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Longitudinal conductance of mesoscopic Hall samples with arbitrary disorder
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Chenggang Zhau
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

Mona Berciu
Department of Physics and Astronomy, University of British Columbia, Vancouver Canada BC V6T 171
(Received 27 January 2004; revised manuscript received 6 May 2004; published 26 October 2004

We use the Kubo-Landauer formalism to compute the longitudima-termina) conductance of a two-
dimensional electron system placed in a strong perpendicular magnetic field and subjected to periodic modu-
lations and/or disorder potentials. The scattering problem is recast as a set of inhomogeneous, coupled linear
equations, allowing us to find the transmission probabilities from a finite-size system computation. The results
we present are exact for noninteracting electrons within a spin-polarized lowest Landau level: the effects of the
disorder and the periodic modulation are fully accounted for. When necessary, Landau level mixing can also be
incorporated straightforwardly into the same formalism. In particular, we focus on the interplay between the
effects of the periodic modulation and those of the disorder, when the later is dominant. This appears to be the
relevant regime to understand recent experimg®tdMelinteet al., Phys. Rev. Lett92, 036802(2004], and
our numerical results are in qualitative agreement with these experimental results. The numerical techniques
we develop can be generalized straightforwardly to many-terminal geometries, as well as other multichannel
scattering problems.
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I. INTRODUCTION A recent experimeff on a high-quality, periodically

A significant amount of research has been devoted to thE'odulated 2DES shows interesting features in the longitudi-
study of the effects of a periodic potential on a two- nal conductance, although the periodic po_tentlal is too weak
dimensional electron syste@DES placed in large perpen- [0 produce well-separated subbarids equivalently, disor-
dicular magnetic fields. On the theory side, the so-calledler is strong enough to fill in all subgaps in the fractal struc-
Hofstadter butterfli—the fractal energy spectrum associatedture of each Landau levelEven in this case, the longitudinal
with the periodically modulated 2DES, in the absence ofconductance exhibits reproducible oscillatory features in the
disorder—had been predicted and studied even before Hofgresence of the weak periodic modulation, instead of the
tadter’s seminal papér® Later, the transport properties of single smooth Lorentz peak of the unpatterned samples. To
such systems were studied byie®ta, MacDonald, and our knowledge, this regime of strong disorder and weak pe-
others®=° After the discovery of the integer quantum hall riodic modulation has not been investigated in the literature,
effect (IQHE),'° experimental results started to becomeand therefore these recent experimental results do require
available!'12 Pfannkuche and Gerhardts put forward a de-theoretical interpretation. In recent workwe analyzed the
tailed theoretical treatment of transport properties, includingspectrum and naturdocalized or extendedof electronic
disorder effectd® Their theory is analogous to the self- states in such a regime, and showed that simple arguments
consistent Born approximatioSCBA),’* and it suggests based on these results provide a qualitative explanation of
that the splitting of one single Landau band into several subthe experimental observations.
bands by the periodic modulation can in principle be ob- In this study we present a numerical calculation of the
served from measurements of the longitudinal conductanclengitudinal conductance based on models appropriate for
oy, The effect of disorder on the fractal structure was foundthe type of samples used in the experiment of Ref. 16. Our
to be similar to its effect on the Landau lev&l ) structure  model includes a disorder potential and a periodic potential
(responsible for the appearance of IQHEubbands in each with either square or triangular symmetry, with arbitrary
Landau level are broadened by disorder, but energy gaps oelative  strengths. Using  experimentally  relevant
pseudogaps are still open if the disorder is small compared tparameters® here we assume that these potentials are small
the amplitude of the periodic potential. As the Fermi energyenough that Landau level mixing is negligible. Unlike previ-
sweeps through a subband, the longitudinal conductance hasis theoretical studies dealing with disorder effects in QHE,
a maximum and the Hall conductance shows a staircaselikehich performed average over disorder at the onset of the
jump if the Chern numbers in the neighboring gaps are difcalculation so that all computed response functions are
ferent. Thus, the Hall conductance is expected to follow aisorder-averaged, we calculate the longitudinal conductance
nontrivial sequencé of integer multiples ofe?/h, whereas from first principles for agiven disorder realizationThis is
the longitudinal conductance has a series of peaks and vafhecessary because the features observed in this experiment
leys as the Fermi level moves through different subbands angre sample-specifit’. Our computational method, which is
gaps. based on the Kubo-Landauer formalidtis in principle
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valid for finite systems with any type of disorder and/or pe-fore we sein=0. This is justified because in the experiment
riodic potentials, although computational times vary with theboth the disorder and the periodic potentials are estimated to
sample size and degree of sparseness of the Hamiltoniahe much smaller than the cyclotron enefgy and the Zee-
Regrettably, we have no detailed microscopic knowledge ofman splitting, so that Landau level mixing can be safely
the disorder present in these samples and the details regaignored*®—8 Imposing cyclic boundary condition in the

ing their connections to the external leads; this prevents udirection leads to the restrictidq=j27rI2/Ly,j=1, NG XS
from performing meaningful quantitative comparisons withthe guiding center, characterizes the location at which indi-
the experiment. However, the results we obtain for differentvidual basis states are centered alongxheis [see Eq(1)].
realizations of disorder allow us to qualitatively explain the SinceX; can vary between 0 arld,, the degeneracy of each
physics responsible for the new features seen in the longituspin-polarized LLL isN=L,L,/(2l?).

dinal conductance, and to reinforce the arguments offered in Let us definec! to be the creation operator for an electron
our previous work’ in the LLL: cJT|0>=|X]-> (the indexes1=0 ando will be sup-

The paper is organized as follows: in Sec. Il we presenpressed from now 9nlin the absence of Landau level mix-
the method used for the calculation and the relevant theoreing, the Hamiltonian¥, projected on the subspace of the
ical considerations. The numerical results are presented ispin-polarized LLL becomes
Sec. Ill, while Sec. IV contains our conclusions and discus-

N N N
sions. hos—gueBo <+ t
HS: 2 ECJ Cj+EE(Xi|Vd+Vp|Xj)Ci Cj.
=1 i=1 j=1
Il. THE NUMERICAL METHOD: KUBO-LANDAUER (2)

FORMALISM This looks like a one-dimensiongllD) hopping Hamil-

A. The model tonian, and this is a very appropriate comparison if one keeps

We consider a two-dimensional Hall sample of rectangu-In mind that thgstatj@(ﬁ 's localized within a distanckof
the positionsxX;=i2ml*/L,.

Lﬂresyhgi? gé;t?:,r?I;ﬁéxotﬁnwggu%yggfyb&unn dditaig)rll ?gndigﬁgi_m In order to c_alculate _the matrix eleme_nts f_or the disorder
tion, characteristic of a two-terminal geometry. Typical sizesarld the periodic potentials, we use the identity
we consider are on the order ofg@3n X 3um. A large mag- CLIAEE Lo+ Xi) = (1/2

netic field B of up to 10 T is a/vg[;]liedlfn the di%ectior?, (xle?]x;) = &i'xj‘qy'zequ( e (2R, ©)
perpendicular to the 2DES. A rough estimate shows that thﬁ/hereQ:%IZ(q§+q§). (The generalization for higher Landau
degeneracyN of each Landau leve{LL) is of order 16,  |evels and/or Landau level mixing is straightforward; see for
defining the size of the matrix to be diagonalized to bé 10 jnstance Ref. 18 Let us now consider each type of potential

X 10%. For such large-size matrices direct diagonalization iSseparately.
time-consuming; therefore we look for alternative ap- Tpe periodic potential can be expanded as
proaches with a better scaling behavior for large systems. On _
the other hand, the sample size is still small compared to that Vp(r) = > Vg9, (4)
of the experimental sample, which is about 2 9
::2”(]) "rLim'l'A;S a |rtesu|2' Cfilrzein?usi: E)e takeirélln ;nt(ier:p:etlng tnewherevgzvig because&/(r) is real, andg} are the reciprocal

umerical resu S'_ principie 1t 1S possible 10 INCrease g . . < "3ssociated with the Bravais lattice. For a square po-
values ofL, andL,; however, serious numerical difficulties . _ .

. y R tential, we useV,=A for all four shortest reciprocal vectors
arise when the system size is much larger than the ones wé_ 9 . .

. . . . g=(x2w/a,0), (0,+27/a), wherea is lattice constant, and

consider(these issues are discussed in Sec.)Il C

The Hamiltonian of the noninteracting electrons confined”€™ otherW|se. Higher or.der components can also be in-
. ; cluded in the same formalism, but result in longer computa-
in the 2DES is : : o o .
tional time and no qualitative changes. Similarly, for a trian-
1 e \2 1 R gular potential we defineVy=-A for _all six shortest
Hs= om\P + EA = 5980 B+ Vy(Xy) + Vy(X,y), reciprocal vectorg=4=/\3a(x1,0), 27/3a(x1, +y3), and
_ o ~ zero otherwise. The minus sign appears here in order to have
whereVq andV,, are the disorder and the periodic potentials,the minima on the sites of the triangular lattice, as explained
respectively. We use the Landau gaude=(0,Bx,0) in Ref. 17. In both cases the projection@bn they axis is
throughout this paper, and the complete set of eigenfunctionsither 0 or +2r/a. This particular orientation allows us to

for the nth Landau level treat these two potentials similarly, since it follows that both
=X types of periodic potentials only couple a st{ax?) to itself
Lo Hn<_> and to|th'27rI2/a>. [see Eq(3)]. Since|Xj127_rI2/a> must be
X,y = o — (127 (x - X)2 | X (1) in the baS|s' conS|Qered,722/a must be an mteg'er'multlple
v VL, Vo a7 of 2ml?/Ly, i.e., Ly is an integer multiple of. This is con-

‘ sistent with the periodic boundary conditions along the
wherel =+\#Ac/eB is the magnetic length anld,(x) are Her-  axis.

mite polynomials. In the rest of the paper, we concentrate on We introduce the integé¥.=L,/a. From the previous dis-
one of the spin-polarized lowest Landau lev@lsL ); there-  cussion, it follows that the periodic potential couples a state
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X; only to itself, and to the state§.y . As a result, we can models described in detail in Ref. 17. One is a simple addi-
divide the totalN states of the LLL intoN, subclasses tion of random Gaussians, while the second model attempts
(henceforth called the conduction chanpelsing the unique to estimate the proper energy scale from considerations of
decompositionj=iN.+n, wherei>0 is an integer, and 1 the Coulomb attraction between electrons and their donors.
<n=<N,.. The periodic potential couples only states in theBoth models generate smooth disorder potentials, i.e., with a
same channet; each channel thus connects the left and righength scale of more than 100 nm, which is large compared
edges, and can carry longitudinal curretiience the name with the typical magnetic length(l ~8 nm whenB~ 10 T).
“conduction channelg? For simplicity, we require that each Such long-wavelength disorder is believed to be dominant in
channel has the same overall number of states, i.e., the tothigh-quality samples, as the one studied in Ref. 16. The stan-
degenerac\N is an integer multiple of the number of chan- dard deviation is estimated to be 2 to 3 meV, much smaller
nelsN,, N=pN.. (This condition can be easily relaxg¢dhis  than the typical cyclotron energy.'®
imposes a constraiht,=p(2712)/a on the values allowed for We Fourier decompose the disorder potential, and use Eq.
L, For the typical sample sizes we consider, the constraint€3) to compute its matrix elements. The periodic boundary
onL, andL, require only minimal adjustments. For instance, condition in they direction implies that the allowed Fourier
we usea=39 nm!® and therefore a sample with,~L,  components arel,=27m/L,, which introduces matrix ele-
~3 um has around\N,=70 channels, with aroung=150 ments between any pair of state$) and|X;.), wherem is
states per channel. For different values of the magnetic fiel@n arbitrary integer. It follows that different conduction chan-
(different| valueg the lengthL, can be kept fixed within a nels are now coupled by disorder. The sntafFourier com-
few nm by slightly adjusting the value @f ponents of the disorder potential are very important, since
For later convenience, we relabel the creation operatortiey describe the long wavelength features of the disorder
for states in the LLL as;jT—>c-T where j=iNg+n, 1<n potential. On the other hand, components with laggde-

<N, Thus ¢l creates an elecl"[rrvon in the LLL, in the<li scribe short wavelength features of the disorder, which are

LN

< p state of thenth channel, centered Ay +n- From Egs(3) not well captured by our simple phenomenological models.
and(4) it follows that the periodic potential projected on the We therefore use a cutoff value fofi| <36 for Fourier com-

spin-polarized LLL takes the simple form ponents of the disorder potential. This value is large enough
\ _1 to allow basically exact reconstruction of the disorder poten-
~ P + ° + tial (see the relevant discussion in Ref.) Bt also small
Vp= Z 2 €,nCinCint 2 (tinCinCisrn tHC) [, (5) enough so that the Hamiltonian matrix is still very sparse.
neLLiE =1 With this cutoff and in the absence of LL mixing, the disor-
where for the square potential we obtain der potential has the general form
¢o(. . N Ne P
€= 2A€ (T2 cg 277; i+ ik (6a) V= > > Ui,n;i’,n'CiT,nCi',n’v (8)
¢ nn'=1i,i'=1
tj = 2A€ (M2(4D) (6b)  whereuv; i v are nonvanishing only for states within a dis-

tance|(i—i")N.+(n—n")| <36 of each other.

and for the triangular potential, we have From Eqs(2), (5), and(8) it follows that the total Hamil-

= .n tonian for the sample is

€.n=— 28 (™I cos{2wﬂ)<| + —)} , (79 P

’ ¢ Nc N¢ p p-1

1 Hs: E 2 éi,nCiT,nCi,n + E (ti,nCiT,nCi+1,n + H-C-)

tin=- 2Ae—(7r/\f§)(¢o/¢) COS[ 277@<i + n + _)] . (7b) n=1] i=1 i=1

' d) NC 2 N¢ p
H i T il
From Egs.(6) and (7), it is apparent that the parameter * nnz’l'Zl Vit GinCirn s ©)

n'=1i,i'=

controlling the band structurgn the absence of disordeis
the ratio/ ¢y=.A/(2m?), wheregy,=hc/e s the elementary where the overall energy shiffiw,—gugBo)/2 associated
flux, and¢$=BA is the magnetic flux through the unit cell of with the LLL is absorbed in a redefined chemical potential.
the periodic potential.A=a? or a>y3/2 for square or trian- This Hamiltonian can be efficiently generated and stored as a
gular potentials, respectively. In particular, d/$o=q/p, column compressed sparse matrix. In principle, we can di-
whereq and p are mutually prime integers, the original LL rectly compute the eigenvalues and eigenfunctions of this
splits intoq subbandg:2° Hamiltonian, and calculate the corresponding Thouless num-
In the absence of disorder, there is no mixing betweerber, characterizing its longitudinal conductadtéiowever,
different channelgsee Eq(5)], and the longitudinal current this is numerically very time-consuming. Instead, we use the
is just a sum of the currents carried across the sampl&ubo-Landaué®?>->*formula for the longitudinal conduc-
through the individual conduction channels. However, disortance(details in Sec. Il Bwhich requires the computation of
der introduces scattering between different channels. Firstrarious transmission coefficients through the sample. The
principles modeling of the disorder is a very difficult and main idea is to link the longitudinal conductance to the total
numerically intensive probleft-23As a result, we generate probability that an electron injected into the samplexad
the disorder potential using two simple phenomenologicahrrives atx=L,, or vice versa.

165318-3



C. ZHOU AND M. BERCIU PHYSICAL REVIEW B70, 165318(2004)

Left leads Sample Right leads the sample to the external leads can be investigated with the
80080 y T formalism we develop here.
o o Let us index withn=1,2,... N. the N, independent 1D
o o channels of each semi-infinite lead, and ¢é,§ be the cre-
- X o ation operator for an electron at sitef thenth 1D chain. We
I R distinguish between the left and right leads by requiring that
i <0 for the left channels, respectively>p for the right
—l_J channels. This notation also avoids any ponfusion betv_veen
—_— these operators, and the operators creating electrons in the
—_——l LLL sta.tes. |n3|de_ the sample, which correspor)d t'e|.1s p.
Details on Edge emmiaa_{ The spin index is suppressed everywhere, since in the ab-
sence of magnetic impurities electrons with different spins
i travel independently.
First few eigenstates The Hamiltonian describing the external leads and their
on the left edge coupling to the sample is then
FIG. 1. A sketch of the model geometry of the Hall sample with Ne /-1 °°
periodic boundary conditions in thedirection, and its contact to 7, = > ( >+ > )[— t(CiT'nCiJrl’n + ci+1,nCiT'n) + €OCiT,nCi,n]
leads on bothx-axis ends. The lower diagram shows a detailed view n=1 \i=—o  i=p+1
of the left edge. The firsil; eigenstate$Xy),[Xp)... ,[Xy) near the N,
edge belong to different conduction channels. We assume that each _ T t
such conduction channel is attached to external leads at both edges tg’l (ConCrn* CpnCprin+ H.C).

of the sample. ) o
Here,t and ¢, are adjustable parameters, whose selection is

In order to compute these transmission coefficients, it igliscussed in Sec. Il C. Our model of the leads is thus similar
necessary to connect the sample to external metallic lead® those employed for the study of molecular
which allow us to injec(extrac) electrons intoout of) the ~ conductancé?3* where tight-binding chains are used to
sample. We model each external lead as a collection of indesimulate the gold contacts. In fact, we treat our Hall sample
pendent, semi-infinite one-dimensiondD) tight-binding  @s a big molecule wired to contacts.
chains, as illustrated in Fig. 1. In reality, the leads have, of The total Hamiltonian for the sample and leads reads

course, higher dimensionality than one. One way to simulate N, o
this would be to add bondéopping between the various H = t cf e +He)+e o c
1D chains. We do not add these extra bonds for the following Eizz_m[( nCinCirtn + H-C) + €00 oCin
reason: the eigenstates of any lead with complex geometry in b N
the transverse direction have the general structd :
g (ﬁ + E E vi,n;i’,n’CiT,nCi’,n’! (10)

=¢,(k)+u,. Here,k is a quasimomentum associated with the
longitudinal direction, a good quantum number given the
translational invariance along this direction, amds some  wheret; ,=—t ande¢ ,=¢, for all i<0 ori=p (i.e., along the
discrete set of quantum numbers characterizing the discresemi-infinite leadswhereas inside the sample these param-
transverse modes supported by the particular geometry of theters are given by Eqg6) and (7).

lead cross section. In other words, any perfectly metallic

higher-dimensional lead reduces to a collection of indepen-

dent 1D leadgor channels whose dispersions can be simu- B. The longitudinal conductance

lated by an appropriate choice of 1D tight-binding chahs. e calculate the longitudinal conductance using the
The question, then, is how many channels are in each leag gndauer-Buttiker formula®-25-29

and how are they connected to the states in the sample?
Since we have no detailed knowledge regarding the leads,
and since one hopes that the main features of the longitudinal
conductance will come from the sample itself, not the details
of the lead modeling, we choose the following very simplewhereEg is the Fermi energy, ang.{E) is the transmission
solution: we assume that both the left- and right-side leadamplitude of an electron with enerdy- which is injected
have precisel\N, channels, and each one of these channelito the sample through theth channel of the left-side lead,
couples identically to one of the conduction channels insidéo emerge from the sample into theh channel of the right-
the sample. This is the simplest model that satisfies severalde lead. The question is how to efficiently calculate these
criteria: (i) the leads are perfect conductofis) the conduc- transmission coefficients.

tance of the leads is not less than the maximum conductance The essential difficulty for the numerical calculation is to
of the samplé (iii ) each conduction channel in the sample contain the semi-infinite leads in a finite-size scheme of com-
has equal coupling to the lead#;) transmission and reflec- putation with appropriate boundary conditions. Our solution
tion coefficients can be easily defined and computed. Howto this problem allows us to find the transmission amplitudes
ever, any other more complex model for the connection ofn a very elegant and economic way.

ii’=1nn'=1

e e
Uxx(EF) = FTI’(tTt) = FE |tnm(EF)|21 (11)
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To illustrate our solution, assume first, for simplicity, that wave function inside the sample is precisely the same as for
N:.=1. In other words, each lead is made of a single tight-semi-infinite leads. In our simulations, we keep five sites for
binding chain, and the sample itself has oplgtates. Let¢) ~ each 1D channgM=5). Second, the equivalence of the so-
be an eigenstate of ener@yof our Hamiltonian,X;H;;¢(j)  lution of this finite system with that of a system with semi-
=E¢(i), whereg(i)=(i| #). With the convention we used in infinite leads also implies that while we work numerically
Eq. (10), left lead, right lead, and the sample correspond tgvith finite matrices, we have a continuous energy spectrum
i<0,i>p, and 1=i=<p, respectively. For a scattering solu- E(K)=€&—2t cosk for the electrons injected into the leads
tion, we must haves(n)=k"+re ¥ for n<0, wherer is the ~ (9€nerally, finite systems have a discrete specirurhird,
reflection coefficient, and(n) =tek" for n>p, wheret is the therg is no need to introduce an |n.f|n|teS|m.aIIy small param-
(desired transmission coefficient. The momentukis in di- gterlo to select' the correcétgscatterl_ng solution, as is the case
mensionless units and varies wittiaz, ). in transfer_ maitrix aproach Choosm_g _the correct value for

Consider now the solution of the following inhomoge- the s_mall imaginary part is always difficult in num_erlcal cal-
neous system of linear equations: culations and has tq b_e done.v.ery carefully._ With our ap-

) proach, we take the limi— O trivially and obtain the exact

gk 1 0 0 -~ 0 0 0 0 numerical solution. Finally, one can use various entries on

the right-hand side of the inhomogeneous system. In our cal-

t E-¢ t o -~ 0 0 0 0 ; S . .
culations, we actually use a more efficient formulation, in

0 t E-¢ t -~ 0 O 0 0 which all coefficients on the right-hand side, except the third

e e entry, are zero, i.e., the equation (B-"H)¢$=B, whereB"

0 0 0 0 - t E-g t 0 =(0,0,1,0,0,..). Oqe can verify 'that 'this chpice injects on
the left lead, to the right of the third site, an incoming wave

0 0 0 Y t E-e t_ with amplitude 1(2it sink) plus an outgoing wave, meaning

0 0 0 0 0 0 -1 e that in this caset(E)=2it sink- (M +p).

H-M+1) — g ikM-2) The generalization to the case witl left and N right
channels is straightforward. As already stated, we keep only

H=M+2) - te MY five sites for each of the left- and right-si
ght-side 1D channels,
d(—M +3) 0 implying that —4<i<p+5. As a result the total dimension
% = , (12) of the matrix A=E—"H is Na=pN.+5X2X N, whereN.p
=N is the total number of states of the sample in the LLL.
¢(p+M-2) 0 The matrix elements ofA equal the values ofi,n|E
d(p+M-1) 0 —H|j,m) for all i,n andj,m values[see Eq(10)], except for
d(p+M) 0 (=4,n|A|-4,n)=(p+5,n|Alp+5,ny=exp(-ik) and (-4 ,n|A|

-3,n)=(p+4,n|Alp+5,ny=-1 for alln=1,... N.. This en-

where sites M+1,-M+2,...,0 are on the left-side lead . .
sures that proper outgoing solutions are selected for each

and sitesp+1,... p+M are on the right-side lead. Herg, h |
=¢y—2t cosk is the corresponding energy of an electron with €hannel. _ .

momentumk> 0 which propagates along the leads. The ma- We_ then solveno=1, ... N systems ff mhomogeneous
trix in this equation is simply the matri&|E-7|j), dressed equ?lthI’lS of the '.[ypezj:'“A‘”J'“X”o(J M)=Bq(i,n), where_

by the first and last rows. Along the lead sites this matrix ha?“o(' ,n?-&(n—no)ﬁo +2),’ €., correspond§ to an electron in-
the simple form of a hopping Hamiltonian, whereas insidelegte_OI into tthth left-side channe_l. As discussed, the_trans-
the sample, i.e., for sites between 1 gndt contains the full ~Mission coefficients are the, ,=2it sinkX,,(p+5,m) giv-
Hamiltonian of the sample. One can now check, using iteral’d the total longitudinal conductance at energy e
tions and starting from siteM+1, that the general solution ~2t cosk to be

on the left-side lead is of the formp(n)=€k"+¢(-M &2 Ne N

+1)e kM-1) for gl -M+1<n<0. In other words, it con- oo(E) = —4t? sirtk >, > Xn(P+5m. (13)
sists of an incoming wave with unit amplitude, and an out- h ng=1m=1

going wave with amplitudgs(-M+1)|. On the other hand, Despite having a very large dimension, the mathiis
starting from the sitgp+M, one finds that the general solu- yery sparse, and thi,, similar sets of linear equationsX

tion on the right-side lead is of out-going typn)=4(M  —g'for a given energjE can be solved very efficiently using
+p)e"M7P) for all n>p. Since the matrix is nonsingular, the superLU packaged? This approach is much faster than
this inhomogeneous system has a unique solution whicRjrect diagonalization and is particularly well suited for par-
fixes the values oth(-M+1) and 4(M+p). As a result, we  gjlelization; as a result, a dense grid of energy valEesn

can identify directly the reflection coefficient for the given pe investigated. We used a cluster of 25 CPUs to scan dif-
energyE asr(E)=¢(-M +1) and the transmission coefficient ferent energy values in parallel. A typical run lasts for about

t(E)=¢(p+M). 10 h and generates 5000 data pointsrgfE).
This approach has a number of considerable advantages.
First of all, the number of site$/ kept on the left- and C. A toy model

right-side leads is inconsequential, as long as it is greater In this section we analyze the longitudinal conductance
than 2; the solution obtained through the matching of thefor a simple toy model. This allows us to understand the
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Leftlead | Sample | Right lead — 05|

' ! _ t2=0.3
L b Lo

FIG. 2. A sketch of the toy model. The “sample” with5t,
bonds is connected to semi-infinite leads wittbonds.

T(E)

general effect of the lead parameteiend ¢, on longitudinal
conductancer,,(E). As shown in the following section, the
shape of the curves,,(E), especially for small or no disor-
der, is rather surprising at first sight. It consists of large num-
bers of very thin resonant peaks superimposed over a broa 9 i
peak. These sharp resonance peaks are not numerical errol . . . . L .
and do not signal singularities of the type expected in 0 02 04 °'6E 08 ! 12
Green’s functiong! (In fact, since we deal with an infinite
system, one expects a continuous cut, not individual singu- FIG. 3. Transmission rate for the toy model corresponding to
larities, in the Green’s functionsZooming in the energy Nn=20,t;=1 andt;=0.5 and 0.3, respectivelfi(E) is a symmetric
scale shows that these peaks are features whose width scafédction, so only the interveE>0 is shown.
like 1/L, whereL is the size of system, i.e., the region be- ) o o
tween the leads. These resonance peaks have the same origi#, @s indeed observed in Fig. 3. The minima between
as the peaks in the differential conductance of molecule8€ighboring peaks correspond TOE) = 4x*y?/ (xX*+y?)?, and
attached to metal contacts3*i.e., they correspond to reso- are located at energies for which €2sk;)=-1. Thus, the
nant tunneling through the system. However, our 2DES idarger the system, the more and the sharper such resonance
different from a molecule in that it contains about'ifter- ~ peaks appear.
nal states, hence in a small energy interval there can be a The decrease i(E) from its maximum value of 1 is
large number of such resonance peaks. purely the resistance of the contacts, since there is no disor-
To clarify the origin of these resonance peaks, we invesder inside this “sample.” This contact resistance comes from
tigate ann-bond tight-binding chain with hoppint, sand-  the mismatcht; #t,. [If t;=t,—B8=0—T(E)=1 at all ener-
wiched between two semi-infinite tight-binding chains with gies] In fact, if the “sample” strip is connected to left and
hoppingt, (on-site energies are all zero for simpligityrig-  right leads in an infinitely smooth manner, the conductance
ure 2 shows an illustration of the toy modéThis toy model  simply become®?/h within the overlap of the spectrum of
also provides a check for our numerical scheme, both in théhe sample with the spectrum of the leads. The toy model we
single and the multiple-channel cases. introduced above offers a good analogy to the continuous
We assumet,<t;; transmission is then vanishing for ballistic channel previously studied in Ref. 37, where the
|E|>2t,, since the middle sectiofthe “samplej does not conductance through a short and narrow ballistic channel is
support propagating modes at those energies. The reflectimalculated exactly. The oscillatory behavior is attributed to
and transmission coefficients on the two interfaggsshed the ‘longitudinal resonant electron states, the electronic
lines in Fig. 3 can be readily computed, and the total trans-quantum analog of the acoustic resonant modes of an open
mission rate is calculated either by summing up multiplyorgan pipe”
reflected waves, as for a Fabry-Perot interferometer, or by In our calculation, we want to concentrate on the physics
solving the Schradinger’s equation directly. The final resultinside the sample, therefore we want to minimize the addi-
is summarized below for a given energy tional resistance from the contacts, which introduces these
extra features in the conductance when disorder inside the
E=-2t cosky) =~ 2t codky), sample is small. As a result, we have to adjust the valute of
so that it is close to the magnitude of the matrix elemgnts

x =ty sin(ky), y=t; sin(ky), of He. On the other hand, the Fermi energy in the calculation
is always required to be within the spectrum of the leads,
a=xX+y, B=X-Y, Er e[e—2t,e+2t], so that the leads behave like perfect
conductors. To satisfy this condition without using a latge
TE) = 16x%y? (14 value (which leads to impedance mismajchkve set the on-

o+ B = 2a2B2 cod2nk,) site energye, at E¢ in each_ round of calculation, meaning
that the leads have a “floating” spectrum. The floating spec-
We can see from the preceding equation fh@)=1 for  trum is certainly not present in any experiments. We use it as
all energies for which cq@nk;)=1, leading to the appear- a simple way to save computational power. We have verified
ance of a series of thin peaks at the corresponding energiethat such “floating” leads do behave as perfect metals in the
The width of each resonance peak is roughlyn of the  simulation, and that small variations of the parameéggand
bandwidth, i.e., it is inversely proportional to the systemt do not change the main features of the numerical results.
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The appearance of the large number of resonance peak
also illustrates the evolution from small quantum mechanical
systems to large macroscopic systems. Quantum mechanicaﬁ 10
quantities likeo(Eg) become rapidly oscillating functions as <
the size of the system is increased. If the energy scale foi ©" s
such oscillations is smaller than the resolution of the mea-
surement or the temperature smearing, the measurable phys o
cal quantity is a certain average of this rapidly changing 10
function within the characteristic energy interval. Numerical 2
microscopic calculations become inefficient for large sys-°

]
tems because one has to sample very many energy values ;ﬁ 5
obtain a good picture of the rapidly changing function. In our

case, we provide curves more suitable for comparison with
the experiment, by convoluting the zero-temperature conduc: -0

tance with a sampling function

15

PHYSICAL REVIEW B 70, 165318(2004)

—T=0,v=0] " T T 7 ]

—- T=50mK, V = lpeV ' T
— T=0.ImK, V= IyeV -

.03

. ! . ! A
0 0.01 0.02 0.03
E (meV)

o +oo FIG. 4. Longitudinal conductance of a small sample with square
T, V, T) = f pr(u,V, €)oy(€)de, (158  periodic potential but no disorder potentiah/ ¢o=q/p=2, B
% =5.44T,L,=1.248um, L,=1.17 um, corresponding to a total of
1860 states in the lowest Landau level.

1 1

primV, 6):VL<6-/L—V/2)/kT+ 1 elen VKT q | inside the Hofstadter butterfly in the clean model. In the

(15b)

vicinity of E=0, we see that,, is bounded by a series of
staircases, each of which marks the edge of the spectrum of

Herelgis the measured conductance at chemical poteﬂt|a| a different conduction channel. Thus, the curveTeO (thln
temperaturd, and voltage difference between the two edged?lack ling) is understood as a superposition of many 1D
of the sampleV (estimated to be of order 1®eV). This  chains similar to the toy model shown in Fig. 3. The two
formula is appropriate for noninteracting electrons. One car$olid curves in Fig. 4 are the “measured, given by Eq.

verify that at zero temperature,

(15), corresponding t&/=1 peV andT=0.1 and 50 mK. At

large temperatures, the resonance peaks are smeared and
1 only the two broad peaks are visible, whereas for small tem-
= [O(n+VI2-€) -O(u-Vi2-6]. ) -
polis,V,€) V[G)(’u VI2=€) = O(u=-Vi2=e)] perature more detailed features are revealed.

When V-0, pT—>—dnEF(T,77)/d77, where nEF(T,n)

Figure 5 showsr,, of a sample with only triangular peri-
odic potential ag/p=3. From the semilogarithmic inset, we

={exf(#—Eg)/KT]+1}"* is the Fermi-Dirac distribution. can see gaps between the 3 expected adjacent subbands.
Since the triangular potential is not particle-hole symmetric

IIl. NUMERICAL RESULTS

(unlike the square potentjahe subbands are no longer sym-

metrically placed with respect tB=0. In the smaller gap,

In this section we present representative results from our
calculations. We analyze the interplay between disorder anc 4
periodic potentials of various strengths, starting with the case
of no disorder(pure periodic potential

In Fig. 4 the longitudinal conductance of a small sample 3
with only square periodic potential is shown. There are only
1860 electronic states inside the sample, distributed over 3(
channels and the magnetic field is such thathy=q/p=2. «
Because there is no disorder, different conduction channels ™
do not couple to each other, and each of them is similar to ©
the simple toy model discussed in the preceding section. The
spectrum of each conduction chanekcept ongsplits into 1
two subbands as expected for the Hofstadter butterfly corre-
sponding tag=2. The channel that does not split corresponds

/h)

(e

2_

_(log IOGXX)/I 0

to n=15 in Eq.(6), where the cosine vanishes agg,=0 0
everywhere. Each channel contributes to the conductance fo
energies inside its own spectrum, and thus we see many

0 - 2
E(meV)

sharp resonant peaks on top of a fairly broad conductance giG, 5. Longitudinal conductance for pure triangular periodic
curve. As already discussed, the sharp peaks are due to cOibtential with A=0.01 meV (no disordey and g/p=3 (B9.42 T).

tact resistance, not the sample itself. The underlying broad,=2.004 um, L,=2.028um. This sample has 9256 states in the
peaks, on the other hand, are a signature of the sample betL, divided into 52 channels. The inset shows a semilogarithmic

havior. They are simply a reflection of the density of stateglot of the original data set.
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FIG. 6. (Color onling Longitudinal conductance for triangular FIG. 7. (Color onling Longitudinal conductance for a large dis-
periodic potential plus weak disorder, fo/p=7/3 (B=7.33 7). order potentialL,=2.432um, Ly,=2.418um, B=4.71 T. The thick
L,=1.998um, L,=2.028um. This sample has 7176 states divided line corresponds to disorder only, while the thin line corresponds to
into 52 channels. The inset shows a semilogarthmic plot of the dateisorder plus a small periodic potentigh=0.01 meV,p/q=2/3).
set. The amplitude of disorder is about 1 meV, which is only aln both case§=1 mK andV=1 ueV. The inset is a semilogarith-
fraction of the size of the largest gap. However, some of the exmic plot of the original data sets showing the increase of conduc-
pected smaller gaps are already filled in by disorder. tance in the off-resonance tunneling regime, induced by the small

periodic potential.

the conductance is not vanishing, although it is over 40 or-

ders of magnitude smaller than inside the band. This is &1v eV is relatively smooth, and its flat top at unit conduc-
consequence of the fact that the sample is finite and tunnetance indicates the existence of one semiclassical orbit ex-
ing across it is possible even in the gap region, although witliending between the two opposite edges. This semiclassical
extremely low probability. orbit can be seen in Fig. 8, where we display the disorder

Figure 6 shows the calculated longitudinal conductance opotential used for this calculation. The conduction peak is
a sample with triangular potential and very small disorder, anot centered aE=0 (center of the LLL level because the
g/p=7/3. In theabsence of disorder, we expegt7 sub- disorder potential is not fully particle-hole symmetric. How-
bands to appear asymmetrically in the spectrum. The sma#iver, if one symmetrizes the disorder and averages over
disorder closes some of the gaps, and only three main sub-
bands are distinguishable ,,. (Each of the three visible
subbands is actually a collection of 2 or 3 of the subbands 1
expected in the absence of disondd@he three curves are the
same data measured at different temperature and differer
voltage drops across the sample. As expected, at low tem g¢g
perature and low voltage drop, the measured conductanc
reveals a variety of resonance peaks on top of each broa 04
conductance feature. From the semilogarithmic plot in the 5,
inset, one can see the gap between the left subband and ce
tral subband is wide open, whereas the smaller gap betwee> 0
the center and right subbands is partially filled in by disorder _j»
(the value ofo,, inside the gap is of order 18 as opposed
to 1049 in the absence of disorder, see Fig. Bhis proves -0.4
that narrow subbands are more easily affected and therefor _ o
more likely to be closed by even small disorder, as one
would expect on general grounds. For higher temperature: -0.8
and/or voltage drops, the sharp resonance peaks are averag
out and one obtains relatively smooth curves with broad
peaks reflecting the density of states and degree of localiza
tion of the sample.

In contrast to the previous cases, Fig. 7 shows the longi-
tudinal conductance for a sample with only disorder potential FIG. 8. Contour plot of the disorder potential used to calculate
(upper pangland disorder plus a weak triangular periodic the conductance of Fig. 7. Solid lines are equipotentials for 0 meV,
potential (lower pane). In the disorder-only case we see a and dashed lines for 0.025 meV. These energies are located within
single broad peak marking the conventional integer quanturthe central peak of conductance. Parts of the contour go along the
Hall transition. The curve measured @1 mK andV  edge aty==L,/2.

-1

165318-8



LONGITUDINAL CONDUCTANCE OF MESOSCOPIC HALL. PHYSICAL REVIEW B 70, 165318(2004)

1
A =0.1 meV
— A =0.05meV
— Disorder only
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FIG. 9. Another example of a weak triangular potential imposed . FIG. .10' (Cplor onling Lo_ngltudlnal cpnductance of a _sample
on a large disorder potential. Here,, is plotted as a function of W'th a fixed d|§order potential but varying strength of triangular
filling factor v. Panels(@) and(c) show the results with both peri- pei'()dlc potentlal._Parame_ters for this sa_lmple due=5.134um, .
odic and disorder potentials, panég and(d) are for disorder only. L.y_4'992’“m’ p/q=2/5,B=5.233 T, leading to 31616 states di-
Panelga) and(b) areT=V=0 data, panelgc) and(d) are measured vided amongst _128 channels. Th_e_data corresporic=to m_K and
at T=1 mK and V=1 uV. The parameters ar8=7.85T, p/q V=1 ueV. The inset shows the filling facto_rs as a function of en-
=2/5, L,=2.432um, L,=2.418um, 11036 states divided in 62 ©'0Y for the same energy range as the main plot.
channels. the small energy range where percolation through the sample
many disorder realizations, the averaged conductance pedk established. As a weak periodic potential is added, this
would likely be a smooth Lorentzian-type function. The fi- narrow conductance peak is clearly broadened. The periodic
nite (smal) width is due to the finite size of the sample: all potentials withA=0.1 meV andA=0.05 meV are considered
wave functions withx-axis localization length larger that,  weak becaus@ is much smaller than the fluctuations of the
can transport electrons between the leads. ~_disorder potential, of order 2—3 meV. This is also supported

As expected, the addition of a weak periodic potential ispy the inset of Fig. 10, where the filling facte(E) is shown
not enough to open gaps between g3 subbands of the 5 pe hardly affected by the addition of the weak periodic

corresponding Hofstadter butterfly; the amplitude of the Pehotential. However, the effect of the periodic potential is
riodic potential is only a small fraction of the bandwidth of

the disorder-broadened Landau level. However, the small pe
riodic potential still has a sizable effect on the longitudinal
conductance: the magnitude of the off-peak conductance ha
clearly been increase@ee the insgtespecially on the high
energy side. Also, the width of the central peak is increasec
by an amount comparable to the magnitude of the periodic
potential A, with several more peaks separated by clear val-
leys appearing on both sides of the central peak. _

Figure 9 shows another example of the effect of a weak §
periodic potential orwry,. In this case, we plod,, against the
filling factor »(E) calculated as described in Ref. 17. For
disorder only [panels @) and 9d)], we see a narrow,
double-peaked conductance near half-filling, in agreemen
with the general expectation for the IQHEhe double-peak
structure is an artifact of the particular disorder realization -1.5
used in this simulation When a small periodic modulation is
added[panels 8a) and 9c¢)] the conductance shows a much
more complex shape: the central peak is broadened consic
erably, and several extra peaks appear on the low-filling side

Finally, Fig. 10 shows the conductance of a disordered
sample for varying strengths of the periodic potential. The
fixed disorder potential is plotted in Fig. 11. This sample is  FIG. 11. The disorder potential used in the calculation for Fig.
the largest we have considered, with a size of roughly 510, generated by summing random Coulomb scatterers. Solid and
X 5 um?. The effect of the weak periodic potential is clearly dashed contours are at energies —0.02 meV and 0.09 meV, respec-
illustrated in Fig. 10. In the disorder-only cad@@ack ling, tively, which are at the center and right edge of the broadest con-
there is a single, narrow conductance peak corresponding thictance peakA=0.1 meVj in Fig. 10.

=
>

X (um)

165318-9



C. ZHOU AND M. BERCIU PHYSICAL REVIEW B70, 165318(2004)

clearly reflected in the enhancementaf. Comparing the similar approache%!* However, unlike our method, the
results obtained foA=0.1 meV andA=0.05 meV, we notice SCBA is valid only for small disorder and gives only
that the broadening of the conductance péakthis semi-  disorder-averaged quantities. On the other hand, our method
logarithmic ploy is roughly proportional to the strength of also reproduces the results expected for large disdmizr
the periodic potential. Beside this broadening, in the pres- periodic potentigl with long length scale, smooth variation.
ence of the weak periodic modulation,, exhibits strong In this case we find a single, relatively smooth peak in the

sample-dependent fluctuations. On a linear scale, these flugonductance at energies where semiclassical percolated or-
tuations look like clusters of peaks. The physical origin ofPitS connect the opposite edges, and negligible conductance

these fluctuations has been carefully analyzed in Ref. 17/Sewhere. . .
where we argued that even a weak periodic potential can The results come when we investigate the cases where the

L - iodic modulation is comparable, but smaller than the dis-
efficiently create supplementary percolation paths througi‘?er'o X ' : -
the sample, at energies within a range of the ofd&om the order. To our knowledge, this case had not been investigated

e . 7 - previously. We find that even a weak modulation has a non-
critical region. ForA=0.1 meV, this is the area between the trivial effect on the conductance, with the conduction being

d"’!Shed 6?”0'. t.he solid egwpotenﬂal contours in Fig. 11, CoVéignificantly enhanced. New sharp peaks in conductance de-
ering a significant fraction of the sample. _velop around the original conductance peak, increasing its
~One technical note: we used a semilogarithmic scale iyiqth and creating complex oscillatory features. Although
Fig. 10 because the effect of the periodic potential is bettefyese peaks are clearly due to the periodic modulation, their
revealed in logarithmic scale. This is partially due to the factyrigin is not the Hofstadter structure, which is not relevant
that we keptt for the leads constant for all three cases; thisfor |arge disorder. The mechanism of enhanced conduction
implies that asA is changed, the impedance mismatch in-yas explained in detail by us in Refs. 16 and 17. Basically,
creases and the contact resistance can suppress the ovefall periodic potential helps electrons percolate through flat
magnitude ofoyy. regions in the disorder landscape and thus connect localized
states to form new conductive states. This is in qualitative
agreement with recent experimental observatidnghich
show distinct patterns of peaks and valleys in the longitudi-
In this paper we use the Kubo-Landauer formalism tonal conductance of a periodically modulated 2DES instead of
compute directly the longitudinal conductance of a 2DES inthe smooth peak expected for unpatterned samples. However,
the presence of periodic modulations as well as disorder. Theur calculation is limited to thelastic scatteringcontribu-
method employed allows us to study individual disorder re-tion to the conductivity, which has metallic temperature de-
alizations and thus to analyze sample-dependent effects. Opendence. The method is not suitable to explain the
method treats the sample as a “big molecule” connected beemperature-activated conduction in the taiRyf seen in the
tween leads, and is applicable for any type of one-electrosame experiment. We believe that in that region, the conduc-
potentials, both disordered and periodic. This formulation igion is due to hopping among localized states rather than
particularly suitable for long length scale, smooth disordercharge transport through extended states. As demonstrated in
potentials, such as are believed to be dominant in high quaRef. 17, a small periodic potential is very effective in in-
ity 2DES, because in this case the Hamiltonian is a sparsereasing the localization lengths and thus the hopping prob-
matrix that can be handled numerically very efficiently. Ourability.
simulations are performed for large mesoscopic samples Our method of computation has a number of limitations.
(several microns in linear sizecorresponding to roughly 0 One comes from the fact that it is an exact calculation at zero
electron states per Landau level. Although this size is stiltemperature for a large system. Especially in the absence of
smaller than that of most devices used in IQHE experimentglisorder, oy, is a rapidly oscillating function that requires
this type of calculation can help us understand the physicavaluation at a huge number of energy values in order to get
processes in detail. This method can also be very fruitful fom good sampling for temperature averaging, and this is a
investigating transport in various nanoscale devices, and camajor limitation. Secondly, the lead modeling is very el-
also be generalized in a straightforward manner for systemementary, although we can treat the case of semi-infinite
connected to more than two terminals. leads exactly. The simplicity in describing the leads and their
Here, we concentrate on the interplay between a shortoupling to the sample comes from our ignorance of their
wavelength periodic potential and long wavelength disorderdetailed physical characteristics. However, one can straight-
and their role in determining the longitudinal conductance offorwardly generalize our method to describe more compli-
the 2DES. The phenomenology in the asymptotic limits hagated dispersion relations, and different types of channels
been known for a long time. A pure periodic potential splitsand/or couplings to the sample. In particular, the contact re-
the Landau levels into a number of subbands, and the resulsistance due to the mismatch between the leads and the
ing band structure has fractal properties as a function of theample should be minimized as much as possible; this can be
magnetic field. In this case, our simulations show the clearlachieved with a suitable choice of the lead parameters.
separated peaks in longitudinal conductance corresponding The most obvious limitation of this study is that we have
to each subband. If a weak disorder potential is added, thkttle knowledge of the functional form of the disorder and
smaller gaps are closed by disorder, as expected on genethk periodic potential, and how the sample’s LL wave func-
grounds. Our results are in good qualitative agreement withions are coupled to the Fermi sea in the leads. Until such
previous studies of the weak-disorder case, using SCBA ankhowledge is available, detailed quantitative comparisons

IV. CONCLUSION AND DISCUSSIONS
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with the experiments are not warranted. We use two simplésts are designing devices with enhanced periodic potentials,
phenomenological disorder models, and both give qualitathe higher order Fourier components, as well as inter-Landau
tively similar results. Coupled with our understanding of theband mixing which has not been considered here, might play
nature of the wave functiofsee Ref. 1y this gives us the arole. Such cases can also be treated with this formalism, the
confidence to claim that such effects are genuine and shoultbmplications being only of numerical nature.

be observed for smooth, long length scale disorder. If the As more accurate models for the sample disorder and
disorder varies on a much shorter length scale, as may be tmeodulation, as well as the leads and the contacts, on one
case for quantum wires and dges.g., in Refs. 21 and 23 hand, and more powerful computational facilities, on the
we believe that a weak periodic modulation will have veryother hand, become available, this formalism will allow for
little or no effect, simply because in this case there are naneaningful comparisons with experimental results for trans-
relatively flat regions in the disorder landscape where thgort in mesoscopic systems.

periodic potential plays the dominant role. This is indeed
confirmed by simulations we performed for models with
short length scale disord¢not shown herg where the ad-
dition of a weak periodic modulations has no noticeable ef- We thank Sorin Melinte, Mansour Shayegan, R.N. Bhatt,
fect on the longitudinal conductance. As for the periodic po-Paul M. Chaikin, and Mingshaw W. Wu for valuable discus-
tential, we have been using only the components withsions. This research was supported by NSF Grant No. DMR-
shortest reciprocal lattice vectors. However, as experimentaB213706(C.Z.) and NSERC of Canadd/.B.).
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mobility is estimated to bé/7~8 K [P. Chaikin(private com- nels. Each injected electron either comes out on the other side of
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