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We calculate the static longitudinal and the transverse dynamic magnetic susceptibilities ofsIII,Mn dV diluted
magnetic semiconductors, using the random phase approximation, for a simple impurity band model appropri-
ate for the low charge carrier concentration regime. The magnetic susceptibilities are shown to depend sensi-
tively on the amount of positional disorder of the Mn impurities. The results we obtain are consistent with
previous studies of the spin wave spectrum and of the spatially inhomogeneous ferromagnetic state of these
materials.
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I. INTRODUCTION

Diluted magnetic semiconductorssDMSsd are obtained by
doping a semiconductor with magnetic impurities. To date,
Ga1−xMnxAs has been the most studied1 III-V DMS because
it has the highest reliable critical temperatures recorded:
160 K for bulk samples2 and 172 K in digitally doped
heterostructures.3 In Ga1−xMnxAs, substitution of a fractionx
of the Ga with Mn introduces both local Mn spinssS=5/2d
and holes into the system. It is widely accepted that magne-
tization is due to charge-carrier mediated, effectively ferro-
magneticsFMd, interactions between the Mn spins.1,4 It is
known that these alloys are heavily compensated, with a hole
concentration much smaller than the Mn concentration.
DMSs are alloys, with inherent positional disorder of Mn
atoms. Other types of defects, such as As antisites and Mn
interstitials, are also present.1,5 The spin-orbit coupling may
play a significant role by making these interactions
anisotropic,6,7 although it is not clear to what extent.8,9 A
theoretical treatment which fully takes into account all these
factors is not yet available. Instead, theoretical work tends to
focus on different aspects of the problem.

Our recent work10–15 has been focused on understanding
the effects ofpositional disorderof the Mn impurities on the
magnetic properties of these compounds. Disorder is known
to induce localization of the states lying at the bottom of the
band, below the mobility edge. When the Fermi energy
crosses the mobility edge, the system undergoes a metal-
insulator transitionsMIT d, at x,0.03 in GaMnAs.1 Since
transport propertiessmetal versus insulatord are determined
by the nature of the states near the Fermi energysextended
versus localizedd one might argue that for the samples with
the highestTc, which are also the most metallic ones,2 disor-
der effects are unimportant. However, the main applications
of these materials are based on their magnetic properties.
Unlike transport properties, the magnetic properties depend
on the nature ofall the occupied states, not only the ones
near the Fermi energy, sinceall the charge carriers interact
with the Mn spins. Disorder may thus influence magnetic
properties considerably, certainly on the insulating side, but
also above the MITseven the most metallic GaMnAs
samples have very short mean free pathsd.

In this work, we investigate the effects of positional dis-
order on the magnetic susceptibility of these materials. The

model we study10–14 is an impurity band model. It is ex-
pected to besat least qualitativelyd valid at low concentra-
tions, below and near the MIT, where the disorder effects are
likely to be largest and thus most easy to identify. Although
we use GaMnAs as a prototype, other insulators, such as
GaMnN and GeMn, may exhibit similar physics, if they are
indeed DMSs.16,17 In order to understand the effects of posi-
tional disorder, we contrast the behavior of ordered samples
swhere the Mn are assumed to be placed on an ordered cubic
superlatticed with weakly, moderate, and fully disordered
configurations, where we allow the randomness in the Mn
positions to increase gradually.10 It should be emphasized
that the results for the ordered systems also apply to itinerant
models,18–20 provided that the appropriate mapping of pa-
rameterssdiscussed belowd is performed. The method we
employ is the random phase approximationsRPAd; this, and
the low density regime we consider distinguish our work
from other recent computations of magnetic susceptibilities,
based on Boltzmann equations.21

The paper is organized as follows: in Sec. II we briefly
review the model and the self-consistent mean-field solution.
In Sec. III we discuss the static longitudinal susceptibility. In
Sec. IV we derive the generalized random phase approxima-
tion equations, which are used in Sec. V to compute the
dynamical transverse susceptibility for ordered and disor-
dered systems. Finally, Sec. VI contains our conclusions.

II. THE MODEL AND THE MEAN-FIELD
APPROXIMATION

The model we investigate has been described in detail in
Refs. 10–13. We briefly review it here. The host is assumed
to have zinc-blende structure.Nd Mn dopants are placed at

positionsRW i, i =1, . . . ,Nd on anN3N3N fcc sublattice, of
lattice constanta s=5.65 Å for GaAsd, corresponding to a
dopingx=Nd/4N3. The number of charge carriers is fixed to
Nh=pNd, wherep,1 due to compensation. We use periodic
boundary conditions. The Hamiltonian we investigate is:

Hstd = o
i,j ,s

tijcis
† cjs + o

i,j
JijSW i ·sW j − gmBo

i

BW si,td · ssWi + SW id.

s1d

Here,cis
† creates a charge carrier with spins in the impurity

state centered atRW i. The first term describes hopping of
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charge carriers between impurity states, wheretij =2s1
+r /aBdexps−r /aBd Ry, with r = uRi −R ju.22 For Mn in GaAs,
1 Ry,110 meV andaB<8 Å.10,23 This particular hopping
Hamiltonian has been shown to describe an impurity band
which has a mobility edge, as well as a characteristic energy
for the occupied states in agreement with physical expecta-
tions sa detailed discussion of these issues is presented in the
Appendix of Ref. 11, as well as Ref. 14d. The second term
describes the antiferromagnetic exchange between the Mn

spin SW i and the charge carrier spinsW j =
1
2cja

† sW abcjb ssW are the
Pauli spin matricesd, which is proportional to the probability

of overlap between the charge carrier trapped atRW j and the

Mn spin atRW i: Jij =J exps−2uRW i −RW ju /aBd. The exchange be-

tween a hole and its own MnsRW i =RW jd is J=15 meV.10,23The
third term describes the coupling to an external magnetic
field. For simplicity, we assume that both types of spins have
the sameg-factor. The value of the holes’g is unimportant,
because the magnetic properties are dominated by the Mn
spins.11

This Hamiltonian obviously neglects several other pos-
sible terms. Since the system is heavily compensated, it must
contain a significant amount of charged compensation cen-
ters. The electric potential created by these charged defects
leads to the appearance of a disordered on-site energy, of
typeoiseicis

† cis. The spread in the distribution ofei is depen-
dent on the amount of correlations between the positions of
these charged defects, established during growth.24 A
Hubbard-like term Uoini↑ni↓ should be added to limit
double-occupancy of the impurity states. Since the charge
carrier density is low, one could argue that in fact longer
range electron-electron repulsions are needed. We have stud-
ied the effect of adding such terms, as well as modeling
differently the hopping term, in Ref. 11. They are found to
lead to some quantitative changes, but no qualitatively new
physics. As we propose to focus on the effects of positional
disorder on the magnetic susceptibilities, we ignore such ex-
tra terms here. In Hamiltonians1d we also assume that the
impurity states have the simple s-wave symmetry typical of
donor levels, ignoring the more complicated structure of im-
purity acceptor levels due to the multi-band valence
band-structure.23 Unless the spin-orbit coupling is very
strong, we believe that this approximation also leads to only
quantitative changes. The formalism we develop here can be
straightforwardly generalized to take all these extra terms
into account; however, we do not expect qualitative changes
to the results we report.

We first consider a homogeneous, static external magnetic

field, BW si ,td=BeWz. The mean-field solution, based on the cus-
tomary factorization of the interaction term, was investigated
in Refs. 10 and 11. We rederive it here using a variational
approach. Then, we generalize this approach to spatial/time-
dependent external fields, to find the RPA equations and dy-
namic response functions.

The idea is to replace the full interacting Hamiltonian,

HB = o
i,j ,s

tijcis
† cjs + o

i,j
JijSW i ·sW j − gmBBo

i

ssi
z + Si

zd, s2d

with the particular quadratic form25

K̂B = o
i j ,s

hij ,s
B cis

† cjs − o
i

Hi
BSi

z, s3d

which minimizes the free energy26 FsK̂BdùFeq, where

FsK̂Bd = − kBT ln Z0
B + TrhD̂0

BfĤB − K̂Bgj. s4d

Here, N̂=oi,scis
† cis is the particle number operator,D̂0

B

=expf−bsK̂B−mBN̂dg /Z0
B is the trial density matrix, where

Z0
B=Trhexpf−bsK̂B−mBN̂dgj, andmB is the chemical poten-

tial. We use the upper indexB to distinguish between solu-
tions in different static external magnetic fieldsBeWz. If B=0
we will drop this index.

We define the expectation values:

r ji ,s
B = TrhD̂0

Bcis
† cjsj = −

1

b

] ln Z0
B

]hij ,s
B , s5d

kSW il = TrhD̂0
BSW ij = SMn

B sidêz s6d

where

SMn
B sid =

1

b

] ln Z0
B

]Hi
B = BSsbHi

Bd. s7d

and BSsxd= sS+ 1
2

dcothfsS+ 1
2

dxg− 1
2cothsx/2d is the Brillouin

function sS= 5
2 for Mnd. We then have:

FsK̂Bd = − kBT ln Z0
B + o

i j ,s
tijr ji ,s

B + o
i j ,s

JijSMn
B sid

s

2
r j j ,s

B

− gmBBo
i
FSMn

B sid + o
s

s

2
rii ,s

B G − o
i j ,s

hij ,s
B r ji ,s

B

+ o
i

Hi
BSMn

B sid.

The variational parametershij ,s
B and Hi

B are obtained
straightforwardly26 from the minimizationdF=0:

Hi
B = gmBB − o

j ,s

s

2
Jijr j j ,s

B , s8d

hij ,s
B = tij +

s

2
di jFo

k

JikSMn
B skd − gmBBG . s9d

These are the self-consistent mean-field equations. They can
be written in the familiar form if the electronic part of the
trial sor mean-fieldd Hamiltonian is diagonalized:

Kel
B = o

i j ,s
hij ,s

B cis
† cjs = o

ns

Ens
B ans

† ans s10d

through a unitary transformation:

ans
† = o

i

cns
B sidcis

† . s11d

The diagonalization condition is:

o
j

hij ,s
B cns

B s jd = Ens
B cns

B sid. s12d
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These equations determine the self-consistent solution.
We start with an initial guess for the values ofSMn

B sid ssee
Ref. 11 for detailsd. We use Eqs.s9d and s12d to find the
fermionic energiesEns

B and wave functionscns
B sid. Using

Eqs.s5d, s10d, ands11d, the fermionic fields become:

r j j ,s
B = o

n

fsEns
B ducns

B s jdu2, s13d

where fsEd=hexpfbsE−mBdg+1j−1 is the Fermi distribution
and the chemical potentialmB is given by:

o
i,s

rii ,s
B = o

n,s
fsEns

B d = Nh. s14d

Once the fermionic fields are known, using Eqs.s7d and s8d
we can obtain the new spin expectation valuesSMn

B sid. We
repeat the iterations until self-consistency is reached.

III. THE STATIC LONGITUDINAL SUSCEPTIBILITY

This response function characterizes the change in the to-
tal magnetization, when a static external magnetic field is
applied parallel to the magnetization axis. We can separate it
into two components,x=xMn+xh, where

xMn =
gmB

Nd
o

i
UdSMn

B sid
dB

U
B=0

, xh =
gmB

Nd
o

i
Udsh

Bsid
dB

U
B=0

.

sTo obtain the susceptibility per unit volume, one needs to
multiply by nMn=4x/a3d. The charge carrier spin expectation
values arefEqs.s5d and s13dg sh

Bsid=ossrii ,s
B /2.

One method to calculate these susceptibilities is by direct
numerical evaluation of this derivative, e.g.,

xMn < gmBUSMn
B − SMn

B
U

gmBB/J!1
, s15d

whereSMn
B =oiSMn

B sid /Nd and SMn=SMn
B=0 are the average Mn

spin with and without a static magnetic field, which can be
obtained directly from the mean-field solutions. The main
issue with this approach is the proper choice ofB and the
proper self-consistency criterion to be used. Clearly,SMn and
SMn

B must be computed to very high accuracy so that errors in
the numerator of Eq.s15d are small relative to the small
value ofB chosen. We obtain good convergence with results
of another methodsdescribed belowd for gmBB=10−4 meV
and self-consistency defined by the condition that the varia-
tion of the total magnetization in successive iterations is less
than 10−6. While reaching such high accuracy is time con-
suming, this method is the most efficient way to compute the
static susceptibility for large systemsNd.500d.

The more customary way to compute a linear response
function, however, is to express it in terms of expectation
values of the unperturbed systemsi.e., B=0 quantitiesd. Let
us first derive the longitudinal susceptibility for an ordered
system, i.e., one where the Mn impurities are assumed to be
placed on a simple cubic superlattice inside the host semi-
conductor. In this case, due to invariance to translations, we
have SMn

B sid=SMn
B , sh

Bsid=sh
B, ∀ i. The charge carrier part of

the mean-field HamiltonianfEqs. s9d and s10dg has eigen-

functions which are plane-waves for allkW inside the first
Brillouin zone. We find:

EkWs
B = ekW +

s

2
sJ0SMn

B − gmBBd, s16d

sh
B =

1

2Nd
o
kWs

sfsEkWs
B d, s17d

SMn
B = BSfbsgmBB − J0sh

Bdg. s18d

Here,ekW =odWÞ0tdW expsikW ·dWd is the kinetic energy of the non-

interacting electrons, wheretdW = tij for which RW i −RW j =dW. Also,
J0=odWJdW, whereJdW =Jij .

From Eq.s18d, we find the spin contribution:

xMn

gmB
= bSgmB − J0

xh

gmB
DBS8s− bJ0shd, s19d

whereBS8sxd=sd/dxdBSsxd. From Eq.s17d, we have:

xh =
gmB

2Nd
o
kWs

sUSdEkWs
B

dB
−

dmB

dB
DU

B=0
gsEkWsd, s20d

wheregsEd=sd/dEdfsEd. From Eq.s16d we find:

UdEkWs
B

dB
U

B=0
= EkWs

s1d =
s

2
SJ0

xMn

gmB
− gmBD . s21d

Differentiating Eq.s14d with respect toB, we find:

UdmB

dB
U

B=0
=

okWsEkWs
s1dgsEkWsd

okWsgsEkWsd
. s22d

Substituting Eqs.s21d and s22d in Eq. s20d we get:

xh = gmBgSgmB − J0
xMn

gmB
D , s23d

where

g =
1

4Nd

fokWssgsEkWsdg2 − fokWsgsEkWsdg2

okWsgsEkWsd
. s24d

From Eqs.s23d and s19d, we obtain the Mn susceptibility in
the ordered case to be:

xMn = bsgmBd2s1 − J0gdBS8s− bJ0shd
1 − bJ0

2gBS8s− bJ0shd
s25d

while the hole susceptibilityxh is:

xh = sgmBd2g
1 − J0bBS8s− bJ0shd

1 − bJ0
2gBS8s− bJ0shd

. s26d

These static longitudinal susceptibilities are plotted as a
function of temperature in Fig. 1. As expected, the critical
temperatureTc is marked by a singularity. Sincesh=0 for
TùTc andBS8s0d=SsS+1d /3, the denominator in the suscep-
tibilities gives:
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kBTc = gJ0
2SsS+ 1d

3
. s27d

For TùTc, okWssgsEkWsd=0 sspin degeneracy is restoredd.
Then fEq. s24dg, g=−okWsgsEkWsd /4Nd=edEokWsdsE
−EkWsdf−sd/dEdfsEdg /4Nd=rsEFd /4nMn sif kBT!EFd, where
rsEFd is the density of states per unit volume at the Fermi
energyEF. This value can also be obtained directly from Eq.
s23d, since in the absence of interactionssJ=0d, the hole
susceptibility per unit volumenMngsgmBd2 must equal the
Pauli susceptibility.

In an effective mass approximation,ekW ="2k2/2m* , rsEFd
,m*kF,m*snhd1/3→g,m*spxd1/3/x sthe factors contain
only constantsd. Such an approximation can be used in two
cases:sid for itinerant models,18–20 in which casem* =mh is
the mass of the heavy hole band, andJ0→nMnJpd in order to
obtain the same one-electron dispersionssee, e.g., Ref. 18d.
In this case, we regain the expectedTc,xspxd1/3 mean-field
scaling with the Mn and hole concentrationsx andspxd.18–20

sii d For an impurity model on an ordered lattice, for only
nearest neighbor hoppingt and EF! t, we have m*

,1/staL
2d, where aL=a/x1/3 is the superlattice constant. It

then follows thatTc,p1/3J0
2/ t. Both J0 and t depend onx

through the distance between neighbors Mn. In Ref. 11 we
showed numerically that at constantp, in the ordered impu-
rity band case,Tc,x, so one can infer that hereTc,xp1/3. In
any event, disorder and thermal fluctuations considerably
change these mean-field estimates.

Before discussing disordered systems, it is worth empha-
sizing why xh,0. Each hole interacts antiferomagnetically
with many Mn spins, each of which has its magnetization
increased by the magnetic field. This favors an increased
polarization of the holes, in a direction opposite to the ap-
plied field. Thus, the direct effect of the external field on the
holes is more than offset by its indirect effect mediated
through exchange with the Mn spins. As a result, in the para-
magnetic phasexh is strongly enhanced from its non-
interacting,T-independent Pauli value. From Eqs.s25d and
s26d, we see that

xh

xPauli
=

xMn

bsgmBd2

3 − J0bSsS+ 1d
s1 − J0gdSsS+ 1d

.

This increase can be formally assigned to an enhanced effec-
tive g-factor. Consistent with this phenomenology, huge Zee-
man shifts have been measured in both II-VI and III-V
DMSs.27,28 Spintronic applications based on this high-T ef-
fect have been proposed recently.29,30

The longitudinal susceptibilities in the disordered case are
calculated similarly. However, we now compute each contri-
butionxMnsid=dSMn

B sid / udBuB=0 andxhsid=dsh
Bsid / udBuB=0 ffor

simplicity, we setgmB=1, i.e., measure the susceptibilities in
units ofsgmBd2g. This calculation is detailed in the Appendix.
We end up with a system of linear equations forxMnsid fEq.
sA8dg:

o
j

fdi j + RijgxMns jd = bs1 − PidBS8sbHid

The matricesR,J2 and P,J depend only onB=0 mean-
field quantitiesfsee the discussion following Eq.sA8dg.

It is instructive to compare this result with the “conven-
tional” statistical formula for static susceptibility:

x̃Mn =
b

Nd
o
i j

fkSW iSW jl − kSW ilkSW jlg s28d

At the mean-field levelkSW iSW jl=kSW ilkSW jl if i Þ j , since the
mean-field density matrixD0=expf−bsK−mNdg is diagonal
for different spins fsee Eq. s3dg. It follows that x̃Mn
=oix̃Mnsid /Nd, where

x̃Mnsid = bfkSW i
2l − kSW il2g = bBS8sbHid.

This is the solution one obtains if one sets the matricesR and
P to zero, in the full system of linear equations shown above.
Equivalently, comparison with Eq.sA1d shows that this
“conventional” formula does not account for the contribution
from the supplementary polarization of the holes. Since this
is considerablessingulard nearTc, the “conventional” expres-
sion gives very wrong results forT,Tc, although it works
well for T→0 or T@Tc, where the hole susceptibilities are
very small. The reason for this failure is the fact that Eq.s28d
holds whenk…l denotes the thermal average with the exact
density matrix, not with the approximate mean-field density
matrix. To be more precise, for a Hamiltonian such as of Eq.
s1d, the total susceptibility of the system is actually

x̃ =
b

Nd
o
i j

fksSW i + sWid · sSW j + sW jdl − kSW i + sWilkSW j + sW jlg

wherek…l is the exact thermal average, which can be evalu-
ated with Monte Carlo simulations. This susceptibility can be
decomposed into ax̃Mn and similar x̃h as in Eq.s28d, but

there is also a cross term containing terms likekSW isW jl
−kSW ilksW jl, which are not necessarily small nearTc. Ignoring
these terms, i.e., approximatingx̃< x̃Mn in Monte Carlo
simulations12,31,33 is questionable, especially whenx̃ is em-
ployed precisely to identifyTc.

FIG. 1. xMnsTd sfull d andxhsTd sdotted lined, for an ordered Mn
configuration withNd=512, x=0.00926, andp=10%. The inset
shows the corresponding magnetizations.
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We analyze now the effect of disorder on the longitudinal
susceptibility. We solve numerically the full system of
coupled equations and findxMn,oixMnsid. sxh can be found
similarly. However, sincexh!xMn, it follows that x<xMnd.
The results shown in Fig. 2 are averaged over 30 disorder
realizations. We denote byxwsTd, xmsTd, andx fsTd the sus-
ceptibilities of systems with weak, moderate and full disor-
der, as defined in Ref. 10. Unlike the ordered susceptibility
which has only one peak atTc ssee Fig. 1d, the susceptibility
of disordered systems has two distinct peaks. One is atTc,
while the second peak appears atT!Tc and is seen best in
the inset. With increased disorder, this low-T peak has in-
creased weight and amplitude and shifts to lower tempera-
tures. It is due to the weakly coupled Mn spins which are
positioned far from the regions of the sample where the holes
are located with high probability.11,15 These behave like free
spins xMnsid,1/T except at extremely low temperatures
kBT,Hi, where they finally polarizefsee Eqs.s7d and s8dg.
The high-T peak inxsTd marks the mean-fieldTc. The high-
T peak is determined by the behavior of the strongly coupled
spins, from the regions where the holes are located.11,15 As
observed previously,10–12 increased disorder leads to higher
Tc. With increased disorder the high-T peak also broadens
considerably. The explanation is provided below.

In Fig. 3 we showxMnsTd andxhsTd for a singledisorder
realization. Unlike the broad peak nearTc of the averagexMn
shown in Fig. 2, here we see several narrow peaks in a range
limited from below by the temperature where all holes be-
come fully polarized. The highest-T peak occurs at theTc of
the individual sample. These narrow peaks appear symmetri-
cally in both susceptibilitiesshowever,uxhu!xMnd. The num-
ber of such peaks and their positions are different for differ-
ent samples. Less disordered samples have fewer peaks, in a
smaller temperature range; the number of peaks increases
with system size.34 The origin of these peaks can be inferred
from examining the values ofxMnsid at temperatures where
peaks form. We find that each narrow peak is due to contri-
butions from a distinct cluster of Mn spins, which are spa-
tially close to one another and in a region where holes are
found with large probabilitysthese are strongly coupled
spinsd. The magnetizationsSMnsid of spins from two different

clusters are shown in Fig. 4. Different clusters polarize at
different “Tc,” depending on their local environment. The
local hole spin inside a cluster also becomes finite at the
sameT.34 From Fig. 4 we see that these “localTc” of indi-
vidual clusters are the temperatures wherex has peaks,
which thus signal the establishing of local FM correlations.
The average over many disorder realizations results in a
broad peak over the temperature range where these local FM
correlations build up in the system. This range is larger for
more disorder, which implies more inhomogeneity. On the
other hand, it decreases with increasingx,34 since for higher
x fluctuations in the local concentration are reduced.

Strictly speaking, the trueTc of a sample is not related to
this mean-fieldTc estimate where various strongly coupled
clusters begin to polarize. Instead, several magnetized clus-
ters must appear all throughout the sample, and correlations
between their magnetizations must be establishedsthrough
exchange of polarized holesd before long-range magnetic or-
der develops. This is qualitatively like the picture of mag-
netic polaronsseach polarized cluster represents a magnetic
polarond,32 except that thereTc is marked by percolation of

FIG. 2. Weak, medium and full disorder systems’ susceptibilities
vs T, for Nd=216, x=0.00926, andp=10%. Inset focuses on the
low-temperature region. FIG. 3. xMnsTd and xhsTd for single fully disordered impurity

configuration.Nd=512,x=0.00924,p=0.10.

FIG. 4. Left: total susceptibility of a disordered sample, nearTc.
Right: SMnsi ,Td for spins belonging to two different clusters.Nd

=125,x=0.00924,p=0.10.
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the growing polarons, since the polarons cannot exchange
polarized holes. This susceptibility peak at the mean-fieldTc
therefore denotes the characteristic temperature where the
clusterssmagnetic polarons, or local FM correlationsd begin
to form, also denoted byT* in other studies.33,35Monte Carlo
simulations are needed to determineTc for the phase transi-
tion to long-range magnetic order.

IV. THE RANDOM-PHASE APPROXIMATION

We now consider the magnetic response to a general time-
dependent magnetic field:

BW si,td = ehtE
−`

` dv

2p

1

Vo
qW

eisqW·RW i−vtdBW sqW,vd s29d

turned on adiabatically att=−` sh.0 is infinitesimally
smalld. The proper equations of motion for any operatorAstd
and for the density matrixDstd are obtained from the mini-
mization of the action:26

SH = −E
ti

tf

dt TrHA"
dD
dt

+ iAfH,DgJ + Tr DstfdAstfd,

subject to the constraintsdDstid=dAstfd=0. Here,Hstd is the
full Hamiltonian of the systemfEq. s1d in this caseg. Ap-
proximation schemes are obtained by solvingdSH=0 for
various classes of trial density matrices.

For a time-dependent mean-field calculation, the trial den-
sity matrixDstd=e−bfKstd−mNg /Zstd is defined by a variational
quadratic HamiltonianKstd and satisfies the initial condition
Ds−`d=D0, whereD0 is the mean-field density matrix of the
unperturbed system. Like for the static mean-field derivation,
we define the expectation valuesfcompare with Eqs.s5d and
s6dg:

ria,jbstd = TrhDstdcjb
† ciaj, s30d

SWsi,td = TrhDstdSW ij. s31d

A is taken to have a general quadratic dependence:

Astd = o
i,j

ab

aia,jbstdcia
† cjb − o

i

AW istd ·SW i . s32d

In terms of these quantities,SH becomes:

SH = − "E
ti

tf

dtF o
i j ,ab

aia,jbstd
dr jb,iastd

dt
− o

i

AW istd ·
dSWsi,td

dt
G

− iE
ti

tf

dt o
ia,jb,kl

hia,jbstdfr jb,klstdakl,iastd

− ajb,klstdrkl,iastdg + "E
ti

tf

dto
i

SWsi,td · fAW istd 3 HW istdg

+ o
ia,jb

aia,jbstfdr jb,iastfd − o
i

AW istfd ·SWsi,tfd,

wherefcompare with Eqs.s8d and s9dg

hia,jbstd = tijdab + di j
sW ab

2
·Fo

k

JikSWsk,td − gmBBW si,tdG ,

s33d

HW istd = gmBBW si,td − o
jab

Jij
sW ab

2
r jb,jastd. s34d

From dSH /daia,jb=0, where daia,jbstfd=0, we obtain the
equation of motion forr jb,iastd:

i"
dr jb,iastd

dt
= o

kl

fhjb,klstdrkl,iastd − r jb,klstdhkl,iastdg,

s35d

which is just the matrix form of the expectedi"dr /dt

=fH ,rg. Similarly, the condition dSH /dAW istd=0, where

dAW istfd=0, leads to the expected equation of motion:

d

dt
SWsi,td = − HW istd 3 SWsi,td. s36d

Equationss35d and s36d describe the general time evolution
for any value of the external field. We are interested in the
linear regime of a perturbationally small external field. As a
result, we need to solve Eqs.s35d ands36d to first order. We
introduce the notationfsee Eqs.s5d and s6dg:

r jb,iastd = dabr ji ,a + dr jb,iastd + ¯ ,

SWsi,td = eWzSMnsid + dSWsi,td + ¯ ,

where we use the convention that all quantities denoteddX

depend linearly on the external magnetic fieldBW si ,td. To first
order, the effective Hamiltonians33d and the effective mag-
netic field s34d becomefEqs.s8d and s9dg:

hia,jbstd = dabhij ,a + di jdhi,abstd + ¯ ,

HW istd = HieWz + dHW istd + ¯ ,

where

dhi,abstd =
sW ab

2
·Fo

k

JikdSWsk,td − gmBBW si,tdG ,

dHW istd = gmBBW si,td − o
jab

Jij
sW ab

2
dr jb,jastd. s37d

We now substitute these expressions into Eqs.s35d and
s36d. The zero ordersstaticd terms cancel out. After a time-
domain Fourier transformationstaking into consideration the
adiabatic termehtd, we obtain

"sv + ihddr jb,iasvd = fdhj ,basvdr ji ,a − dhi,basvdr ji ,bg

+ o
k

fhjk,bdrkb,iasvd − hki,adr jb,kasvdg,

s38d
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isv + ihddSWsi,vd = eWz 3 fHidSWsi,vd − dHW isvdSMnsidg.

s39d

Let us consider first Eq.s39d—after all, we are interested in

the linear changeoidSWsi ,td of the magnetization, related to
the dynamic susceptibility. Equations39d projects into two
different equations for the componentsdSzsi ,vd and
dS+si ,vd=dSxsi ,vd+ idSysi ,vd:

sv + ihddSzsi,vd = 0,

sv − Hi + ihddS+si,vd = − SMnsiddHi
+svd. s40d

The first equation shows that forvÞ0, dSzsi ,vd=0 and
thereforeSMnsid is conservedsthe static casev=0 was inves-
tigated in the previous sectiond. It follows that we can only
define a transverse dynamical susceptibility. To calculate it,
we need the values ofdHi

+svd, which depend ondr j↓,j↑svd
fsee Eq.s37dg. In turn, these depend on alldr j↓,k↑svd com-
ponents fsee Eq.s38dg. Instead of working directly with
these, it is more convenient to introduce

Xnmsvd = o
i j

cm↓
* s jddr j↓,i↑svdcn↑sid, s41d

where cnssid are the self-consistent mean-field eigenfunc-
tions of Eq. s12d shere B=0, since there is no static field
appliedd which are orthonormal and complete. Equations
s40d and s38d sfor b= ↓ ,a=↑d now become:

sv − Hi + ihddS+si,vd = 2SMnsido
nm

Jn↑,m↓sidXnmsvd

− gmBSMnsidB+si,vd, s42d

s"v + En↑ − Em↓ + i"hdXnmsvd

= ffsEn↑d − fsEm↓dg

3Fo
i

Jm↓,n↑siddS+sivd − gmBo
i

cm↓
* sidcn↑sidB+si,vdG ,

s43d

where Jna,mbsid= 1
2o jJijcna

* s jdcmbs jd, the eigenenergiesEns

and the occupation numbersfsEnsd depend on known static
mean-field quantities.fNote: for vÞ0, the chemical poten-
tial m remains unchanged to its static self-consistent mean-
field value, to first order, since from Eq.s38d it follows im-
mediately thats"v+ ihdoi,adria,ia=0g.

TheNd+Nd
2 Eqs.s42d ands43d for alternatively, Eqs.s38d

and s39dg are the generalized random phase approximations
sRPAd equations at finite temperature. In the limitT=0, they
indeed reduce to the RPA equations derived in Ref. 13. They
can be replaced by a system of onlyNd linear equations for
dS+si ,vd by substituting theXnmsvd variables froms43d into
s42d. The final result is:

o
j

MijsvddS+s j ,vd = bisvd, s44d

where

Mijsvd = di jsv − Hi + ihd

− 2SMnsido
n,m

Jn↑,m↓sidJm↓,n↑s jdffsEn↑d − fsEm↓dg
"v + En↑ − Em↓ + i"h

,

s45d

bisvd = − gmBSMnsidFB+si,vd

+ 2o
n,m

Jn↑,m↓sid
fsEn↑d − fsEm↓d

"v + En↑ − Em↓ + i"h

3o
j

cm↓
* s jdcn↑s jdB+s j ,vdG . s46d

V. THE TRANSVERSE DYNAMICAL SUSCEPTIBILITY

The transverse dynamical susceptibility is defined as:

dS+sqW,vd =
nMn

Nd
o

i

e−iqW·RW idS+si,vd =
xsqW,vd

gmB
B+sqW,vd

s47d

for each transverse component of the applied fieldB+si ,vd
=eiqW·RW iB+sqW ,vd /V fsee Eq. s29dg. Note that all bisvd
,B+sqW ,vd fEq. s46dg and thus alldS+si ,vd of Eq. s44d are
indeed proportional toB+sqW ,vd. In other words, for eachqW
and v of interest, we can setB+sqW ,vd=1→B+si ,vd
=eiqW·RW i /V. We can then compute the matrix elementsMijsvd
andbisvd for any finite temperature, and solve Eq.s44d for
dS+si ,vd. With this convention, the transverse susceptibility
per unit volume is

xsqW,vd =
gmBnMn

Nd
oi

exps− iqW ·RW iddS+si,vd.

In the ordered case, this calculation can be carried out
explicitly using Eqs.s16d–s18d. The result is:

xsqW,vd =
sgmBd2nMnSMnf1 − JqWFqWsvdg

"v + J0sh +
1

2
SMnuJqWu2FqWsvd

s48d

where JqW =odWe
iqW·dWJdW fJdW =Jij for which dW =RW i −RW jg. FqWsvd

=1/NdokffsEkW,↓d− fsEkW−qW,↑dg / f"v+ekW−qW −ekW +J0SMng is the
spin-polarized electron-hole “bubble” expected to appear in
RPA-level approximations.

Singularities inxsqW ,vd mark the spectrum"vqW of the
spin-wave modes. In Fig. 5, we plotxsqW ,vd for different qW,
at T=0. The values"vqW of the singularities indeed coincide
with the spin-wave spectra of Ref. 13. At finite-T, xsqW ,vd for
the ordered system still has a single peak, but its energy first
increases, then decreases withT. This behavior is generic, as
shown in Fig. 6. Such non-monotonic behavior is easy to
understand, sincefsee denominator of Eq.s48dg "vqW =J0ushu
− 1

2SMnuJqWu2FqWsvqWd. At low-T, ushu is constant whileSMn de-
creases withT ssee inset of Fig. 1d, and"vqW increases. Once
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the holes start to depolarize,"vqW →0. The exception is the

case qW =0, where one findsxs0W ,vd=sgmBd2nMnSMn/ s"vd.
The v=0 singularity signals the Goldstone boson at allT
,Tc where one can define a transversal susceptibility.

In Fig. 7, we showxsqW ,vd of a single fully disordered
configuration, for four different values ofqW. In contrast to the
ordered casesFig. 5d, here we see multiple peaks inxsqW ,vd,
which appear at the same energies for all values ofqW. The
explanation is that disorder breaks translational invariance
andqW is no longer a good quantum number. As discussed in
Ref. 13, in this case many spin-wave modes become local-
ized and even the extended modes do not carry well-defined
momentum. As a result, an external magnetic fieldB+sqW ,vd
can excite all the spin-waves of energy close tov sconser-
vation of energyd since conservation of momentum no longer
holds. The narrow peaks inxsqW ,vd for variousqW occur at the
same frequencies because they couple to the same spin-wave
modes. The differences are mostly in the amplitude of the
peaks, but even these converge andxsqW ,vd becomes roughly
independent ofqW for moderate to largeqW-values.

To restore invariance to translations, we have to average
over all disorder realizations. The arguments presented above
suggest that the averaged susceptibility is very different from

that of an ordered system even for weak disorder. This is
indeed confirmed in Fig. 8, where we comparexsqW ,vd for
ordered and weakly disordered systemssaveraged over 15
disorder configurationsd. Short wave vectorssqW1d probe long
length-scales, i.e., the extended modes. For weak disorder,
these are not strongly perturbed and the results are fairly
similar. However, at short wavelengthssqW2, qW3, andqW4d, the
response in the disordered system is dominated by the local-
ized modes and leads to a roughlyqW-independent, extremely
broad peak in the dynamic susceptibility. Note that even the
extended modes, which occupy the center of the spectrum,13

contain some short wavelength contributions and thus are
probed by fields with largeqW.

The change is even more drastic if disorder is increased
and more modes become localized. A comparison forxsqW ,vd
for different levels of disorder, averaged over 20 disorder
realizations, are shown in Fig. 9 on a logarithmic scale. The
curves are not yet smooth, meaning that one needs to average
over more samples. However, this is time consuming and the
main features are already apparent. With increased disorder,

FIG. 5. xsqW ,vd for the ordered case. qW1=0, qW2

=sp /15ads2,0,0d andqW3=2qW2. Nd=125,x=0.00924,p=0.1, T=0.

FIG. 6. Spin-wave energies"vqWsTd for qW1=sp /9ads1,1,0d, qW2

=2qW1, andqW3=3qW1; Nd=216,x=0.00924,p=0.1.

FIG. 7. xsqW ,vd for an individual fully disordered configuration,
for qW1=0, qW2=sp /15ads4,0,0d, qW3=sp /15ads8,0,0d, and qW4

=sp /15ads8,8,8d. Nd=125,x=0.00924 andp=0.1, T=0.

FIG. 8. xsqW ,vd for ordered sdashedd and weakly disordered
sfull d systems. T=0, x=0.00924, p=0.10, Nd=125, and qW1

=sp /15ads2,0,0d, qW2=2qW1, qW3=sp /15ads4,4,0d, qW4

=sp /15ads4,4,4d.
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the peaks become broader and shift toward lower energies.
This is consistent with Ref. 13, which found an increased
density of localized spin-waves at lower energies in the more
disordered systems. Curves in Fig. 9 saturate to a finite value
asv→0 because we used a finite value forh. From analyz-
ing the dependence onh, we find34 that xsqW ,vd,1/v as
v→0 for all qW. This is the expected result: if one applies a
static magnetic field transverse to the direction of the mag-
netization, the magnetization axis will rotate to become par-
allel to the applied field. This is a finite change in magneti-
zation no matter how small the applied field is, and the static
transverse susceptibility is infinite. In the ordered system, the
momentum conservation prevents this singularity from being
observed unlessqW =0.

The high-energy tail ofxsqW ,vd is shown in the inset of
Fig. 9, for two different system sizes. TheNd=125/216
curve has been been averaged over 40/20 disorder realiza-
tions. Because of the different system sizes, we have to in-
vestigate different vectors in the Brillouin zone. However, as
already emphasized, herexsqW ,vd is roughly independent of
qW. Indeed, the two curves are very similar, suggesting also
that finite-size effects are negligible. As discussed in Ref. 13,
the high-energy collective modes are spin-waves localized
inside strongly interacting clusterssmagnetic polaronsd. In
particular, the peak at,5 meV is due to clusters made of
two nearest-neighbor Mn.13

On a technical note, we usedh=0.02/0.05J for ordered/
disordered systems. A finiteh implies a finite spin-wave life-
time, due to scattering on other spin-wavessneglected at the
RPA leveld and is necessary to avoid singularities in numeri-
cal computations. Also, all susceptibilities shown are in units
of sgmBd2nMn.

VI. CONCLUSIONS

In previous work, we showed that positional disorder
strongly influences the shape of the magnetization curve.
Due to disorder, some of the charge carriers are localized in

regions of the sample which have a large local Mn concen-
tration. These regionssclusters or polaronsd polarize at much
higher temperatures than an ordered sample does, due to the
much stronger effective coupling between the spins and
holes. Charge carriers delocalized amongst several clusters
help correlate their magnetizations at somewhat lower tem-
peratures, thus leading to the appearance of long-range mag-
netic order. The concave magnetization curves we obtain11

are in qualitative agreement with those obtained by other
studies36 which explicitly take into account the positional
disorder, especially for low charge carrier densities. The
large inhomogeneity induced by the localized states was also
shown to influence the spin-wave spectrum, leading to local-
ized modes at both low and high energies.13 The low-energy
localized spin-waves are, in fact, spin-flips of the weakly
interacting spins, whereas the high-energy localized modes
are spin-flips inside strongly coupled clusters.

Here, we show that the magnetic susceptibilities are also
strongly sensitive to positional disorder. In particular, even
very little disorder leads to a qualitatively different behavior
of xsqW ,vd compared to the ordered case, as shown in Fig. 8:
instead of a Lorentzian centered at a well-defined spin-wave
frequency "vqW, in the disordered case we obtain a very
broad, roughlyqW-independent peak, which extends over the
entire range of the spin-wave spectrum. In the traditional
weakly scattering case, the average over all disorder realiza-
tions leads to a finite lifetime of the excitations, but momen-
tum is still a good quantum number. By contrast, here even
small amounts of disorder induce localization of some of the
charge-carriers,11 which in turns leads to localization of some
of the spin-wave modes.13 Dealing with localization is well
beyond the realm of applicability of weak-scattering argu-
ments. Indeed, as we show here, the susceptibility in the
presence of disorder is not just like that of an ordered system,
but with a finite lifetime; instead, at any givenqW a transversal
field can couple to all the spin-waves in the system, and
thereforexsqW ,vd is finite for all v in the spin-wave spec-
trum. The only ingredient necessary for this dramatic change
in the shape ofxsqW ,vd is the existence of some charge car-
rier localized states. On general grounds, one expects that to
be the case at allx below and near the MIT. This prediction
could be confirmed once neutron scattering experiments are
performed on DMS.

The formalism we developed here can be trivially ex-
tended to more complicated cases, for instance to include
anisotropies due to strain or spin-orbit coupling, non-
collinear self-consistent ground-states or other supplemen-
tary terms such as on-site disorder, electron-electron interac-
tions, etc. It is very unlikely that any such extra terms can
completely inhibit the appearance of localization. As a result,
their addition can only lead to some quantitative changes, but
qualitatively the susceptibilities behave as the ones we de-
rived using this simple impurity-band model.
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FIG. 9. xsqW ,vd for ordered sdashedd and weakly disordered
sfull d systems, forqW =sp /15ads2,0,0d, T=0, x=0.00924,p=0.10,
Nd=125. Inset: the high-energy tail for fully disordered configura-
tions, with qW =sp /15ads4,0,0d sNd=125d and qW =sp /18ads4,0,0d
sNd=125d.
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APPENDIX: STATIC LONGITUDINAL SUSCEPTIBILITY

In this appendix we sketch the derivation of the static
longitudinal susceptibility in the disordered case. Combining
Eqs. s7d and s8d, we find SMn

B sid=BSfbsB−o jJijsh
Bs jddg, swe

setgmB=1 for simplicityd. Then,

xMnsid = UdSMn
B sid
dB

U
B=0

= bF1 − o
j

Jijxhs jdGBS8sbHid,

sA1d

where BS8sxd=d/dxBSsxd. Let us now computexhsid. From
Eq. s9d we find, to first order inB, that

hij ,s
B = hij ,s + di j

s

2Fok

JikxMnskd − 1GB + ¯ sA2d

and thereforefEq. s10dg Kel
B =Kel+BVex+¯, where

Vex= o
i,s

s

2Foj

JijxMns jd − 1Gcis
† cis.

We now use perturbation theory to findEns
B andcns

B sid to first
order inB. In a disordered system all degeneracies are lifted,
and thusEns

B =Ens+Ens
s1dB+¯, cns

B sid=cnssid+cns
s1dsidB+¯,

where

Ens
s1d = kcnsuVexucnsl = so

j

Jns,nss jdxMns jd −
s

2
, sA3d

cns
s1dsid = o

mÞn

kcmsuVexucnsl
Ens − Ems

cmssid

= s o
mÞn,j

Jms,nss jdxMns jd
Ens − Ems

cmssid, sA4d

where Jna,mbsid= 1
2o jJijcna

* s jdcmbs jd. Finally, differentiating
Eq. s14d, we find:

UdmB

dB
U

B=0
=

onsEns
s1dgsEnsd

onsgsEnsd
. sA5d

Sincesh
Bsid= 1

2onssucns
B sidu2fsEns

B d, it follows that

xhsid = o
ns

s

2
Hfcns

s1dsidcns
* sid + c.c.gfsEnsd

+ ucnssidu2bSEns
s1d −

dm

dH
DgsEnsdJ . sA6d

Substituting the expressions forEns
s1d, cns

s1dsid and
usdmB/dBduB=0 from Eqs.sA3d–sA5d, we obtain:

xhsid = o
j

AijxMns jd + Bi , sA7d

where

Aij =
1

2o
ns 3 o

mÞn

fsEnsd
Jms,nss jdcns

* sidcmssid + c.c.

Ems − Ens

+ bucnssidu2gsEnsd1Jns,nss jd

− s

o
ma

aJma,mas jdgsEmad

o
ma

gsEmad 24
and

Bi =
b

4o
ns

ucnssidu2gsEnsd3s

o
ma

agsEmad

o
ma

gsEmad
− 14 .

Here it is worth mentioning that in Eq.sA7d, the dominant
term isS jAijxMns jd which is coming from the indirect effect
of the external field on the Mn spins.

The set of Eqs.sA1d and sA7d relatexMnsid and xhsid to
one another. The equations for determiningxMnsid at each
site i are then:

o
j

fdi j + RijgxMns jd = bs1 − PidBS8sbHid, sA8d

whereRij =bBS8sbHidokJikAkj andPi =S jJijBj. Once we know
xMnsid, the values ofxhsid can be obtained fromsA7d. The
total susceptibilities per unit volume are thenxMn
=nMnsgmBd2SixMnsid /Nd andxh=nMnsgmBd2Sixhsid /Nd.
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