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We use the Kubo-Landauer formalism to compute the longitudinal(two-terminal) conductance of a two-
dimensional electron system placed in a strong perpendicular magnetic field and subjected to periodic modu-
lations and/or disorder potentials. The scattering problem is recast as a set of inhomogeneous, coupled linear
equations, allowing us to find the transmission probabilities from a finite-size system computation. The results
we present are exact for noninteracting electrons within a spin-polarized lowest Landau level: the effects of the
disorder and the periodic modulation are fully accounted for. When necessary, Landau level mixing can also be
incorporated straightforwardly into the same formalism. In particular, we focus on the interplay between the
effects of the periodic modulation and those of the disorder, when the later is dominant. This appears to be the
relevant regime to understand recent experiments[S. Melinteet al., Phys. Rev. Lett.92, 036802(2004)], and
our numerical results are in qualitative agreement with these experimental results. The numerical techniques
we develop can be generalized straightforwardly to many-terminal geometries, as well as other multichannel
scattering problems.
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I. INTRODUCTION

A significant amount of research has been devoted to the
study of the effects of a periodic potential on a two-
dimensional electron system(2DES) placed in large perpen-
dicular magnetic fields. On the theory side, the so-called
Hofstadter butterfly1—the fractal energy spectrum associated
with the periodically modulated 2DES, in the absence of
disorder—had been predicted and studied even before Hofs-
tadter’s seminal paper.2–5 Later, the transport properties of
such systems were studied by Středa, MacDonald, and
others.6–9 After the discovery of the integer quantum hall
effect (IQHE),10 experimental results started to become
available.11,12 Pfannkuche and Gerhardts put forward a de-
tailed theoretical treatment of transport properties, including
disorder effects.13 Their theory is analogous to the self-
consistent Born approximation(SCBA),14 and it suggests
that the splitting of one single Landau band into several sub-
bands by the periodic modulation can in principle be ob-
served from measurements of the longitudinal conductance
sxx. The effect of disorder on the fractal structure was found
to be similar to its effect on the Landau level(LL ) structure
(responsible for the appearance of IQHE): subbands in each
Landau level are broadened by disorder, but energy gaps or
pseudogaps are still open if the disorder is small compared to
the amplitude of the periodic potential. As the Fermi energy
sweeps through a subband, the longitudinal conductance has
a maximum and the Hall conductance shows a staircaselike
jump if the Chern numbers in the neighboring gaps are dif-
ferent. Thus, the Hall conductance is expected to follow a
nontrivial sequence15 of integer multiples ofe2/h, whereas
the longitudinal conductance has a series of peaks and val-
leys as the Fermi level moves through different subbands and
gaps.

A recent experiment16 on a high-quality, periodically
modulated 2DES shows interesting features in the longitudi-
nal conductance, although the periodic potential is too weak
to produce well-separated subbands(or, equivalently, disor-
der is strong enough to fill in all subgaps in the fractal struc-
ture of each Landau level). Even in this case, the longitudinal
conductance exhibits reproducible oscillatory features in the
presence of the weak periodic modulation, instead of the
single smooth Lorentz peak of the unpatterned samples. To
our knowledge, this regime of strong disorder and weak pe-
riodic modulation has not been investigated in the literature,
and therefore these recent experimental results do require
theoretical interpretation. In recent work,17 we analyzed the
spectrum and nature(localized or extended) of electronic
states in such a regime, and showed that simple arguments
based on these results provide a qualitative explanation of
the experimental observations.

In this study we present a numerical calculation of the
longitudinal conductance based on models appropriate for
the type of samples used in the experiment of Ref. 16. Our
model includes a disorder potential and a periodic potential
with either square or triangular symmetry, with arbitrary
relative strengths. Using experimentally relevant
parameters,18 here we assume that these potentials are small
enough that Landau level mixing is negligible. Unlike previ-
ous theoretical studies dealing with disorder effects in QHE,
which performed average over disorder at the onset of the
calculation so that all computed response functions are
disorder-averaged, we calculate the longitudinal conductance
from first principles for agiven disorder realization. This is
necessary because the features observed in this experiment
are sample-specific.16 Our computational method, which is
based on the Kubo-Landauer formalism,19 is in principle
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valid for finite systems with any type of disorder and/or pe-
riodic potentials, although computational times vary with the
sample size and degree of sparseness of the Hamiltonian.
Regrettably, we have no detailed microscopic knowledge of
the disorder present in these samples and the details regard-
ing their connections to the external leads; this prevents us
from performing meaningful quantitative comparisons with
the experiment. However, the results we obtain for different
realizations of disorder allow us to qualitatively explain the
physics responsible for the new features seen in the longitu-
dinal conductance, and to reinforce the arguments offered in
our previous work.17

The paper is organized as follows: in Sec. II we present
the method used for the calculation and the relevant theoret-
ical considerations. The numerical results are presented in
Sec. III, while Sec. IV contains our conclusions and discus-
sions.

II. THE NUMERICAL METHOD: KUBO-LANDAUER
FORMALISM

A. The model

We consider a two-dimensional Hall sample of rectangu-
lar shape, of sizeLx3Ly, with cyclic boundary conditions in
the y direction and open boundary condition in thex direc-
tion, characteristic of a two-terminal geometry. Typical sizes
we consider are on the order of 3mm33mm. A large mag-
netic field B of up to 10 T is applied in thez direction,
perpendicular to the 2DES. A rough estimate shows that the
degeneracyN of each Landau level(LL ) is of order 104,
defining the size of the matrix to be diagonalized to be 104

3104. For such large-size matrices direct diagonalization is
time-consuming; therefore we look for alternative ap-
proaches with a better scaling behavior for large systems. On
the other hand, the sample size is still small compared to that
of the experimental sample, which is about 20mm
320 mm. As a result, care must be taken in interpreting the
numerical results. In principle it is possible to increase the
values ofLx and Ly; however, serious numerical difficulties
arise when the system size is much larger than the ones we
consider(these issues are discussed in Sec. II C).

The Hamiltonian of the noninteracting electrons confined
in the 2DES is

Hs =
1

2m
Sp +

e

c
AD2

−
1

2
gmBsW ·B + Vdsx,yd + Vpsx,yd,

whereVd andVp are the disorder and the periodic potentials,
respectively. We use the Landau gaugeA =s0,Bx,0d
throughout this paper, and the complete set of eigenfunctions
for the nth Landau level

kr un,X,sl =
e−isXy/l2d

ÎLy

e−s1/2l2dsx − Xd2
HnSx − X

l
D

Î2nn ! Îpl
xs, s1d

wherel =Î"c/eB is the magnetic length andHnsxd are Her-
mite polynomials. In the rest of the paper, we concentrate on
one of the spin-polarized lowest Landau levels(LLL ); there-

fore we setn=0. This is justified because in the experiment
both the disorder and the periodic potentials are estimated to
be much smaller than the cyclotron energy"v and the Zee-
man splitting, so that Landau level mixing can be safely
ignored.16–18 Imposing cyclic boundary condition in they
direction leads to the restrictionXj = j2pl2/Ly,j =1, . . . ,N. Xj;
the guiding center, characterizes the location at which indi-
vidual basis states are centered along thex axis [see Eq.(1)].
SinceXj can vary between 0 andLx, the degeneracy of each
spin-polarized LLL isN=LxLy/ s2pl2d.

Let us definecj
† to be the creation operator for an electron

in the LLL: cj
†u0l= uXjl (the indexesn=0 ands will be sup-

pressed from now on). In the absence of Landau level mix-
ing, the HamiltonianHs projected on the subspace of the
spin-polarized LLL becomes

Hs =
"vc − gmBBs

2 o
j=1

N

cj
†cj + o

i=1

N

o
j=1

N

kXiuVd + VpuXjlci
†cj .

s2d

This looks like a one-dimensional(1D) hopping Hamil-
tonian, and this is a very appropriate comparison if one keeps
in mind that the stateuXil is localized within a distancel of
the positionsXi = i2pl2/Ly.

In order to calculate the matrix elements for the disorder
and the periodic potentials, we use the identity

kXiueiq·r uXjl = dXi,Xj−qyl2e
i
2

qxsXi+Xjde−s1/ 2dQ, s3d

whereQ= 1
2l2sqx

2+qy
2d. (The generalization for higher Landau

levels and/or Landau level mixing is straightforward; see for
instance Ref. 13). Let us now consider each type of potential
separately.

The periodic potential can be expanded as

Vpsr d = o
g

Vge
ir ·g, s4d

whereVg=V−g
* becauseVsr d is real, andhgj are the reciprocal

vectors associated with the Bravais lattice. For a square po-
tential, we useVg=A for all four shortest reciprocal vectors
g=s±2p /a,0d, s0, ±2p /ad, wherea is lattice constant, and
zero otherwise. Higher order components can also be in-
cluded in the same formalism, but result in longer computa-
tional time and no qualitative changes. Similarly, for a trian-
gular potential we defineVg=−A for all six shortest
reciprocal vectorsg=4p /Î3as±1,0d, 2p /Î3as±1, ±Î3d, and
zero otherwise. The minus sign appears here in order to have
the minima on the sites of the triangular lattice, as explained
in Ref. 17. In both cases the projection ofg on they axis is
either 0 or ±2p /a. This particular orientation allows us to
treat these two potentials similarly, since it follows that both
types of periodic potentials only couple a stateuXjl to itself
and touXj ±2pl2/al [see Eq.(3)]. SinceuXj ±2pl2/al must be
in the basis considered, 2pl2/a must be an integer multiple
of 2pl2/Ly, i.e., Ly is an integer multiple ofa. This is con-
sistent with the periodic boundary conditions along they
axis.

We introduce the integerNc=Ly/a. From the previous dis-
cussion, it follows that the periodic potential couples a state
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Xj only to itself, and to the statesXj±Nc
. As a result, we can

divide the total N states of the LLL intoNc subclasses
(henceforth called the conduction channels) using the unique
decompositionj = iNc+n, where i .0 is an integer, and 1
ønøNc. The periodic potential couples only states in the
same channeln; each channel thus connects the left and right
edges, and can carry longitudinal currents(hence the name
“conduction channels”). For simplicity, we require that each
channel has the same overall number of states, i.e., the total
degeneracyN is an integer multiple of the number of chan-
nelsNc, N=pNc. (This condition can be easily relaxed.) This
imposes a constraintLx=ps2pl2d /a on the values allowed for
Lx. For the typical sample sizes we consider, the constraints
on Lx andLy require only minimal adjustments. For instance,
we use a=39 nm,16 and therefore a sample withLx<Ly
<3 mm has aroundNc=70 channels, with aroundp=150
states per channel. For different values of the magnetic field
(different l values) the lengthLx can be kept fixed within a
few nm by slightly adjusting the value ofp.

For later convenience, we relabel the creation operators
for states in the LLL ascj

†→ci,n
† , where j = iNc+n, 1øn

øNc. Thus,ci,n
† creates an electron in the LLL, in the 1ø i

øp state of thenth channel, centered atXiNc+n. From Eqs.(3)
and(4) it follows that the periodic potential projected on the
spin-polarized LLL takes the simple form

V̂p = o
n=1

Nc Fo
i=1

p

ei,nci,n
† ci,n + o

i=1

p−1

sti,nci,n
† ci+1,n + H.c.dG , s5d

where for the square potential we obtain

ei,n = 2Ae−sp/2dsf0/fd cosF2p
f0

f
Si +

n

Nc
DG , s6ad

ti,n = 2Ae−sp/2dsf0/fd, s6bd

and for the triangular potential, we have

ei,n = − 2Ae−sp/Î3dsf0/fd cosF2p
f0

f
Si +

n

Nc
DG , s7ad

ti,n = − 2Ae−sp/Î3dsf0/fd cosF2p
f0

f
Si +

n

Nc
+

1

2
DG . s7bd

From Eqs.(6) and (7), it is apparent that the parameter
controlling the band structure(in the absence of disorder) is
the ratiof /f0=A / s2pl2d, wheref0=hc/e is the elementary
flux, andf=BA is the magnetic flux through the unit cell of
the periodic potential.A=a2 or a2Î3/2 for square or trian-
gular potentials, respectively. In particular, iff /f0=q/p,
whereq and p are mutually prime integers, the original LL
splits intoq subbands.1,20

In the absence of disorder, there is no mixing between
different channels[see Eq.(5)], and the longitudinal current
is just a sum of the currents carried across the sample
through the individual conduction channels. However, disor-
der introduces scattering between different channels. First-
principles modeling of the disorder is a very difficult and
numerically intensive problem.21–23As a result, we generate
the disorder potential using two simple phenomenological

models described in detail in Ref. 17. One is a simple addi-
tion of random Gaussians, while the second model attempts
to estimate the proper energy scale from considerations of
the Coulomb attraction between electrons and their donors.
Both models generate smooth disorder potentials, i.e., with a
length scale of more than 100 nm, which is large compared
with the typical magnetic lengthl (l ,8 nm whenB,10 T).
Such long-wavelength disorder is believed to be dominant in
high-quality samples, as the one studied in Ref. 16. The stan-
dard deviation is estimated to be 2 to 3 meV, much smaller
than the typical cyclotron energy.17,18

We Fourier decompose the disorder potential, and use Eq.
(3) to compute its matrix elements. The periodic boundary
condition in they direction implies that the allowed Fourier
components areqy=2pm/Ly, which introduces matrix ele-
ments between any pair of statesuXil and uXi±ml, wherem is
an arbitrary integer. It follows that different conduction chan-
nels are now coupled by disorder. The smallq Fourier com-
ponents of the disorder potential are very important, since
they describe the long wavelength features of the disorder
potential. On the other hand, components with largeq de-
scribe short wavelength features of the disorder, which are
not well captured by our simple phenomenological models.
We therefore use a cutoff value ofumu,36 for Fourier com-
ponents of the disorder potential. This value is large enough
to allow basically exact reconstruction of the disorder poten-
tial (see the relevant discussion in Ref. 17) but also small
enough so that the Hamiltonian matrix is still very sparse.
With this cutoff and in the absence of LL mixing, the disor-
der potential has the general form

Vd = o
n,n8=1

Nc

o
i,i8=1

p

vi,n;i8,n8ci,n
† ci8,n8, s8d

wherevi,n;i8,n8 are nonvanishing only for states within a dis-
tanceusi − i8dNc+sn−n8duø36 of each other.

From Eqs.(2), (5), and(8) it follows that the total Hamil-
tonian for the sample is

Hs = o
n=1

Nc Fo
i=1

p

ei,nci,n
† ci,n + o

i=1

p−1

sti,nci,n
† ci+1,n + H.c.dG

+ o
n,n8=1

Nc

o
i,i8=1

p

vi,n;i8,n8ci,n
† ci8,n8, s9d

where the overall energy shifts"vc−gmBBsd /2 associated
with the LLL is absorbed in a redefined chemical potential.
This Hamiltonian can be efficiently generated and stored as a
column compressed sparse matrix. In principle, we can di-
rectly compute the eigenvalues and eigenfunctions of this
Hamiltonian, and calculate the corresponding Thouless num-
ber, characterizing its longitudinal conductance.24 However,
this is numerically very time-consuming. Instead, we use the
Kubo-Landauer19,25–29 formula for the longitudinal conduc-
tance(details in Sec. II B) which requires the computation of
various transmission coefficients through the sample. The
main idea is to link the longitudinal conductance to the total
probability that an electron injected into the sample atx=0
arrives atx=Lx, or vice versa.
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In order to compute these transmission coefficients, it is
necessary to connect the sample to external metallic leads
which allow us to inject(extract) electrons into(out of) the
sample. We model each external lead as a collection of inde-
pendent, semi-infinite one-dimensional(1D) tight-binding
chains, as illustrated in Fig. 1. In reality, the leads have, of
course, higher dimensionality than one. One way to simulate
this would be to add bonds(hopping) between the various
1D chains. We do not add these extra bonds for the following
reason: the eigenstates of any lead with complex geometry in
the transverse direction have the general structureEk,n
=enskd+un. Here,k is a quasimomentum associated with the
longitudinal direction, a good quantum number given the
translational invariance along this direction, andn is some
discrete set of quantum numbers characterizing the discrete
transverse modes supported by the particular geometry of the
lead cross section. In other words, any perfectly metallic
higher-dimensional lead reduces to a collection of indepen-
dent 1D leads(or channels), whose dispersions can be simu-
lated by an appropriate choice of 1D tight-binding chains.30

The question, then, is how many channels are in each lead,
and how are they connected to the states in the sample?
Since we have no detailed knowledge regarding the leads,
and since one hopes that the main features of the longitudinal
conductance will come from the sample itself, not the details
of the lead modeling, we choose the following very simple
solution: we assume that both the left- and right-side leads
have preciselyNc channels, and each one of these channels
couples identically to one of the conduction channels inside
the sample. This is the simplest model that satisfies several
criteria: (i) the leads are perfect conductors;(ii ) the conduc-
tance of the leads is not less than the maximum conductance
of the sample;31 (iii ) each conduction channel in the sample
has equal coupling to the leads;(iv) transmission and reflec-
tion coefficients can be easily defined and computed. How-
ever, any other more complex model for the connection of

the sample to the external leads can be investigated with the
formalism we develop here.

Let us index withn=1,2, . . . ,Nc the Nc independent 1D
channels of each semi-infinite lead, and letci,n

† be the cre-
ation operator for an electron at sitei of thenth 1D chain. We
distinguish between the left and right leads by requiring that
i ø0 for the left channels, respectively,i .p for the right
channels. This notation also avoids any confusion between
these operators, and the operators creating electrons in the
LLL states inside the sample, which correspond to 1ø i øp.
The spin index is suppressed everywhere, since in the ab-
sence of magnetic impurities electrons with different spins
travel independently.

The Hamiltonian describing the external leads and their
coupling to the sample is then

HL = o
n=1

Nc S o
i=−`

−1

+ o
i=p+1

` Df− tsci,n
† ci+1,n + ci+1,nci,n

† d + e0ci,n
† ci,ng

− to
n=1

Nc

sc0,n
† c1,n + cp,n

† cp+1,n + H.c.d.

Here, t ande0 are adjustable parameters, whose selection is
discussed in Sec. II C. Our model of the leads is thus similar
to those employed for the study of molecular
conductance,32–34 where tight-binding chains are used to
simulate the gold contacts. In fact, we treat our Hall sample
as a big molecule wired to contacts.

The total Hamiltonian for the sample and leads reads

H = o
n=1

Nc

o
i=−`

`

fsti,nci,n
† ci+1,n + H.c.d + ei,nci,n

† ci,ng

+ o
i,i8=1

p

o
n,n8=1

Nc

vi,n;i8,n8ci,n
† ci8,n8, s10d

whereti,n=−t andei,n=e0 for all i ø0 or i ùp (i.e., along the
semi-infinite leads) whereas inside the sample these param-
eters are given by Eqs.(6) and (7).

B. The longitudinal conductance

We calculate the longitudinal conductance using the
Landauer-Buttiker formula:19,25–29

sxxsEFd =
e2

h
Trst†td =

e2

h
o
n,m

utnmsEFdu2, s11d

whereEF is the Fermi energy, andtnmsEFd is the transmission
amplitude of an electron with energyEF which is injected
into the sample through thenth channel of the left-side lead,
to emerge from the sample into themth channel of the right-
side lead. The question is how to efficiently calculate these
transmission coefficients.

The essential difficulty for the numerical calculation is to
contain the semi-infinite leads in a finite-size scheme of com-
putation with appropriate boundary conditions. Our solution
to this problem allows us to find the transmission amplitudes
in a very elegant and economic way.

FIG. 1. A sketch of the model geometry of the Hall sample with
periodic boundary conditions in they-direction, and its contact to
leads on bothx-axis ends. The lower diagram shows a detailed view
of the left edge. The firstNc eigenstatesuX1l , uX2l . . . ,uXNc

l near the
edge belong to different conduction channels. We assume that each
such conduction channel is attached to external leads at both edges
of the sample.
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To illustrate our solution, assume first, for simplicity, that
Nc=1. In other words, each lead is made of a single tight-
binding chain, and the sample itself has onlyp states. Letufl
be an eigenstate of energyE of our Hamiltonian,o jHijfs jd
=Efsid, wherefsid=ki ufl. With the convention we used in
Eq. (10), left lead, right lead, and the sample correspond to
i ø0, i .p, and 1ø i øp, respectively. For a scattering solu-
tion, we must havefsnd=eikn+re−ikn for nø0, wherer is the
reflection coefficient, andfsnd= teikn for n.p, wheret is the
(desired) transmission coefficient. The momentumk is in di-
mensionless units and varies withinf−p ,pd.

Consider now the solution of the following inhomoge-
neous system of linear equations:

1
e−ik − 1 0 0 ¯ 0 0 0 0

t E − e0 t 0 ¯ 0 0 0 0

0 t E − e0 t ¯ 0 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 0 0 ¯ t E − e0 t 0

0 0 0 0 ¯ 0 t E − e0 t

0 0 0 0 ¯ 0 0 − 1 e−ik

2
31

fs− M + 1d
fs− M + 2d
fs− M + 3d

¯

fsp + M − 2d
fsp + M − 1d

fsp + Md

2 =1
− e−iksM−2d

− te−iksM−1d

0

¯

0

0

0

2 , s12d

where sites −M +1,−M +2, . . . ,0 are on the left-side lead
and sitesp+1, . . . ,p+M are on the right-side lead. Here,E
=e0−2t cosk is the corresponding energy of an electron with
momentumk.0 which propagates along the leads. The ma-
trix in this equation is simply the matrixki uE−Hu jl, dressed
by the first and last rows. Along the lead sites this matrix has
the simple form of a hopping Hamiltonian, whereas inside
the sample, i.e., for sites between 1 andp, it contains the full
Hamiltonian of the sample. One can now check, using itera-
tions and starting from site −M +1, that the general solution
on the left-side lead is of the formfsnd=eikn+fs−M
+1de−iksM−1+nd for all −M +1,n,0. In other words, it con-
sists of an incoming wave with unit amplitude, and an out-
going wave with amplitudeufs−M +1du. On the other hand,
starting from the sitep+M, one finds that the general solu-
tion on the right-side lead is of out-going typefsnd=fsM
+pdeiksn−M−pd for all n.p. Since the matrix is nonsingular,
this inhomogeneous system has a unique solution which
fixes the values offs−M +1d andfsM +pd. As a result, we
can identify directly the reflection coefficient for the given
energyE asrsEd=fs−M +1d and the transmission coefficient
tsEd=fsp+Md.

This approach has a number of considerable advantages.
First of all, the number of sitesM kept on the left- and
right-side leads is inconsequential, as long as it is greater
than 2; the solution obtained through the matching of the

wave function inside the sample is precisely the same as for
semi-infinite leads. In our simulations, we keep five sites for
each 1D channelsM =5d. Second, the equivalence of the so-
lution of this finite system with that of a system with semi-
infinite leads also implies that while we work numerically
with finite matrices, we have a continuous energy spectrum
Eskd=e0−2t cosk for the electrons injected into the leads
(generally, finite systems have a discrete spectrum). Third,
there is no need to introduce an infinitesimally small param-
eter i0 to select the correct scattering solution, as is the case
in transfer matrix aproaches.35 Choosing the correct value for
the small imaginary part is always difficult in numerical cal-
culations and has to be done very carefully. With our ap-
proach, we take the limith→0 trivially and obtain the exact
numerical solution. Finally, one can use various entries on
the right-hand side of the inhomogeneous system. In our cal-
culations, we actually use a more efficient formulation, in
which all coefficients on the right-hand side, except the third
entry, are zero, i.e., the equation issE−Hdf=B, whereBT

=s0,0,1,0,0, . . .d. One can verify that this choice injects on
the left lead, to the right of the third site, an incoming wave
with amplitude 1/s2it sinkd plus an outgoing wave, meaning
that in this case,tsEd=2it sink·fsM +pd.

The generalization to the case withNc left and Nc right
channels is straightforward. As already stated, we keep only
five sites for each of the left- and right-side 1D channels,
implying that −4ø i øp+5. As a result the total dimension
of the matrix A=E−H is NA=pNc+5323Nc, whereNcp
=N is the total number of states of the sample in the LLL.
The matrix elements ofA equal the values ofki ,nuE
−Hu j ,ml for all i ,n and j ,m values[see Eq.(10)], except for
k−4,nuAu−4,nl=kp+5,nuAup+5,nl=exps−ikd and k−4,nuAu
−3,nl=kp+4,nuAup+5,nl=−1 for all n=1, . . . ,Nc. This en-
sures that proper outgoing solutions are selected for each
channel.

We then solven0=1, . . . ,Nc systems of inhomogeneous
equations of the typeo j ,mAin,jmXn0

s j ,md=Bn0
si ,nd, where

Bn0
si ,nd=dsn−n0ddsi +2d, i.e., corresponds to an electron in-

jected into then0th left-side channel. As discussed, the trans-
mission coefficients are thentn0,m=2it sinkXn0

sp+5,md giv-
ing the total longitudinal conductance at energyE=e0
−2t cosk to be

sxxsEd =
e2

h
4t2 sin2 ko

n0=1

Nc

o
m=1

Nc

uXn0
sp + 5,mdu2. s13d

Despite having a very large dimension, the matrixA is
very sparse, and theNc similar sets of linear equationsAX
=B for a given energyE can be solved very efficiently using
the SUPERLU packages.36 This approach is much faster than
direct diagonalization and is particularly well suited for par-
allelization; as a result, a dense grid of energy valuesE can
be investigated. We used a cluster of 25 CPUs to scan dif-
ferent energy values in parallel. A typical run lasts for about
10 h and generates 5000 data points ofsxxsEd.

C. A toy model

In this section we analyze the longitudinal conductance
for a simple toy model. This allows us to understand the
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general effect of the lead parameterst ande0 on longitudinal
conductancesxxsEd. As shown in the following section, the
shape of the curvessxxsEd, especially for small or no disor-
der, is rather surprising at first sight. It consists of large num-
bers of very thin resonant peaks superimposed over a broad
peak. These sharp resonance peaks are not numerical errors,
and do not signal singularities of the type expected in
Green’s functions.17 (In fact, since we deal with an infinite
system, one expects a continuous cut, not individual singu-
larities, in the Green’s functions.) Zooming in the energy
scale shows that these peaks are features whose width scales
like 1/L, whereL is the size of system, i.e., the region be-
tween the leads. These resonance peaks have the same origin
as the peaks in the differential conductance of molecules
attached to metal contacts,32–34 i.e., they correspond to reso-
nant tunneling through the system. However, our 2DES is
different from a molecule in that it contains about 104 inter-
nal states, hence in a small energy interval there can be a
large number of such resonance peaks.

To clarify the origin of these resonance peaks, we inves-
tigate ann-bond tight-binding chain with hoppingt2 sand-
wiched between two semi-infinite tight-binding chains with
hoppingt1 (on-site energies are all zero for simplicity). Fig-
ure 2 shows an illustration of the toy model.(This toy model
also provides a check for our numerical scheme, both in the
single and the multiple-channel cases.)

We assumet2, t1; transmission is then vanishing for
uEu.2t2, since the middle section(the “sample”) does not
support propagating modes at those energies. The reflection
and transmission coefficients on the two interfaces(dashed
lines in Fig. 2) can be readily computed, and the total trans-
mission rate is calculated either by summing up multiply
reflected waves, as for a Fabry-Perot interferometer, or by
solving the Schrödinger’s equation directly. The final result
is summarized below for a given energyE:

E = − 2t1 cossk1d = − 2t2 cossk2d,

x = t1 sinsk1d, y = t2 sinsk2d,

a = x + y, b = x − y,

TsEd =
16x2y2

a4 + b4 − 2a2b2 coss2nk2d
. s14d

We can see from the preceding equation thatTsEd=1 for
all energies for which coss2nk2d=1, leading to the appear-
ance of a series of thin peaks at the corresponding energies.
The width of each resonance peak is roughly 1/n of the
bandwidth, i.e., it is inversely proportional to the system

size, as indeed observed in Fig. 3. The minima between
neighboring peaks correspond toTsEd=4x2y2/ sx2+y2d2, and
are located at energies for which coss2nk2d=−1. Thus, the
larger the system, the more and the sharper such resonance
peaks appear.

The decrease inTsEd from its maximum value of 1 is
purely the resistance of the contacts, since there is no disor-
der inside this “sample.” This contact resistance comes from
the mismatcht1Þ t2. [If t1= t2→b=0→TsEd=1 at all ener-
gies.] In fact, if the “sample” strip is connected to left and
right leads in an infinitely smooth manner, the conductance
simply becomese2/h within the overlap of the spectrum of
the sample with the spectrum of the leads. The toy model we
introduced above offers a good analogy to the continuous
ballistic channel previously studied in Ref. 37, where the
conductance through a short and narrow ballistic channel is
calculated exactly. The oscillatory behavior is attributed to
the “longitudinal resonant electron states, the electronic
quantum analog of the acoustic resonant modes of an open
organ pipe.”

In our calculation, we want to concentrate on the physics
inside the sample, therefore we want to minimize the addi-
tional resistance from the contacts, which introduces these
extra features in the conductance when disorder inside the
sample is small. As a result, we have to adjust the value oft
so that it is close to the magnitude of the matrix elementsti,n
of Hs. On the other hand, the Fermi energy in the calculation
is always required to be within the spectrum of the leads,
EFP fe0−2t ,e0+2tg, so that the leads behave like perfect
conductors. To satisfy this condition without using a larget
value (which leads to impedance mismatch), we set the on-
site energye0 at EF in each round of calculation, meaning
that the leads have a “floating” spectrum. The floating spec-
trum is certainly not present in any experiments. We use it as
a simple way to save computational power. We have verified
that such “floating” leads do behave as perfect metals in the
simulation, and that small variations of the parameterse0 and
t do not change the main features of the numerical results.

FIG. 2. A sketch of the toy model. The “sample” withn=5t2
bonds is connected to semi-infinite leads witht1 bonds.

FIG. 3. Transmission rate for the toy model corresponding to
n=20, t1=1 andt2=0.5 and 0.3, respectively.TsEd is a symmetric
function, so only the intervalE.0 is shown.
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The appearance of the large number of resonance peaks
also illustrates the evolution from small quantum mechanical
systems to large macroscopic systems. Quantum mechanical
quantities likessEFd become rapidly oscillating functions as
the size of the system is increased. If the energy scale for
such oscillations is smaller than the resolution of the mea-
surement or the temperature smearing, the measurable physi-
cal quantity is a certain average of this rapidly changing
function within the characteristic energy interval. Numerical
microscopic calculations become inefficient for large sys-
tems because one has to sample very many energy values to
obtain a good picture of the rapidly changing function. In our
case, we provide curves more suitable for comparison with
the experiment, by convoluting the zero-temperature conduc-
tance with a sampling function

s̄xxsm,V,Td =E
−`

+`

rTsm,V,edsxxsedde, s15ad

rTsm,V,ed =
1

V
F 1

ese−m−V/2d/kT + 1
−

1

ese−m+V/2d/kT + 1
G .

s15bd

Here,s̄ is the measured conductance at chemical potentialm,
temperatureT, and voltage difference between the two edges
of the sampleV (estimated to be of order 10−6 eV). This
formula is appropriate for noninteracting electrons. One can
verify that at zero temperature,

r0sm,V,ed =
1

V
fQsm + V/2 − ed − Qsm − V/2 − edg.

When V→0, rT→−dnEF
sT,hd /dh, where nEF

sT,hd
=hexpfsh−EFd /kTg+1j−1 is the Fermi-Dirac distribution.

III. NUMERICAL RESULTS

In this section we present representative results from our
calculations. We analyze the interplay between disorder and
periodic potentials of various strengths, starting with the case
of no disorder(pure periodic potential).

In Fig. 4 the longitudinal conductance of a small sample
with only square periodic potential is shown. There are only
1860 electronic states inside the sample, distributed over 30
channels and the magnetic field is such thatf /f0=q/p=2.
Because there is no disorder, different conduction channels
do not couple to each other, and each of them is similar to
the simple toy model discussed in the preceding section. The
spectrum of each conduction channel(except one) splits into
two subbands as expected for the Hofstadter butterfly corre-
sponding toq=2. The channel that does not split corresponds
to n=15 in Eq. (6), where the cosine vanishes andei,n=0
everywhere. Each channel contributes to the conductance for
energies inside its own spectrum, and thus we see many
sharp resonant peaks on top of a fairly broad conductance
curve. As already discussed, the sharp peaks are due to con-
tact resistance, not the sample itself. The underlying broad
peaks, on the other hand, are a signature of the sample be-
havior. They are simply a reflection of the density of states

inside the Hofstadter butterfly in the clean model. In the
vicinity of E=0, we see thatsxx is bounded by a series of
staircases, each of which marks the edge of the spectrum of
a different conduction channel. Thus, the curve forT=0 (thin
black line) is understood as a superposition of many 1D
chains similar to the toy model shown in Fig. 3. The two
solid curves in Fig. 4 are the “measured”s̄xx given by Eq.
(15), corresponding toV=1 meV andT=0.1 and 50 mK. At
large temperatures, the resonance peaks are smeared and
only the two broad peaks are visible, whereas for small tem-
perature more detailed features are revealed.

Figure 5 showssxx of a sample with only triangular peri-
odic potential atq/p=3. From the semilogarithmic inset, we
can see gaps between theq=3 expected adjacent subbands.
Since the triangular potential is not particle-hole symmetric
(unlike the square potential) the subbands are no longer sym-
metrically placed with respect toE=0. In the smaller gap,

FIG. 4. Longitudinal conductance of a small sample with square
periodic potential but no disorder potential.f /f0=q/p=2, B
=5.44 T, Lx=1.248mm, Ly=1.17mm, corresponding to a total of
1860 states in the lowest Landau level.

FIG. 5. Longitudinal conductance for pure triangular periodic
potential with A=0.01 meV (no disorder) and q/p=3 sB9.42 Td.
Lx=2.004mm, Ly=2.028mm. This sample has 9256 states in the
LLL, divided into 52 channels. The inset shows a semilogarithmic
plot of the original data set.
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the conductance is not vanishing, although it is over 40 or-
ders of magnitude smaller than inside the band. This is a
consequence of the fact that the sample is finite and tunnel-
ing across it is possible even in the gap region, although with
extremely low probability.

Figure 6 shows the calculated longitudinal conductance of
a sample with triangular potential and very small disorder, at
q/p=7/3. In theabsence of disorder, we expectq=7 sub-
bands to appear asymmetrically in the spectrum. The small
disorder closes some of the gaps, and only three main sub-
bands are distinguishable insxx. (Each of the three visible
subbands is actually a collection of 2 or 3 of the subbands
expected in the absence of disorder). The three curves are the
same data measured at different temperature and different
voltage drops across the sample. As expected, at low tem-
perature and low voltage drop, the measured conductance
reveals a variety of resonance peaks on top of each broad
conductance feature. From the semilogarithmic plot in the
inset, one can see the gap between the left subband and cen-
tral subband is wide open, whereas the smaller gap between
the center and right subbands is partially filled in by disorder
(the value ofsxx inside the gap is of order 10−5, as opposed
to 10−40 in the absence of disorder, see Fig. 5). This proves
that narrow subbands are more easily affected and therefore
more likely to be closed by even small disorder, as one
would expect on general grounds. For higher temperatures
and/or voltage drops, the sharp resonance peaks are averaged
out and one obtains relatively smooth curves with broad
peaks reflecting the density of states and degree of localiza-
tion of the sample.

In contrast to the previous cases, Fig. 7 shows the longi-
tudinal conductance for a sample with only disorder potential
(upper panel) and disorder plus a weak triangular periodic
potential (lower panel). In the disorder-only case we see a
single broad peak marking the conventional integer quantum
Hall transition. The curve measured atT=1 mK and V

=1n eV is relatively smooth, and its flat top at unit conduc-
tance indicates the existence of one semiclassical orbit ex-
tending between the two opposite edges. This semiclassical
orbit can be seen in Fig. 8, where we display the disorder
potential used for this calculation. The conduction peak is
not centered atE=0 (center of the LLL level) because the
disorder potential is not fully particle-hole symmetric. How-
ever, if one symmetrizes the disorder and averages over

FIG. 6. (Color online) Longitudinal conductance for triangular
periodic potential plus weak disorder, forq/p=7/3 sB=7.33 Td.
Lx=1.998mm, Ly=2.028mm. This sample has 7176 states divided
into 52 channels. The inset shows a semilogarthmic plot of the data
set. The amplitude of disorder is about 1 meV, which is only a
fraction of the size of the largest gap. However, some of the ex-
pected smaller gaps are already filled in by disorder.

FIG. 7. (Color online) Longitudinal conductance for a large dis-
order potential.Lx=2.432mm, Ly=2.418mm, B=4.71 T. The thick
line corresponds to disorder only, while the thin line corresponds to
disorder plus a small periodic potential(A=0.01 meV,p/q=2/3).
In both casesT=1 mK andV=1 meV. The inset is a semilogarith-
mic plot of the original data sets showing the increase of conduc-
tance in the off-resonance tunneling regime, induced by the small
periodic potential.

FIG. 8. Contour plot of the disorder potential used to calculate
the conductance of Fig. 7. Solid lines are equipotentials for 0 meV,
and dashed lines for 0.025 meV. These energies are located within
the central peak of conductance. Parts of the contour go along the
edge aty= ±Ly/2.
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many disorder realizations, the averaged conductance peak
would likely be a smooth Lorentzian-type function. The fi-
nite (small) width is due to the finite size of the sample: all
wave functions withx-axis localization length larger thatLx
can transport electrons between the leads.

As expected, the addition of a weak periodic potential is
not enough to open gaps between theq=3 subbands of the
corresponding Hofstadter butterfly; the amplitude of the pe-
riodic potential is only a small fraction of the bandwidth of
the disorder-broadened Landau level. However, the small pe-
riodic potential still has a sizable effect on the longitudinal
conductance: the magnitude of the off-peak conductance has
clearly been increased(see the inset) especially on the high
energy side. Also, the width of the central peak is increased
by an amount comparable to the magnitude of the periodic
potentialA, with several more peaks separated by clear val-
leys appearing on both sides of the central peak.

Figure 9 shows another example of the effect of a weak
periodic potential onsxx. In this case, we plotsxx against the
filling factor nsEd calculated as described in Ref. 17. For
disorder only [panels 9(b) and 9(d)], we see a narrow,
double-peaked conductance near half-filling, in agreement
with the general expectation for the IQHE(the double-peak
structure is an artifact of the particular disorder realization
used in this simulation). When a small periodic modulation is
added[panels 9(a) and 9(c)] the conductance shows a much
more complex shape: the central peak is broadened consid-
erably, and several extra peaks appear on the low-filling side.

Finally, Fig. 10 shows the conductance of a disordered
sample for varying strengths of the periodic potential. The
fixed disorder potential is plotted in Fig. 11. This sample is
the largest we have considered, with a size of roughly 5
35 mm2. The effect of the weak periodic potential is clearly
illustrated in Fig. 10. In the disorder-only case(black line),
there is a single, narrow conductance peak corresponding to

the small energy range where percolation through the sample
is established. As a weak periodic potential is added, this
narrow conductance peak is clearly broadened. The periodic
potentials withA=0.1 meV andA=0.05 meV are considered
weak becauseA is much smaller than the fluctuations of the
disorder potential, of order 2−3 meV. This is also supported
by the inset of Fig. 10, where the filling factornsEd is shown
to be hardly affected by the addition of the weak periodic
potential. However, the effect of the periodic potential is

FIG. 9. Another example of a weak triangular potential imposed
on a large disorder potential. Here,sxx is plotted as a function of
filling factor n. Panels(a) and (c) show the results with both peri-
odic and disorder potentials, panels(b) and(d) are for disorder only.
Panels(a) and(b) areT=V=0 data, panels(c) and(d) are measured
at T=1 mK and V=1 mV. The parameters areB=7.85 T, p/q
=2/5, Lx=2.432mm, Ly=2.418mm, 11036 states divided in 62
channels.

FIG. 10. (Color online) Longitudinal conductance of a sample
with a fixed disorder potential but varying strength of triangular
periodic potential. Parameters for this sample are:Lx=5.134mm,
Ly=4.992mm, p/q=2/5, B=5.233 T, leading to 31616 states di-
vided amongst 128 channels. The data correspond toT=5 mK and
V=1 meV. The inset shows the filling factors as a function of en-
ergy for the same energy range as the main plot.

FIG. 11. The disorder potential used in the calculation for Fig.
10, generated by summing random Coulomb scatterers. Solid and
dashed contours are at energies −0.02 meV and 0.09 meV, respec-
tively, which are at the center and right edge of the broadest con-
ductance peaksA=0.1 meVd in Fig. 10.
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clearly reflected in the enhancement ofsxx. Comparing the
results obtained forA=0.1 meV andA=0.05 meV, we notice
that the broadening of the conductance peak(in this semi-
logarithmic plot) is roughly proportional to the strength of
the periodic potentialA. Beside this broadening, in the pres-
ence of the weak periodic modulation,sxx exhibits strong
sample-dependent fluctuations. On a linear scale, these fluc-
tuations look like clusters of peaks. The physical origin of
these fluctuations has been carefully analyzed in Ref. 17,
where we argued that even a weak periodic potential can
efficiently create supplementary percolation paths through
the sample, at energies within a range of the orderA from the
critical region. ForA=0.1 meV, this is the area between the
dashed and the solid equipotential contours in Fig. 11, cov-
ering a significant fraction of the sample.

One technical note: we used a semilogarithmic scale in
Fig. 10 because the effect of the periodic potential is better
revealed in logarithmic scale. This is partially due to the fact
that we keptt for the leads constant for all three cases; this
implies that asA is changed, the impedance mismatch in-
creases and the contact resistance can suppress the overall
magnitude ofsxx.

IV. CONCLUSION AND DISCUSSIONS

In this paper we use the Kubo-Landauer formalism to
compute directly the longitudinal conductance of a 2DES in
the presence of periodic modulations as well as disorder. The
method employed allows us to study individual disorder re-
alizations and thus to analyze sample-dependent effects. Our
method treats the sample as a “big molecule” connected be-
tween leads, and is applicable for any type of one-electron
potentials, both disordered and periodic. This formulation is
particularly suitable for long length scale, smooth disorder
potentials, such as are believed to be dominant in high qual-
ity 2DES, because in this case the Hamiltonian is a sparse
matrix that can be handled numerically very efficiently. Our
simulations are performed for large mesoscopic samples
(several microns in linear size), corresponding to roughly 104

electron states per Landau level. Although this size is still
smaller than that of most devices used in IQHE experiments,
this type of calculation can help us understand the physical
processes in detail. This method can also be very fruitful for
investigating transport in various nanoscale devices, and can
also be generalized in a straightforward manner for systems
connected to more than two terminals.

Here, we concentrate on the interplay between a short
wavelength periodic potential and long wavelength disorder,
and their role in determining the longitudinal conductance of
the 2DES. The phenomenology in the asymptotic limits has
been known for a long time. A pure periodic potential splits
the Landau levels into a number of subbands, and the result-
ing band structure has fractal properties as a function of the
magnetic field. In this case, our simulations show the clearly
separated peaks in longitudinal conductance corresponding
to each subband. If a weak disorder potential is added, the
smaller gaps are closed by disorder, as expected on general
grounds. Our results are in good qualitative agreement with
previous studies of the weak-disorder case, using SCBA and

similar approaches.13,14 However, unlike our method, the
SCBA is valid only for small disorder and gives only
disorder-averaged quantities. On the other hand, our method
also reproduces the results expected for large disorder(no
periodic potential) with long length scale, smooth variation.
In this case we find a single, relatively smooth peak in the
conductance at energies where semiclassical percolated or-
bits connect the opposite edges, and negligible conductance
elsewhere.

The results come when we investigate the cases where the
periodic modulation is comparable, but smaller than the dis-
order. To our knowledge, this case had not been investigated
previously. We find that even a weak modulation has a non-
trivial effect on the conductance, with the conduction being
significantly enhanced. New sharp peaks in conductance de-
velop around the original conductance peak, increasing its
width and creating complex oscillatory features. Although
these peaks are clearly due to the periodic modulation, their
origin is not the Hofstadter structure, which is not relevant
for large disorder. The mechanism of enhanced conduction
was explained in detail by us in Refs. 16 and 17. Basically,
the periodic potential helps electrons percolate through flat
regions in the disorder landscape and thus connect localized
states to form new conductive states. This is in qualitative
agreement with recent experimental observations16 which
show distinct patterns of peaks and valleys in the longitudi-
nal conductance of a periodically modulated 2DES instead of
the smooth peak expected for unpatterned samples. However,
our calculation is limited to theelastic scatteringcontribu-
tion to the conductivity, which has metallic temperature de-
pendence. The method is not suitable to explain the
temperature-activated conduction in the tail ofRxx seen in the
same experiment. We believe that in that region, the conduc-
tion is due to hopping among localized states rather than
charge transport through extended states. As demonstrated in
Ref. 17, a small periodic potential is very effective in in-
creasing the localization lengths and thus the hopping prob-
ability.

Our method of computation has a number of limitations.
One comes from the fact that it is an exact calculation at zero
temperature for a large system. Especially in the absence of
disorder,sxx is a rapidly oscillating function that requires
evaluation at a huge number of energy values in order to get
a good sampling for temperature averaging, and this is a
major limitation. Secondly, the lead modeling is very el-
ementary, although we can treat the case of semi-infinite
leads exactly. The simplicity in describing the leads and their
coupling to the sample comes from our ignorance of their
detailed physical characteristics. However, one can straight-
forwardly generalize our method to describe more compli-
cated dispersion relations, and different types of channels
and/or couplings to the sample. In particular, the contact re-
sistance due to the mismatch between the leads and the
sample should be minimized as much as possible; this can be
achieved with a suitable choice of the lead parameters.

The most obvious limitation of this study is that we have
little knowledge of the functional form of the disorder and
the periodic potential, and how the sample’s LL wave func-
tions are coupled to the Fermi sea in the leads. Until such
knowledge is available, detailed quantitative comparisons
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with the experiments are not warranted. We use two simple
phenomenological disorder models, and both give qualita-
tively similar results. Coupled with our understanding of the
nature of the wave function(see Ref. 17) this gives us the
confidence to claim that such effects are genuine and should
be observed for smooth, long length scale disorder. If the
disorder varies on a much shorter length scale, as may be the
case for quantum wires and dots(e.g., in Refs. 21 and 23),
we believe that a weak periodic modulation will have very
little or no effect, simply because in this case there are no
relatively flat regions in the disorder landscape where the
periodic potential plays the dominant role. This is indeed
confirmed by simulations we performed for models with
short length scale disorder(not shown here), where the ad-
dition of a weak periodic modulations has no noticeable ef-
fect on the longitudinal conductance. As for the periodic po-
tential, we have been using only the components with
shortest reciprocal lattice vectors. However, as experimental-

ists are designing devices with enhanced periodic potentials,
the higher order Fourier components, as well as inter-Landau
band mixing which has not been considered here, might play
a role. Such cases can also be treated with this formalism, the
complications being only of numerical nature.

As more accurate models for the sample disorder and
modulation, as well as the leads and the contacts, on one
hand, and more powerful computational facilities, on the
other hand, become available, this formalism will allow for
meaningful comparisons with experimental results for trans-
port in mesoscopic systems.
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