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In this paper we demonstrate that a ground state consisting of a quantum liquid of merons and antimerons
can quantitatively describe the position and orientation of the incommensurate peaks observed in elastic
neutron scattering on cuprates, with essentially no free or adjustable parameters. At small dopings, the relevant
length scale is the transverse size of a meron-antimeron pair, defined by the doping concentration. This results
in a displacement of the incommensurate peaks fromsp ,pd which is proportional to doping. At higher
dopings, the meron core size becomes relevant, leading to a saturation of the displacement. The formation of
stripe-like phases atd=1/8 and thesuppression of the superconductivity is also recaptured in this model.
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I. INTRODUCTION

Magnetism is central to the phenomenology of the high-
temperature superconducting cuprates. Neutron scattering
experiments directly probe the arrangement of electronic mo-

mentshSWnj. In particular, the magnetic neutron elastic scat-
tering cross section is1

ds

dv
, uFW msqWdu2 −

uqW ·FW msqWdu2

q2 , s1d

where

FW msqWd =
1

ÎN
o
n

eiqW·rWnSWn s2d

is the magnetic structure factor. The positions of elastic neu-
tron scattering peaks allow identification of the magnetic
structure, while their intensity is related to the local stag-
gered magnetization.

The cuprate undoped parent compounds exhibit long-
range antiferromagnetic order(LR AFM) order, with the

main magnetic Bragg peak atQW =sp /a,p /ad, wherea is the
lattice constant.2,3 While very low dopingd.0.02 destroys
the long-range AFM order, robust short-range AFM correla-
tions are observed well into the superconducting phase.4 For
d.0.02, the magnetic Bragg peak splits into four incom-

mensurate peaks symmetrically placed aboutQW . Their dis-

tance fromQW increases linearly with doping up to aroundd
=0.12, above which it saturates.5–7 For dø0.05, the four
peaks are arranged diagonally in the Brillouin zone, while
for 0.05,d,0.12 they are centered along the vertical and
horizontal(colinear) directions at5

qWd =
p

a
s1,1 ± 2dd and qWd =

p

a
s1 ± 2d,1d. s3d

These peaks have been observed initially in LaCuO, but
more recently also in YBaCuO.8,9 They appear to be a ge-
neric feature of the cuprates.

An early interpretation of these incommensurate peaks,
based on the assumption of a large nested Fermi surface,10

was contradicted by angle resolved photoemission spectros-
copy (ARPES) measurements which reveal no large Fermi
surface in the underdoped state.11–13Another interpretation is
linked to the generation of various spiral spin-density waves
states,14 whose pitch varies linearly with the doping concen-
tration. A third proposal is based on the existence of charged
stripes in the AFM background,15–17 while a fourth proposal
is based on the QED3 model of the pseudogap phase.18 In
this paper we demonstrate that a ground state consisting of a
quantum liquid of merons and antimerons can quantitatively
describe the position and orientation of the incommensurate
peaks observed in elastic neutron scattering on cuprates, with
essentially no free or adjustable parameters.

Merons(antimerons) are vortices in the spin configuration
with winding number +1s−1d, which trap a doping hole in
their core (see Fig. 1). They are nucleated upon doping a
modified version of the Hubbard model,19–21 in which the

FIG. 1. Spin distributionSWn for an isolated meron vortex on a
10310 lattice. The meron is centered on the plaquette marked by
M. The spins of either magnetic sublattice rotate by 2p on any
closed path that surrounds the vortex core. This self-consistent con-
figuration was obtained within the static Hartree-Fock approxima-
tion for the spin-flux Hamiltonian(see Ref. 19).
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effective one-electron dispersion relations at half filling
match those measured with ARPES.11 In other words, there

are four Fermi points atkW =p /2as±1, ±1d with isotropic dis-
persion in their vicinity. The isotropic dispersion near the
Fermi points favors the appearance of textures with azi-
muthal symmetry, i.e., vortices or merons, upon doping. This
is in sharp contrast to the conventional Hubbard andt-J
models, which predict large nested Fermi surfaces near half
filling (not observed experimentally). The highly anisotropic
dispersion near such an extended Fermi surface favors the
appearance of quasi one-dimensional(1D) textures with dop-
ing, i.e., charged stripes.15–17 This assertion is supported by
numerical studies22 which show that the addition of a small
second-nearest neighbor hopping to the Hubbard ort-J
model, which decreases this anisotropy by increasing the dis-
persion along thes0,p /ad−sp /a,0d direction, also sup-
presses the stripe formation.

We have shown that the merons aremobile charged
bosons,19–21 since the magnetic vortex carries a total spin
zero and traps exactly one hole. This bosonic nature of the
charge carriers provides a natural and compelling mechanism
for the non-Fermi metal observed above the superconducting
phase. Furthermore, given their topological nature, merons
and antimerons can only be nucleated in pairs, such that the
total topological(winding) number remains zero. In a semi-
classical picture, there is a strong logarithmic attraction be-
tween each meron and antimeron, since the further away a
meron is moved from an antimeron, the more spins in be-
tween them are rotated out of their AFM background orien-
tation, and the more magnetic exchange energy is lost. This
strong attractive force, which at intermediate range over-
comes the Coulomb repulsion between the charged cores,
provides a very natural charge pairing mechanism within a
purely repulsive two-dimensional(2D) electron system. We
have recently demonstrated that the wave function describing
stable meron-antimeron pairs hasd-wave rotational
symmetry.20 As a result, the charged bosonic meron-
antimeron pair acts as a preformed “Cooper pair” of the
d-wave superconducting state. This microscopic model pro-
vides a plausible answer to the two most puzzling questions
of the high-temperature superconductivity physics, namely
(1) what is the nature of the nonquasiparticle-like charge
carriers responsible for the non-Fermi liquid metal observed
above the superconducting state, and(2) how can strong
pairing occur in a purely repulsive electron system. This mi-
croscopic model also provides a unified description(with no
free or adjustable parameters) for the observed midinfrared
optical absorption, destruction of long-range AFM order with
doping and aspects of ARPES.19–21

It was independently suggested23,24 that this modified
Hubbard model, called the spin-flux model, can be derived
from a fundamental, previously unrecognized, kinematic
property of spin-1/2 electrons as they execute a closed tra-
jectory in coordinate space. This concept is entailed in the
proposition that a type of many-electron wave function un-
derlies the observed antiferromagnetic spin liquid. In this
quantum state, electrons undergo a 2p rotation (somersault)
in their internal space of Euler angles as they traverse an
elementary closed loop(plaquette) of the two-dimensional

(2D) lattice. This lowers the many-body energy relative to
that of a conventional AFM and has the immediate conse-
quence that at half filling, the effective one-electron disper-
sion relations quantitatively agree with the ARPES data20,21

without the need for ad hoc band structure parameters.12 The
incorporation of the correct one-electron dispersion from the
outset then reveals that doping leads to the nucleation of
merons and antimerons.

The paper is organized as follows: in Sec. II, we consider
the 1D analog of charged merons, the charged domain
walls.25–27 The simpler 1D case provides valuable intuition
on the effect of topological excitations on the magnetic struc-
ture factor. In Sec. III we demonstrate that a liquid of merons
and antimerons has a magnetic structure factor which is in
quantitative agreement with experiments. We do this using a
very simple model to simulate the spin distributions of such
a liquid of merons and antimerons. The only parameters are
the dopingd, which defines the concentration of vortices,
and the vortex core sizer, which characterizes the localiza-
tion length of a hole in the vortex core. In Sec. IV we briefly
analyze the 1/8-doping case, and show that it too can arise
from having merons and antimerons organized in a specific
way, in agreement with the Tranquada configuration.28 Sec-
tion V contains the conclusions.

II. ILLUSTRATIVE EXAMPLE: DOMAIN WALLS ON A 1D
AFM CHAIN

Consider a chain of lattice constanta parallel to thex axis

and letSWn=SneWy be the expectation value of the spin at siten,
whereeWy is a unit vector parallel to they axis. For a hypo-
thetical chain with LR AFM characterized bySn=s−1dnS,
elastic neutron scattering would detect the structure factor

Fmsqd , dq,Q, s4d

whereQ=p /a is the 1D AFM wave vector.
In previous work based on the Hartree-Fock and configu-

ration interaction methods,25–27 we demonstrated that essen-
tial features of the exact Bethe ansatz solution of the 1D
Hubbard chain can be recaptured by considering fluctuations
around a hypothetical AFM mean field, in which each hole
added to AFM Hubbard chain nucleates a magnetic domain
wall. The magnetic domain wall mediates a transition from
one mean-field AFM ground state(“1” ) to the degenerate
mean-field AFM ground state(“2” ) in which all spins are
flipped (i.e., S→−S). The essential fluctuation(tunneling)
correction to mean-field theory is the quantum mechanical,
translational motion of the charged domain wall along the
length of the chain. The resulting spinless charged domain
wall is a bosonic collective excitation with high mobility and
dispersion in excellent agreement with the Bethe ansatz.27

The appearance of a single domain wall has a drastic ef-
fect on the magnetic structure factor atq=Q, as shown in
Fig. 2. Mathematically, the spin distribution in the presence
of a domain wall is well described by26
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Sn = s− 1dnStanhSn − xo

r
D , s5d

where S is the staggered magnitude of the spins,xo is the
position of the domain wall(xo=0.5 in Fig. 2) and r is the
domain-wall radius measured in units ofa. Physically, r
characterizes the localization length of the hole trapped in
the core of the domain wall. In the 1D Hubbard model,r
, t /U, wheret is the nearest neighbor hopping andU is the
on-site Coulomb repulsion.26,27 Since the hyperbolic tangent
is an odd function, it follows that in the presence of even one
domain wall with arbitraryr, the cross section for magnetic
scattering vanishes at the AFM wave-vectorQ, where it is
maximum in the undoped case.

Clearly, a chain with cyclic boundary conditions can only
accommodate an even number of domain walls, with each
domain wall(associated with ap flip of the AFM order from
ground-state “1” to ground-state “2”) followed by an antido-
main wall (associated with thep-flip of the AFM order back
from ground-state 2 to ground-state 1). FmsQd still vanishes

for any dÞ0, since on average the distributionS̃nsQd
=expsiQnadSn contains as many spins up as down. However,
for finite dopings a new length scale appears, defined by the
average distanced between domain walls. Since each hole is
trapped in the core of one domain wall,d=a/d, whered is
the doping concentration. As a result, the magnetic structure
factor becomes nonzero at the incommensurate wave vectors

qd
s±d = Q ±

p

d
=

p

a
s1 ± dd. s6d

A pictorial demonstration for this is provided in Figs. 3 and
4. In Fig. 3 we plot the spin distributionSn for a cyclic chain
of 32 sites with four domain walls(upper panel). In the

middle panel we plotS̃nsQd, and by symmetry it is apparent

that FmsQd=onS̃nsQd=0. This equality also holds if the dis-
tances between the domain walls fluctuate randomly, since
on average there are still equal numbers of up and down

S̃nsQd values. The lower panel shows the real part of

S̃nsqd
s±dd=expsiqd

s±dnadSn. While the expsiQnad phase factor
eliminates the fast (AFM) oscillations, the expfisqd

s±d

−Qdnag=exps±ipna/dd phase factor eliminates the slower
domain-wall alternation.

FIG. 2. Spin distributionSn for a chain with a domain wall
centered atxo=0.5 and with a domain-wall radiusr=1 (upper

panel). For convenience,S̃nsQd=expsiQnadSn is shown in the lower

panel. By symmetry,FmsQd=onS̃nsQd=0.
FIG. 3. Spin distributionSn for a cyclic chain with 32 sites and

four domain walls withr=1 centered atxo=4.5, 12.5, 20.5, and

28.5 (upper panel). S̃nsQd=expsiQnadSn is shown in the middle

panel. By symmetry,FmsQd=onS̃nsQd=0. In the lower panel we

showReS̃nsqdd=RefexpsiqdnadSng. Clearly,Fmsqdd=onS̃nsqddÞ0.

FIG. 4. Absolute value of the magnetic structure factor for the
chain shown in Fig. 3, as a function ofqa. uFmsqdu has two main
peaks atqd=Q±p /d, whered=8a is the average distance between
consecutive domain walls. Smaller satellite peaks at higher order
harmonics are also visible.
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The absolute value of the magnetic structure factorFmsqd
for this 32-site chain is shown in Fig. 4. The cyclic chain has
N=32 sites, therefore only the discrete wave vectorsq
=2p /Nam, with m=0, . . . ,N−1 (the first Brillouin zone) are
considered. Instead of a single large peak atQ=p /a, char-
acteristic of the LR AFM undoped chain, there are two sat-
ellite peaks atqd

s±d. Some higher harmonics are also present.
The positions of these satellite peaks shift away fromQ as
the doping increases. Fluctuations of the distance between
successive domain walls lead to a finite width of these satel-
lite peaks.

The difference between the hypothetical undoped chain
described above and a purely one-dimensional chain in its
ground state is related to the presence of charge-neutral do-
main wall solitons.27 These neutral domain walls are respon-
sible for the destruction of the LR AFM order for the un-
doped chain(as predicted by the Mermin-Wagner theorem).
The concentration of neutral domain walls is of the order
1/j, wherej is the AFM correlation length in the undoped
state. If the doping holes become bound to these preexisting
domain walls, the initial peak structure in magnetic neutron
scattering data will be independent of doping. Only if the
doping is large enough that extra domain walls must be cre-
ated over and above the pre-existing ones, will the peak po-
sitions shift substantially with doping concentration. Such
behavior has been observed29 in the quasi-one-dimensional
sS=1d oxide, Y2−xCaxBaNiO5, whose undopedsx=0d parent
is a quantum spin liquid. Here, doping is accompanied by
incommensurate peaks whose position is initially indepen-
dent of the doping concentration.

Our hypothetical AFM chain is a useful model for a one-
dimensional compound embedded in a three-dimensional
crystal structure. Here, small interactions with the host crys-
tal stabilize the LR AFM order below a characteristic tem-
perature determined by crystal field interactions. In this case,
there are no neutral domain walls in the undoped state at zero
temperature. As a result, the shift of the double-peak struc-
ture increases linearly with doping, as described above.
However, for large dopings, the domain-wall core sizer in-
creases as domain-wall cores start to overlap, and eventually
becomes comparable to the average spacing between domain
walls. As this second length-scale becomes relevant, the in-
commensurate peaks are no longer expected to exhibit a
simple linear shift with further doping.

III. TWO-DIMENSIONAL AFM PLANES

In direct analogy with the 1D chain described above, an
undoped AFM on a 2D square lattice of lattice constanta
(with long-range order imposed by weak interactions with a
3D host crystal) exhibits a magnetic neutron scattering peak

at the AFM wave-vectorQW =p /as1,1d

uFW msqWdu , dqW,QW . s7d

This Bragg magnetic peak is a characteristic of undoped cu-
prate parent compounds.2,3

A. Charged vortex stripes

The appearance of the incommensurate peaks in the mag-
netic structure factor has been proposed as evidence for
charged stripes.15–17A stripe is a topological line defect(do-
main wall) mediating ap flip from one AFM ground state to
the other onesS→−Sd, with the doping holes trapped along
the stripe backbone(see Fig. 5). Following our analysis of
the 1D domain walls, it is apparent that stripes suppress the

magnetic structure factor at the AFM wave-vectorQW , i.e.,

FmsQW d→0. However, if the average distance between the
stripes isd, then two satellite incommensurate peaks will
appear in the magnetic structure factor at the wave-vectors

qWx,d = Sp

a
±

p

d
,
p

a
D . s8d

From Eqs.(8) and (3), the peaks of the stripe model are
found to match the experimental peaks if

d

a
=

1

2d
s9d

The factor of 2 appearing in Eq.(9) indicates that the stripes
must be half filled with holes, i.e., that only every second site
along the stripe backbone traps a hole. In order to explain the
observed four satellite peaks of the magnetic structure factor,
it is also necessary that half of the CuO planes contain stripes
oriented in thex direction while the remaining CuO planes
contain stripes oriented in they direction. The rotation of the
peaks from the horizontals to the diagonals belowd=0.05
would likewise require a 45° rotation of all the stripes to
opposing diagonal orientations on alternating CuO planes.
Finally, inelastic neutron scattering data is associated with
dynamical fluctuations of the stripe structures.

FIG. 5. Schematic representation of a 1D chain with several
charged domain walls. Each domain wall mediates the transition
from one AFM ground state to the other one and has a hole trapped
in its core. A 2D plane with parallel stripes can be thought of as
being obtained from the corresponding 1D chain through translation
along the stripe backbones. The doping holes are trapped in the
stripe backbone.
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Although stripes can be obtained in mean-field approxi-
mations of the doped Hubbard model,15–17,19 the self-
consistent solutions require one hole per backbone site. As
such, they describe insulators, in contradiction to experi-
ments. More recently, stripes with different(not necessarily
one-half) filling factors have been found in thet-J model30

using a density matrix renormalization group approach, and
also in the Hubbard model,31 using dynamical mean-field
theory methods. However, other numerical calculations show
conflicting results.32 Stripes have been proposed, in a more
heuristic sense, as a balance between the energy gain of
charge carriers which phase separate from AFM insulating
regions and the energy cost of electrostatic Coulomb repul-
sion among the holes.33 Given these difficulties and the de-
tailed tuning needed to reconcile the stripe model with the
observations, it is interesting to explore a simpler and more
natural explanation of the neutron scattering experiments.

B. Merons and antimerons

A simple explanation of the detailed aspects of magnetic
neutron scattering is related to the nucleation of mobile
2ps−2pd spin vortices(antivortices) which trap the charge
carriers in their vortex cores, i.e., merons and
antimerons.19,20,25,26They represent the second natural gen-
eralization of the 1D charged domain wall to a topological
excitation of the 2D plane. As shown schematically in Fig. 6,
along any line that passes through the core of the meron, the
magnetic order is that of a 1D domain wall. Whereas the
charged stripes are line defects(see Fig. 5), the merons are
point-like excitations.

The spin distributionSWn for one isolated meron vortex is
shown in Fig. 1. The spins of either magnetic sublattice ro-
tate by 2p along any closed path surrounding the vortex
core. For symmetry reasons, it is again apparent that

FW msQW d=onSWn expsiQW ·rWnd=0. This means that the spins be-
longing to the vortex have a vanishingly small contribution

to the magnetic structure factor at precisely the antiferromag-

netic wave vectorQW .
In the case of very low doping, there are very few merons

and antimerons nucleated by the doping holes. Each meron is
tightly bound to an antimeron, and the various meron-
antimeron pairs are separated by large regions of spins in the
AFM background. Such an isolated tightly bound meron-
antimeron pair is shown in Fig. 7. The magnetic structure
factor of such a configuration still has a single large peak at

the AFM wave vectorQW , since all the spins in the AFM
background are contributing to it. As discussed, the spins
belonging to the meron-antimeron pair have vanishing con-

tribution to FW msQW d, and thus the intensity of the Bragg peak
decreases as the density of meron-antimeron pairs(i.e., the
doping concentration) increases. However, as long as various
meron-antimeron pairs are well separated, the system exhib-
its long-range AFM order.

Self-consistent Hartree-Fock calculations(carried out on a
modelU / t=5−7) reveal that tightly bound meron-antimeron
pairs distort the spin orientation of about 100 sites(see Fig.
7). Consequently, for dopingsd.0.02 the meron-antimeron
pairs start to overlap and each spin of the lattice is engulfed
by either a meron or an antimeron vortex. Since the contri-

bution of each vortex toFmsQW d is vanishingly small and there
are no unaffected AFM background spins remaining, it fol-
lows that aboved,0.02 the magnetic neutron scattering in-

tensity atQW is suppressed. This provides a simple and natural
explanation for the experimentally observed suppression of
the long-range AFM order atd,0.02.

For d.0.02, different meron-antimeron pairs are in direct
contact with one another. The magnetic interactions between
vortices depend logarithmically on the inter-vortex distancer

FIG. 6. Schematic representation of the 1D charged domain
wall. For simplicity, we only show the orientation of the spins on
one magnetic sublattice(the spins on the other sublattice are locally
antiparallel). If we perform a ±2p rotation of this structure about an
axis centered in its core, we obtain a 2D spin vortex or antivortex,
with the doping hole trapped in the vortex core. We call such ob-
jects merons or antimerons.

FIG. 7. Spin distribution for a tightly bound meron-antimeron
pair. The meron(M) and the antimeron(A) are localized on neigh-
boring plaquettes. The total winding number of the pair is zero. The
magnetic AFM order is disturbed only in the neighborhood of the
vortices. This self-consistent configuration was obtained within the
static Hartree-Fock approximation for the spin-flux Hamiltonian
(see Ref. 19).
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Esrd , − Jn1n2 ln
r

r
, s10d

whereJ=4t2/U is the exchange integral, andn1,n2 are the
corresponding topological numbers(n=1 for a meron,n=
−1 for an antimeron). Since the merons and antimerons are
charged, there is a hard core repulsion between them in ad-
dition to this logarithmic interaction. Minimization of this
total energy suggests a crystal-like ground state, with alter-
nating merons and antimerons frozen on an ordered superlat-
tice. However, each meron-antimeron pair can significantly
lower its energy through translational and rotational motion.
The kinetic energy thus gained is of the order oft for each
vortex20 and more than compensates the loss of exchange
energysJ, t2/U, td caused by “melting” the meron crystal
configuration. As a result, we expect the ground state to be a
two-component quantum liquid, with the charged merons
and antimerons dynamically moving over the entire lattice.

In order to estimate its magnetic structure factor, we con-
sider a simplified model of this ground state: we average
over many random distributions of merons and antimerons,
corresponding to different “snapshots” of the quantum liquid.
Such snapshots are simulated as follows. We randomly

choose the positionsRW M,i andRW A,i, with i =1,N0, of the cen-
ters of theN0 merons and antimerons on aN3N lattice,
corresponding to a nominal dopingd=2N0/N2. For any site
rW=xeWx+yeWy of the lattice, we define

fsrWd = o
i=1

N0 Stan−1 y − YM,i

x − XM,i
− tan−1 y − YA,i

x − XA,i
D . s11d

In order to avoid singularities, we assume that each meron
and antimeron is centered in the core of a plaquette, not on a
lattice site. We show later that this condition can be relaxed.
Then, the spin-distribution

SxsrWd = s− 1dsx+yd/aScosfsrWd = SReeiffsrWd+QW ·rWg, s12d

SysrWd = s− 1dsx+yd/aSsinfsrWd = SIm eiffsrWd+QW ·rWg s13d

describes a locally AFM configuration, with has a 2p spin
vortex around any centerRM,i and a −2p spin-antivortex

around any centerRW A,i. In Fig. 8, upper panel, we show a
typical initial configuration obtained in this manner. While
Eqs. (11)–(13) insure the appearance of the vortices around
the chosen plaquettes, they do not enforce cyclic boundary
conditions. For instance, they=1, x=2, . . . ,5 spins are par-
allel, not antiparallel, to the spins on the opposite boundary
y=20, x=2, . . . ,5, etc. Such ferromagnetically aligned re-
gions act effectively as short stripes, and therefore may in-
fluence the magnetic structure factor considerably. In order
to eliminate such unwanted contributions, we reinforce the
cyclic boundary conditions through a simple iterative pro-
cess. We first update the spins of one magnetic sublattice by
aligning them antiparallel to the sum of their four nearest
neighbor spins(in effect lowering the exchange energy).
Then we update the spins on the second magnetic sublattice
in the same way, until successive iterations no longer modify
the spin distribution. However, we do not change the orien-

tation of any of the four spins on the corners of any of the
plaquettes on which a vortex or antivortex is centered. If we
allow these spins to be updated in the same way, we see how
from iteration to iteration merons get closer to antimerons
and eventually annihilate each other, leading to a final long-
range AFM state(corresponding to an absolute minimum
total exchange energy). In the real system, meron-antimeron
annihilation is prevented by the Coulomb repulsion between
the charges trapped in their cores. We enforce this by not
allowing the merons and antimerons to change their posi-
tions. The final configuration obtained for the initial snapshot
shown in the upper panel of Fig. 8 is shown in the lower
panel of Fig. 8. By comparison to the upper panel, it is ap-
parent that only the spins near the boundaries have rear-
ranged their orientations so that locally AFM ordering is re-
inforced.

FIG. 8. Upper panel: spin distributionSWsrWd for a random collec-
tion of 15 merons and 15 antimerons on a 20320 lattice. The
merons are centered on plaquettes marked by dark squares, while
the antimerons are centered on plaquettes marked by light squares.
Lower panel: same distribution as in the upper panel, but with cy-
clic boundary conditions imposed. This leads to the appearance of
an extra meron[centered at(1.5, 20.5)] and antimeron[centered at
(5.5, 20.5)].
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We note that our iterative procedure sometimes leads to
the appearance of one or more new pairs of vortices near(or
on) the boundary plaquettes. In Fig. 8, one new pair appears
in the lower panel, with the vortex centered at(1.5, 20.5) and
the antivortex centered at(5.5, 20.5). We cannot predicta
priori precisely how many new pairs of vortices will be gen-
erated on the boundaries for any initial random distribution.
However, the appearance of new vortices changes the effec-
tive “doping,” d=2N0/N2. To compensate for this, we start
our simulations with a somewhat smaller number of vortices
than that corresponding to the doping under consideration.
We adjust this initial number of vortices such that the aver-
age doping is the desired one, once the cyclic boundary con-
ditions have been imposed. We average for 1000 initial ran-
dom configurations of merons and antimerons. Each final
configuration(snapshot) thus generated is assigned an equal
statistical weight in computing the average magnetic struc-
ture factor.

For anN3N lattice with cyclic boundary conditions, the
linear resolution in the momentum space is 2p /Na. In order
to insure that this resolution is smaller than 2dp /a (the shift
of the experimentally observed incommensurate peaks), we
choose the linear dimension of the latticeNù1/d. For all the
simulations shown here,N=100 (we verified in a few cases
that the average magnetic structure factor is unchanged for
different N).

The resulting average structure factor for 0.02ød,0.05
exhibits four incommensurate peaks diagonally aligned[see
Figs. 9(a) and 9(b)]. In all cases there is considerable overlap
of the four incommensurate peaks. This type of diagonal
alignment is precisely what is observed experimentally for
extremely underdoped samples.(For dopingsd,0.02 the
four incommensurate peaks merge into the AFM Bragg peak,
as already discussed).

Typical results obtained for runs withdù0.05 are sum-
marized in Figs. 10 and 11. In Fig. 10 we plot the ensemble
averaged structure factor corresponding to dopingd
=0.100±0.003.[The histogram of the number of final snap-
shots with numberN0 of vortex-antivortex pairs(on a 100
3100 lattice) is shown in Fig. 11]. As expected, the nucle-
ation of vortices leads to a suppression of the structure factor
at the AFM wave-vectorQ=sp /a,p /ad. Instead, four broad
shifted peaks appear, with horizontal and vertical(collinear)
displacements.

In Figs. 12 and 13 we plot the average magnetic structure
factor corresponding to dopingsd=0.05, 0.10, and 0.15,
along the various cuts in the Brillouin zone indicated in the
insets. The positions of the experimentally measured peaks
are also marked in all graphs, and they are found to be in
excellent agreement with our results. The collinear shift of
the incommensurate peaks can be found more precisely by
fitting sums of Gaussians to these profiles. The results ob-
tained for dù0.05 are summarized in Fig. 14. The full
circles show the results obtained for liquids of merons and
antimerons, while empty circles and squares show the ex-
perimentally measured displacements for Sr and Nd-doped
LaCuO samples.5 For dø0.12 the agreement is excellent.
For d.0.12, the experimentally measured shifts saturate,
while the ones obtained from our simple model of the
meron-antimeron liquid continue to increase linearly with

doping. As we discuss later, this discrepancy is removed
within a more accurate description which takes into consid-
eration the effects of the second length scale, the vortex core
sizer.

An explanation for the results summarized in Fig. 14 can
be obtained if we analyze the contribution to the magnetic
structure factor of meron-antimeron pairs. Ford.0.02 vari-
ous meron-antimeron pairs overlap and we can regard the
ground state as a liquid of meron-antimeron pairs which ex-
perience dissociations and recombinations as the vortices
move around and interact with one another. The magnetic
structure factor is, to first order, a sum of the contributions of
individual meron-antimeron pairs, where for a given snap-
shot each meron is considered “paired” to its closest antim-
eron.

In Figs. 15(a) and 15(b) we show the magnetic structure
factors for the single meron-antimeron pairs depicted in Figs.
16(a) and 16(b), respectively. We consider fairly large lat-
tices to have a good resolution in the Brillouin zone. At the
same time, we consider a meron-antimeron separation which
is comparable to the lattice size.[If the pair is tightly bound
(small) as in Fig. 7, the contribution of the pair is hidden by

FIG. 9. The average structure factor for 1000 random configu-
rations corresponding to the average dopingsd=0.02 (upper) and
d=0.04 (lower panel). The wave vectors are measured in units of
2p /a. The four incommensurate peaks are aligned along the diago-
nals, in agreement with experimental observations for such ex-
tremely underdoped samples.
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the dominant contribution of the background spins to the

AFM peak atQW ]. As seen in Figs. 16(a) and 16(b), the line
connecting the meron and the antimeron has the characteris-
tics of an AFM domain wall(line defect). Crossing this line,
along an orthogonal path, we observe ap flip in the AFM
orientation of the spins. As discussed, such domain walls
lead to the appearance of incommensurate peaks in the mag-
netic structure factor, whose displacement from the AFM
peak is inversely proportional to the average(transverse) dis-
tance between domain walls. For the meron-antimeron pairs

shown in Figs. 16(a) and 16(b) (with periodic boundary con-
ditions) this transverse separation is simply the size of the
sample sN=10d. Consequently, the peaks are shifted by
±0.1s2p /ad in Figs. 15(a) and 15(b), in a direction transver-
sal to the meron-antimeron backbone.

Any snapshot of a liquid ground state has various pairs
with various orientations and at various distances from each
other. Each pair gives a maximum contribution to the mag-

netic structure factor for wave vectors shifted fromQW in a
direction perpendicular to the meron-antimeron backbone.
The shift is of order 2p /dt, wheredt is the average transverse

FIG. 10. The average structure factor of 1000 random configu-
rations corresponding to an average dopingd=0.100±0.003(also,
see Fig. 11). The wave vectors are measured in units of 2p /a. The
structure factor is suppressed at the AFM wave-vectorQ
=sp /a,p /ad but exhibits four displaced peaks.

FIG. 11. Histogram showing the number of configurations cor-
responding to a given numberN0 of pairs of vortices and antivorti-
ces in the set of 1000 random configurations whose average struc-
ture factor is shown in Fig. 10.

FIG. 12. Average magnetic structure factor along two directions
in the Brillouin zone indicated in the inset, for dopingsd=0.05,
0.10, 0.15. The wave vector is measured in units of 2p /a. The
positions of the experimentally measured peaks are indicated on
each graph(short lines), and are found to be in excellent agreement
with those predicted in our model.

FIG. 13. Same as in Fig. 12, but for different cuts in the Bril-
louin zone, as indicated in the insets.
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separation between pairs. The average area occupied by a
pair is a2/d=dtdl, where dl is the average longitudinal
(meron-antimeron) distance. Since the pairs are defined in
terms of nearest neighbors,dl ,dt. In particular, if dl is
roughly constant, it follows thatdt,d and therefore the
shifts scale like 1/d. This is precisely the type of behavior
uncovered in the numerical simulations(see Fig. 14). In fact,
from Fig. 10 we can see that the peaks are quite broad and
that there is also significant weight in the average structure
factor along the diagonal direction(also see middle panel in
Fig. 13), meaning that ford=0.10 there is still a considerable
fraction of pairs diagonally aligned. Asd increases, most of
the weight becomes localized in the horizontal peaks, with
the diagonal contribution considerably suppressed, as seen in
the lower panel of Fig. 13 ford=0.15. This is related to the
fact that at higher dopings the increased number of pairs
must be more closely packed, and therefore collinear ar-
rangement is preferred. By symmetry, one expects roughly
equal numbers of pairs with both the horizontal and vertical
alignment, leading to the appearance of the four incommen-
surate peaks. On the other hand, ford,0.05 the peaks are
seen along the diagonals, implying that at such extremely
low dopings pairs are mostly diagonally aligned, thus taking
advantage of the increased area available to each pair.

The discrepancy between our simple model and experi-
mental results ford.0.12 can also be explained. The linear-
ity of the shift with the doping obtained in our simulations of
liquids of merons and antimerons, is simply a consequence
of incorporating only one length scale, namely the(doping-
controlled) average transverse distance between pairs of vor-
tices. However, there is a second length scale in the system,
given by the localization length of the hole in the vortex
core. The trapping of the hole in the vortex core leads to a
suppression of the magnitude of the spins in the vortex core,
and this, in turn, affects the magnetic structure factor. In
order to model this suppression, we should, in fact, use the
spin distributions[see Eqs.(12) and (13)]

SxsrWd → SxsrWdfsrWd, s14d

SysrWd → SysrWdfsrWd s15d

with

fsrWd = p
i=1

N0

tanhS urW − RW M,iu
r

DtanhS urW − RW A,iu
r

D , s16d

whereRW A,i, RW M,i, i =1, . . . ,N0 are the positions of the meron
and antimeron cores, andr is the characteristic size of the
vortex core, determined by the localization length of the hole
inside the core. The introduction of the functionfsrWd removes
the necessity of asking that vortices are always centered on a
plaquette. The case studied so far[see Eqs.(12) and (13)]
corresponds tor→0. One expects this to be an acceptable
approximation in the small doping regime, where the average
distance between vortices is much larger thanr. At higher
dopings, however, the two length scales become comparable
and the limitr→0 is no longer appropriate.

We computed the average structure factor for liquids of
merons and antimerons corresponding to various dopingsd
ù0.05 and various core sizesr. In all cases, we observe the
appearance of the four collinear incommensurate peaks, but

FIG. 14. The collinear shiftdq, in units of 2p /a, as a function of
the dopingd. The full circles indicate the results obtained for liq-
uids of merons and antimerons. The empty circles are experimental
results for Sr-doped samples, and the squares are experimental re-
sults for Nd-doped samples, from Ref. 5.

FIG. 15. The structure factors for the two meron-antimeron
pairs shown in Figs. 16(a) and 16(b), respectively. The wave vector
is measured in units of 2p /a. In both cases, a pair of satellite peaks
appears, with an orientation perpendicular to that of the meron-
antimeron axis in real space.
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now their position depends both ond and onr, as shown in
Fig. 17. As expected, for small dopings there is little depen-
dence ofdq on r, with the shiftdq being almost constant for
d=0.05. However, for larger dopingsr becomes important,
and can lead to a significant decrease in the magnitude of the
shift.

Since the core sizer characterizes the localization of the
hole in the vortex core, one must go beyond classical models
in order to estimate it. Using the Hartree-Fock approximation
described in Ref. 19, we can obtain the self-consistent spin
configuration of an isolated vortex(see Fig. 1). The core size
r, t /US,25,26 whereU characterizes the on-site repulsion,t
is the hopping matrix andS is the magnitude of the staggered
spin in the AFM undoped background. ForU / t=5 we find
r /a=1.05±0.05. The valuer /a=1 (or smaller, for larger
U / t values) can only be used for low concentrations, where
the average inter-vortex distance is large enough that each
vortex core can be treated as being isolated. As the doping
increases and the vortex cores themselves start to overlap,
the core radiusr increases. This can also be seen from the
fact that with increased doping the effective Mott-Hubbard
gapD=US decreases both due to a decrease of the effective

average spinS through suppression in the vortex cores, and
also because of the direct filling of the Mott-Hubbard gap
with localized levels on which the doping holes are
trapped.19,20 In fact, the Hartree-Fock calculations of Ref. 19
suggest that ford,0.30 the Mott-Hubbard gap is completely
closed and the ground state evolves towards a homogeneous
Fermi-liquid metal, with a partially filled conduction band.
This suggests thatr→` for d,0.30.

Comparing Figs. 14 and 17 we see that we get both the
linear increase withd for d,0.12, and the saturation above
d.0.12 provided thatr /a,1 (or smaller) for d,0.12, and
r /a,1.6 and 2.6 ford=0.15 and 0.17, respectively. This
fairly steep increase inr with d needed to saturate the value
of dq for d.0.12 is not unreasonable, ifr is diverging as
d→0.30. In fact, the existence of a limiting concentrationd
for which r diverges is apparent in our simple model of the
vortex distributions[Eqs.(12) and (13)]. For concentrations
dù0.20, we could not generate vortex configurations on the
lattice. This happens because the four spins in the corners of
each plaquette(on which a vortex or antivortex is centered)
must satisfy the ±2p vortex condition. This leads to frustra-
tion if too many vortices are being squeezed too close to one
another. Fordù0.20, creation of new vortices with doping
becomes impossible and a transition towards a homogeneous
ground state must take place, i.e.,r→`.

IV. STRIPE PHASES OF THE MERON-VORTEX MODEL:
SUPPRESSION OF SUPERCONDUCTIVITY AT 1/8

DOPING

The d=1/8 doping is very special, because in some
compounds34 superconductivity is suppressed at this doping.
In a recent paper,19 we demonstrated(using a static Hartree-
Fock approximation and a very small anisotropy in the elec-
tron hopping) the appearance of a self-consistent ordered
configuration of merons and antimerons at this doping. The

FIG. 16. A diagonal(top) and a horizontal(bottom) meron-
antimeron pair is depicted. The corresponding magnetic structure
factors are shown in Figs. 16(a) and 16(b).

FIG. 17. The collinear shiftdq, in units of 2p /a, as a function
of core sizer (measured in lattice constant unitsa). The full circles,
full squares, full diamonds, empty squares and empty circles corre-
spond tod=0.05, 0.08, 0.10, 0.15, and 0.17, respectively. While for
r→0 we havedq<d, for increasingr the shiftdq decreases, and
the effect is more pronounced for larger concentrations.
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spin distribution of this configuration is shown in Fig. 18.
This structure is very similar to the one proposed by Tran-
quada to explain the results obtained through neutron diffrac-
tion for charge and spin ordering in La1.48Nd0.4Sr0.12CuO4.

35

The Tranquada structure is schematically shown in Fig. 19. It
consists of horizontal charged stripes, with holes localized
every second site along the stripe backbone. The stripes are
separated by AFM regions, with orientationsp flipped across
each stripe. The ordered crystal of merons and antimerons
shown in Fig. 18 also has holes localized every second site
along the backbone. In particular, there is a hole localized in
the core of each meron and antimeron. Also, the regions
between the backbones have(slightly distorted) AFM orien-
tations, with the samep flip from one region to the next.

In our model charged merons and antimerons carry cur-
rents (and supercurrents). They are usually in a liquid-like
ground state which allows for free motion along the planes.
However, ford=1/8 we seethat this liquid crystallizes to an
ordered ground state in which the charge carriers are frozen.
This offers a very simple and natural explanation for the
suppression of superconductivity at this particular doping.
This crystallization of the merons and antimerons is induced
by Nd doping, which leads to an experimentally observed
distortion of the lattice from the usual low-temperature
orthorhombic(LTO) structure to the low-temperature tetrag-

onal (LTT) structure at 1/8 doping.35 In the LTT phase the
atomic structural displacements align along horizontal(or
vertical) directions, and very likely favor the pinning of the
merons and antimerons along horizontal(vertical) “stripes,”
thus suppressing superconductivity.

V. CONCLUSIONS

We have investigated, in detail, the magnetic structure
factor of liquids of merons and antimerons in a doped 2D
spin-1/2 antiferromagnet, using a simple model. The only
parameters in this model are the doping concentrationd,
which determines the number of merons and antimerons, and
the core sizer describing the localization of the hole inside
the vortex core.

At low and intermediate dopingsdø0.12, where r
!1/d, we obtain excellent quantitative agreement with the
experimental measurements. We observe both the linear de-
pendence of the shift of the incommensurate peaks on the
dopingd, as well as the rotation of the position of the peaks
from diagonal alignment(below d=0.05) to collinear align-
ment (aboved=0.05). For larger dopings, a nontrivial core
size r is required to account for the saturation of the mag-
netic peak shift withd (see Fig. 17) for d.0.12. While we
argued that such a dependence is reasonable, a detailed in-
vestigation of the dependence ofr on d and other micro-
scopic parameters must be performed to confirm this picture.

In obtaining these results, we averaged uniformly over
random vortex configurations. In other words, we did not use
any selection criterion for “preferred” configurations. How-
ever, a more detailed theory may require a more sophisti-
cated choice for the vortex pair distribution functions.
Recently6 it was reported that LaSrCuO crystals doped atd
=0.04 and 0.05 exhibit only one of the two pairs of diagonal
incommensurate peaks, not both of them. It is also known
that these crystals are in a low-temperature orthorombic
phase(LTO), in which the CuO6 octahedra coherently tilt

along the[110] direction(or f11̄0g, leading to twinning). Due
to this tilt, the two diagonal directions are no longer equiva-
lent, favoring alignment of the meron-antimeron pairs along
the shorter diagonal. In turn, this will lead to higher weight
in one of the pairs of incommensurate peaks. Another recent
experimental observation7 is that in LaSrCuO and LaCuO4+d

samples (with doping d=0.12) the four incommensurate
peaks are not truly collinear, but at an angle of about 3° with
the horizontal and vertical directions. This also suggests an
underlying distortion which favors slightly tilted meron-
antimeron pairs. Such considerations are similar to the one
discussed in Sec. IV, where we argued that Nd-induced struc-
tural distortions lead to the pinning of the merons and anti-
merons into the Tranquada configurations.

It is very interesting to note that the magnetic signatures
we describe are most clearly seen in the LaCuO. This com-
pound has an anomalously low superconducting temperature
Tc and its CuO planes support various types of tilting, de-
pending on temperature, doping, nature of dopants, etc. All
these distortions are responsible for pinning and/or slow-
down of the dynamics of merons and antimerons. Such pin-
ning or slowdown of these charge carriers offers a possible

FIG. 18. Self-consistent spin distribution for the configuration of
lowest energy found after adding a 3% anisotropy in the hopping
integrals, atd=1/8, for U / t=5 in the spin-flux phase(from Ref.
19). The merons and antimerons arrange on horizontal lines, leading
to a structure similar to that suggested by Tranquada in Ref. 28.

FIG. 19. Stripe configuration suggested by Tranquada in Ref.
28, in order to explain results obtained through neutron diffraction
for charge and spin ordering in La1.48Nd0.4Sr0.12CuO4.
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explanation for the suppression of superconductivity. This is
most obvious for thed=1/8 case, where merons and antim-
erons assemble into static stripe-like configurations. This
also provides an answer to the long-standing question of why
stripes seem to compete with superconductivity and, more
generally, why charge carrier dynamics correlates with a high
superconducting temperature.

In conclusion, our model of a liquid of charged meron-
antimeron pairs quantitatively explains the orientation and
position (as a function of doping) of the four incommensu-
rate magnetic peaks observed through elastic neutron scatter-
ing. In previous work19,20 we have shown that this same mi-

croscopic model provides a unified basis for non-Fermi-
liquid transport properties,d-wave preformed charged carrier
pairs, midinfrared optical absorption, and certain aspects of
ARPES. We therefore believe that this microscopic model
for cuprate high-temperature superconductors is worthy of
more detailed investigation and comparison with experiment.
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