz, z/;gl;(i) and

(duB/dB)|g= from Egs.(A3)—(A5), we obtain:

d
+ |¢ng<i)|2ﬁ<E‘n%3 - —“)g(Em,)}. (A6)

Xn() = 2 Ajxn(i) + B, (A7)
J
where
Aij = %2 2 f(Eno') Jm(T,na-(j )lyEbn(r(l_) lémg-“) + C.C.
no | m#n mo no

+ Bltmo()P9Ene) | Innoli)

E a‘Jma,ma(j )g(Ema)

Mo

> 9(Ema)

and

E ag(Eny)

Ma

m 1
> 9(Emy)

B = gz |l//no-(i)|zg(Enu-) g

Here it is worth mentioning that in EqA7), the dominant
term is2 ;A xun(j) which is coming from the indirect effect
of the external field on the Mn spins.

The set of Eqs(Al) and (A7) relate xy,(i) and y,(i) to
one another. The equations for determinipg,(i) at each
sitei are then:

2 [8; +Rilxwn(i) = BL-P)BYBH),  (A8)
j

whereR;; = 8Bg(8H)) 21 JiAqj and P;=2,;J;;B;. Once we know
xmn(i), the values ofy,(i) can be obtained fronfA7). The
total susceptibiliies per unit volume are thegun

=Myn(9e8) “Zixmn(i)/ Ng and xin=nin(9e)*Zixn(i)/Ng.
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