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The tensor force helps bind the deuteron: a prolate configuration is favored
energetically. It has a quadrupole moment Q with the right experimental sign.
HW4 is correct this needs detailed calculations to back it up

Obertelli and Sagawa

First give the antisymmetry arguments

These two configurations:

Fig. 3.1 Configurations for
spin-triplet state S = 1 of (a) (b)

we’ve made for T=0, S=1 np state to have

deuteron: a prolate

lower energy. Then they note (inserting e it o1 0
physics calculation result!) that this confguation n which tho. ! 7
. . spins and the radial unit P —l
alone is not enough to bind the deuteron. vector are orthogonal r o
The tensor force can be written 2
VT N=f(r S12:
( ) ( ) 812:+2 812:-1

S =[3(a1 - F)(o2-F) = (1-02)], (.13)

have values Si;=+2 and -1.
where f(r) is less than zero
The configuration with S;>,=+2 provides the extra binding energy needed to bind the
deuteron
The prolate deformation also has a + sign for Q, so agrees with experiment

JB is concerned about the body axis and spin axis: will try to return to this later

microscopic-based Mean Field
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Independent particle picture; Structure A<8 + Permutation symmetry; DFT

e Independent particle approximation
Motivation for single-particle motion in mean field
Harmonic oscillator wavefunctions
Deformation sans microscopic calculation: Nilsson model

Refs: Wong Ch. 7, Obertelli+Sagawa Ch 7

e Structure of light nuclei A<8:
Delineation and ordering of most states with
Simple rules (no detailed interactions...)+
Systematic accounting of permutation symmetry with Young diagrams

e Calculating mean field: wong 7.3; oberteliissagawa ch. 3.5,3.6 remains a major challenge
Describe/sketch Hartree-Fock: based on a variational principle that gets g.s. energy
right for a given Hamiltonian, but wf does not solve many-body Schroedinger eq.
Describe/sketch Energy Density Functionals which are tuned substantially

Goal: some feel for inputs, outputs, successes and challenges of mean field
calculations.

Qualitative info on modern solutions to the many-body Schroedinger equation: the
similarity renormalization ‘Qroup’ overteli Sagawa 3.11.2 H.Hergert Front. Phys. 8 1 (2020) /43
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Deformation descriptions

Structure A < 8: permutations

microscopic-based Mean Field

Independent particles moving in their average field: qualitative support

e Bohr and Mottleson p. 189:

Mean free path larger than nucleon spacing — ~ validity of Fermi gas model.
Mean free path larger than the nucleus leads to regularities of quantized orbits of

individual nucleons

0&S: zero-point energy fluctuation:

_ (6py 12 .
AE = 2m " m(bx)z mr?

2 .
For a molecule, V ~ £ ~ h?mea® with

hz
pohr = o2
Molecule: AE/V ~ 1/2000;
Deuteron: AE/B,, ~ 100.

— atoms in molecules are confined and
somewhat classical;

nucleons in nuclei are nearly unbound
and can be treated as moving in an
average potential

A Hydrogen molec

Hard core r. =039-10""m

forbidden region

&)

V[eV]

&)
T

Binding energy
=447eV

ule A

8]

3

Deuteron
r. =05 fm

<«— Hard core
forbidden region

Iyl

V [MeV]
=100

=200

Binding energy
=223 MeV

Fig. 7.1 Molecular and nuclear potentials and corresponding wave functions of diatomic molecule
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Nuclear observable discontinuities

Like chemistry’s electron shell model,
near-degeneracy of the single-particle orbits
leads to discontinuities in nuclear properties:
Binding energies wrt liquid drop:

28 50 82

Bk, — Bip(MeV)

-10

\\\\\\\\\\iﬁ\\\

(o] 20 40 60 80 100 120 140 160
Neutron Number N

-15

Fig. 5.1 Deviation of experimental masses from theoretical predictions based on the liquid-drop
mass formula which does not contain any quantum information on the nuclear shell structure. The
deviation is plotted as a function of the neutron number and shows a clear over binding at magic
numbers 28, 50, 82 and 126. The modern version of the macroscopic model FRDM2012 is adopted
as the liquid-drop binding energy Bip [1]. Courtesy P. Moller

(O&S credit Méller)

Structure A < 8: permutations microscopic-based Mean Field

Goeppert Mayer’s Nobel Lecture: “Failures of the shell model” ®

Schmigt lines 9,

© for 0dd- 7 nuclei 5
essuming
Sps =270 '*ﬂmlgj
e

' Nuclear magnetons

1

s

z
Fig. 8. Magnetic moments of nuclei with odd proton, even neutron number.

Hsp. _ j 9s—3ai i — 1

s = (g £ S )forj=1+ 35 wass

(Simple expression for odd-N odd-Z couples 2 1.’s given J)

Wong: complications away from closed shells:

complex configurations; MEC’s; nucleon gs changing in medium ®

Prediction even-Z odd-N: [l =5 + Mneutron —
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Hsp. _ ¢ 9s—ai
Honm =Jjlg £ 2111

e 7(d3/2) cancels spin, orbital — 1., =0.1245
35,37,39,M,43.45K  J™ = 3/2%: u/pupm = 0.16 to 0.39
33,3537Cl, J™ = 3/2%: u/punm = 0.68 to 0.82

e Since n has no electric charge,

g:=0 for n, and single-particle model has a simple
prediction for odd-N, even Z: 11, ;. = Ffineutron

| ltoddnevenz | falls with A, i.e. complexity?

Some restoration near closed shells?:

the N=126 values are from Pb closed shell Z=82.

)forj:I:t% Wa-53

e Rather than look at these for changes in gs in the
medium, people look at isoscalar combinations of
isobaric mirror nuclei.

We looked in detail at 1. in A=3, and isoscalar
combination of isobaric mirror p« being free of
meson exchange currents.

This is related to G-T strength, see 3 decay later

Structure A < 8: permutations

microscopic-based Mean Field

1 1 1 1 1 1 1
) N. Stone ADNDT 2005
1 N H % ‘:
7 % “we o . . B
. o, coglles o 0
:{g o o N o, 1'..-.'-'." I
}_ 0 .. . :. oo * . * L
. Ly o8 ° o'. o
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N (with Z even)
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. . S
Harmonic oscillator wf’s

Table 7-1: Harmonic oscillator radial wave functions.

The simplest mean-field potentials include: o "

simple square well potential; Ru)=2(%) e Ryplr) = \f (5 ) re~/2
harmonic oscillator approximating this. RMW:J—( )‘“ Rair) = \/’( 3)* ERp—
1-body hamiltonian: - 1 . \/: PV ‘/- SN
Wong Eq 7-11 h(r) = —EVZ + Euwgrz 1 (r) = (") Royp(r) = (") (3 - vr¥)re~vr’t
(r nucleon coordinate, 1 its reduced mass) Rup(r) = \/_ (% ) 12 n,,(r)=‘/§(%’)"‘(;_wwe-ww
States are degenerate with energy \/;3 . e

en = (N + 3)hwo and allowed orbital angular | ™"~ B5(5) st e

momenta I _ N, N _ 27 .. .1 or 0, parity (_1 )[ Note: As approximate single-particle wave funftions for a nucleus, the oscillator

parameter, v = mwp/%, may be taken to be A~Y/3 femtometers squared.
Harmonic oscillator wavefunctions provide for some operators analytic solutions for
computation. A useful basis for computation of many-body systems where 10" integrals
may be needed to diagonalize a Hamiltonian
Woods-Saxon potential h(r) = W with, e.g., R=1.25A"/3, a=0.524 fm has same
shells, with better numerical wf’s with longer tails
There is a smooth potential with analytic Wf’s Ginocchio Ann Phys 159 467 (1985) Which may retain
Utlllty Pittel JPhysG 24 1461 (1998); W. Haxton, private conversation 1994
O & S 3.5.2 note spin-orbit / - s, since | = rxp = —ihxV, writes spin-orbit « to derivative
of Woods-Saxon
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Deformation descriptions

Spin-orbit term critical to get shells right

h(r) = =22 V2 + 1 pw2r® + a(A)S - T
€N forj =1+ 3,

= (N + 3)hwo + 2al

-3a(l+1)forj=1— 13,
Goeppert Mayer and Jensen (1955) Fig. IV.3 —
The HO shells work up to N=Z=20 or so.

0.3 T T T

Isotope shift [r*(A) - r*(40)] (fm’)

T%
_o1 . L . .
40 42 44 46 48
A
FIG. 2. Isotope shifts in calcium. The experimental data
(circles connected by a solid line) and the shell model results,

The f7/2
orbital is
needed for
closed-shell
behavior of
soCa? (and
ggles) Caurier

PLB 522 240 (2001)
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Nilsson model

Deformation is complex to calculate microscopically.
Nilsson model describes it:

3D harmonic oscillator with different-size axes, fixed
phenomenologically, so with axial symmetry:

h=

%qt%u( 222 102 (X2 4 y2) +uphwo(I?
For x,y,z coordinates remember

E = (ng+ ny + nz + 3)hw

Here, E = (n; + 3)hw; + (nL + 1)hw.
so E changes with deformation —
States at large deformation labelled by [N, n,, A]Q2 with
n; the number of quanta along the z-axis,

A the projection of the orbital angular momentum along
the z-axis, and

Q the projection of the total angular momentum along
the z-axis

Pnisson AN be expanded in spherical v¥uo

classical: Chandrasekhar “Ellipsoidal Figures of Equilibrium”

— (PY)+vishwo(T-8)

Structure A < 8: permutations

microscopic-based Mean Field

Nilsson Level Scheme for
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Deformation and symmetry P.-G. Reinhard, E.-W. Otji'li\NudearJahn—Teller effect ) NO SYMMETRY BREAKING
Jahn-Teller theorem: sann, Teller 1937 q\ ]
Symmetry-driven degenerate electron \ 1

states in (“nonlinear”) molecules are not
stable: small perturbations will cause an
instability toward states with lower
degeneracy and less symmetry.

The symmetry is said to be
spontaneously broken, by deformation

Fig. 2a

JAHN-TELLER EFFECT

(among other things) ‘(1)
Reinhard, Otten NPA420 173 (1984) ,:\ 1q
An interaction linear in deformation g "

removes degeneracy for q £ 0, driving to
a less symmetric ground state.

Fig.2b

Molecule with E x g2,

invariant under 90°
“we conclude from this parallelism in molecular and nuclear

physics that spontaneous symmetry breaking by the Jahn-Teller
effect is a general feature of many-body systems which provides  (Other ways to remove
a linear coupling between their microscopic and collective the degeneracy
degrees of motion.” produce variations)
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Symmetry, pairing, and deformation
. 42
P.-G. Reinhard, E.W. Otten | Nuclear Jahn~Teller effect Theory example' Ca'

IMev] m = £ is the last 2 neutrons occupying f;/, orbital.

E:Zﬂ Hca o CHF is a Hartree-Fock calculation including
deformation phenomenologically as a degree of
freedom whose energy is minimized: this favors
particular |m| and a sign of deformation parameter
q “pseudo J-T” effect.
Pairing “(BCS)” is then included theoretically,
driving nucleus back towards a sphere siroberg Physics 18
' — 28 2025). A deformation still happens by spontaneous
7 symmetry breaking, a Jahn-Teller effect, but with
“2ca cHF-Bes more than one similar-size interaction nearly
cancelling.
“...while oscillating back and forth in its potential
well, the g.s. is permanently flipping from one
dominating +m occupation to the next. One could
call this Jahn-Teller mode a nuclear Goldstone
bocon” 10/43
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Fig.3a
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Pairing lore
¢ BD showed the semiempirical mass formula’s pairing terms oc A—1/2
e | was told in 1982 this could be understood as the breaking of a single pair...
e Most treatments treat pairing as a collective phenomenon: n’s and p’s form Cooper
pairs as in BCS superconductivity (but with fewer pairs). Sagawa and many texts have a
BCS-based model with 2nd-quantized annihilation and creation operators.
e Isospin dependence: Wong p. 143: Because of antisymmeterization,anand a p
occupying the same 1-particle orbit and having 1=0 form an isoscalar pair 3/4 of the time
and an isovector pair 1/4 of the time. If the T=1 pairing were strong enough to dominate
over the T=0 pairing, an n-p pair would have preferred to be in a T=1 state instead.
Consistent with isospin dependence of nuclear force being small.
e Pairing drives nuclei to be spherical. The energy balance with deformation is
considered critical to determine whether a nuclear g.s. is deformed or not. stroberg Physics 18.28
(2025) Sun PRX 15 011028 (2025)
e Wong p. 228: pairing favors larger m; = +j, prolate at beginning of major shell and
oblate towards end.
e (Weinberg’s CERN Courier on the Higgs mechanism addresses condensed-matter
physicists, highlighting similarities with the local symemtry breaking... | have not seen
anything about the Higgs mechanism wrt nuclear pairing.)
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e Structure of light nuclei:
Systematic accounting of permutation symmetry with Young diagrams

Coupling one to four valence-shell nucleons describes many low-lying J™; T
states in light nuclei + dominant L configuration (decays, reactions...)

e Simple guidelines on configurations with lowest energy then reproduce lowest
level order

Strong interaction, because it’s short range and attractive, favors symmetric and
lowest L

For a given L, spin-orbit L - S favors largest J

Demonstrative examples, not proofs. Some naive states will be ruled out. Few
explicit (anti)symmeterized v’ s: instead arguments for their existence.
A=6,5,4,7,8 ‘Conspiracy’ against (S; T) = (3/2,3/2)

Refs. Bohr and Mottleson Appendix 1C; (EGA UW Phys562); PDG;
de-Shalit and Talmi, Nuclear Shell Theory (Dover) Ch. 32 “The Group Theoretical...”;
Frank Close “Intro to Quarks and Partons” for more general Young techniques
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Young Tableaux: systematic delineation of permutation symmetry.
No formal proofs here: just rules

Example

1]2]

3

Diagram of permutations of n objects

In each box is a label for the state: here just the 1st, 2nd, 3rd object; labels
are in arbitrary order, but must keep that order

Rows are symmetric under permutation: this example is symmetric for first 2
objects

Columns antisymmetric under permutation

Labels can’t decrease going — in any row

Labels can’t decrease going | in any column

Can’t have same labels in any 2 elements (boxes) in any column (but can
duplicate in rows)

13/413



L12-13 Phys505 S,T JB 2023 Mean Field, s.p Deformation descriptions Structure A < 8: permutations microscopic-based Mean Field

Young Tableaux example: A=3 system

WPspacePspinPisospin MUSt be antisymmetric
Pspace spin : isospin . or consider isospin®spin
Consider states We had mixed We had mixed together for one example (it’s

where all 3 s1yn;n|1etry s1yn;n|1etry ok- we’re just changing our
nucleons have 3 > labels without explicitly
L=0 ~We've laid these functions out  Writing it...) and writing the
No sublevels: must previously— we’re just using antisymmetric diagram filled
be symmetric, i.e. .0 diagrams as tools to with 3 out of 4 states:
";DS(.' )1:05(2) - account for possib"ities of Can we have S=3/2 T=1/2?
¥s(2)9s(1) =0 number of states with various % (Remember A(1232)
total quantum numbers and $=3/2 1=3/2 is symmetric)
properties Evaluate by considering

A=3 as a ‘hole’ in the A=4
system —
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A=3 allowed spin, isospin

Consider A=4 Then
n 4 is the maximum numbe n
2] of particles to be put into - 2] .
S=? T=? 3] 4 states. Closed shell. 3
o 4] Totally antisymmetric. S-2 4
S:O, T=0 T=f, S:O, S = %,
T=0 T = %
24— 0.0 12.32Y 2
3 \
0lgs)=18.5906 keV 32 Bt 100% (S, T) — (2’ 2) Only, no (2’ 2)
These are the only A=3 bound
states.

There are no experimentally
known unbound resonances.
There are theoretical
possibilities for unbound
resonances in the 3 proton
0.0 STABLE
She, and 3 neutron systems.

I{%} Logft

100 3.0524 L2+
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One antisymmetric wf in S, T i.e. spin, isospin for 4 nucleons
One reason we’re considering S, T together here: there is no simple product wf g1
antisymmetric for 4 nucleons. They must be built from mixed symmetry in S and mixed
symmetry in T.
L. Cohen Nucl Phys 20 690 (1960) contructs three L = 0 functions with appropriate antisymmetry,
building the S, T i.e. spin,isospin parts from mixed permutation symmetry terms simiiar to Ham.
One is a Slater determinant for 4 particle wf’s a, b, ¢, d in slots nhumbered i=1,4, which is
completely antisymmetric under particle exchange:

ba(1)  ¢a(2) Pa(3) ¢a(4) defining ¢a = |p 1), #p = [P 1), da = [N 1), da = [N ])
dp(1) db(2) ¢b(3) Bb(4) one gets 24 similar terms, e.g. 1st term symmetric in 3
dc(1)  0c(2) ¢c(3) bc(4) and 4: ¢a(1)pp(2) * (9c(3)Pa(4) — Pc(4)¢da(3))=

¢d(1) a(2) ¢a(3) ¢a(d) prpi(ntni—nint)

The next natural term in the determinant is symmetric in 2 and 4,
—®a(1)0b(3)(¢c(2)¢a(4) — dc(4)@a(2)) = —ptntpinl+ptnlplnt
This is likely the ugliest possible way to write it out, but | don’t think any two terms can be
combined.
To show this is actually S = 0 and T = 0 requires Cohen’s formalism.
JB can ’derive’ the 3He wf we’ve used from a Slater determinant, but has to fix n

pointing up, which presumes the answer that p is always paired e
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Structure A < 8: permutations

microscopic-based Mean Field

Note tables of A that include t have no S=3/2, t=1/2, 7=+ resonance.
Wilson ‘The Excited States of the Proton’ Comments Nucl. Part. Phys 1

(1967) 128
TaBLE OF RESONANCES®
Mass Width
Notation (MeV) Spin Parity Isotopic spin (MeV)
v ; 939 1/2 + 1/2 Stable
e 1688 5/2 +- 1/2 110
1518 3/2 - 1/2 105
2190 7/2 1/2 200
Ny 2650 (11/2) - 1/2 300
3030 (15/2) (=) 1/2 400
1400 1/2 + 1/2 200
1570 1/2 v = 1/2 130
1670 5/2 v — 1/2 140
1700 1/2 v — 1/2 240
1236 3/2 -+ 3/2 120
1920 7/2 + 3/2 200
A 2420 (11/2) + 3/2 275
2850 (15/2) (+ 3/2 300
3230 (19/2) (+ 3/2 440
1670 1/2 ¥ — 3/2 180
2080 40
2190 40
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The goal of an M-scheme table is to assign permutation symmetry to each possible value
of L. Here is how to make one (easier with a blackboard or a pencil):

e Write all the possible combinations of m’s that add up to a given M, with all allowed
symmetries under permutation following the Young diagram rules.
(When I line them up in a nice table? I’'m ignoring the actual work:)

e Grouping them by permutation symmetry, assignh them to an L. (There is likely a formal
proof that all configurations for a given L must have the same permutation symmetry- it
seems plausible.) Handy tricks:

(Ignore negative M- these are obvious from nonnegative M and don’t add info.)

First consider “the stretched state is always symmetric” and assign the max £ symmetric
configuration to L = max M. Find the rest of the M’s needed, with same symmetry, to
account for that max L. (Then | line them up in the nice table— traditionally one just
crosses them off on a blackboard).

Continue to gather all the M’s one needs for each L, all with given permutation symmetry.
The rest usually shake down from there.
One gets an orphan single M=0 state that one assigns to L=0.

This is just a plausibility argument. There is likely a formal proof that this procedure gives
you the correct permutation symmetry for each L.
18/413
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Young Tableaux example: ‘m-scheme’ Consider 2 P-shell particles, each with ¢=1
(Answer is obvious for 2 particles (A=6, 5), but we’ll need this for A=7)

e Label state boxes with m = ¢3

(Our arbitrary ordinal box labels end up kinda backwards in the simplest way to do
it: m = £ is the ‘first’ label, m = ¢ — 1 the ‘second’, m = ¢ — 2 the ‘third’...)

e Consider all configurations possible for each M = L; (nonnegative for brevity)

e Account completely for these configurations with values of L, all M from same
permutation symmetry configuration

M=z [
M-t
1]
M=o [
B

L=2 L:

Summary:

e L=2, L=0 with symmetric configurations

We’ll be assuming symmetric configurations have
lower energy

e L=1 has an antisymmetric configuration.

Note that = given by (—1)% x (—1)% so we don’t
get m = — states with 2 p-shell nucleons

We’ll need this ‘m-scheme’ for 3 particles for A=7

[o]=] ==

1

=y
-
11

o
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Energy Levels of Neutral Oxygen (O 1)

Configuration | Term | J | Level(cm-1) | Ref.
2s522p% 3p 2 0.000 | MG93
1 158.265 | MGO3
] 226.977 | MG93
2522p* 1p 2| 15867.862 | MG93
2s22p% 1g 0 | 33792.583 | MG93
2522p3(%s°)3s | 9s° 2| 73768.200 | MG93
2522p3(4s°)3s | 3s° 1| 76794.978 | MG93
2522p3(4s°)3p | 5P 1| 86625.757 | MG93
2| 86627.778 | MG93
3| 86631.454 | MG93
2522p3(%s°)3p | 3P 2| 88631.146 | MG93
1| 88630.587 | MG93
® | 88631.303 | MG93
2522p3(4s°)4s | Ss° 2| 95476.728 | MG93
2522p3(%s°)4s | 3s° 1| 96225.049 | MG93
2s22p3(%4s°)3d | °p° 4| 97420.630 | MG93
3| 97420.716 | MG93
2| 97420.839 | MG93

microscopic-based Mean Field

Parity from orbitals. (Not total L)

unpaired

m= [] (-1

i=1
<+ example from atomic physics
o First 3P has total orbital angular
momentum L = 1 (odd),

while 7 is from four p orbitals
CUNCRINCINCIIERS?

e Similarly, this °S° has L = 0 but
three p orbitals and one s, so 7= -1
(thus the o label used in atomic
physics)

e while same L=0 'S has even
number of p orbitals so has w=+1
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A=6 from two 1p nucleons; assume 1s shell is filled, S = T = 0, passive
2 particles in the 1p shell. Identify quantum numbers of partitions, couple them:

Pspace L=0, 2, not 1 With permutation
YeS, T + T can be 1, but we jUSt So ¢spin¢isospin must be symmetry under CO“trOl
showed this was antisymmetric. For 2 couple these possibilities

antisymmetric under exchange  particles exactlyasind:  toJ = L + S:
(S;T) = (1;0) or (0;1) g T 25415,

s From L=0 “d-like”
1+:0 3s
1,797 2 177 5.65 1+0| 539 N ] 1
0.973 SHe i 2o 37 5 ien 6 o 0+:1 S,
“4He + 2n |[4.05] ===H43] 0 ~—— L. 2 _ :
e +2n 71 —_§__He+p 37223 Ot‘lw 5091 032 4 F:0m+L E ;
6H 2.186 340 He+np==57 01 SLi+p 2 1 52 73 ;0 D1,2,3
¢ N ' ’ 2+ 1 D,
B 114743 6 -13711 ;
*Hesd Be  The2y  For given space symmetry,
. lowest L tends to lie lowest
oL

Highest J has lowest
There are = = — (unbound) states at much higher energy (spin-orbit L - S)

excitation ? — All states accounted for ®
21/43
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128.2] 26.59 k) 6 o
=3 =

w = — states? g 24.89, 471
32 R4.787777753°1
We found *};2-7% ;;ﬂ 2 23 ]
“Hton 7 22.0518
1/’space ¢spin—iso 321 2881 3He+d+n
L L °H+d+plL L b 2
p 2 2 ] p 2
LSy 1798 . 21
(S;T)=(0;0) 14.6 ("2
or (1 ;1) 4230 157947
— =1. 3H 3H S.
= 7 = + for L=1 + eI | Lassa
He +H
From next shell? o
predicts J™; T )
56,02 10%
2=:01—;00-;0 1—;1
none seen 1797 | 177 ggi 10| 539
0.973 PHetn oo 155 Z 1 5Litn |
4.49 ~ L _[L67 )
To get 4_’ 3_, maybe? “He + 2n [[4.05] s -~ oHe 1P| 5565 %,l: 3.6989 (3.00] 0.32 //
; 5 &
s|s|s *He 218 g NP 7 Lite /
B 114743 6 -1.3711
P(PP “He+d Be THe+2p

oL
Tilley et al. Nuclear Physics A 708 (2002) 3
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A=4: only 1 bound state

wsnace d)spind’isospin 4He: Jﬂ-; T = 0+; 0
[s]s[s]s]
L=0
S=0, T=0
Excited states?
"wbspace So instead we
Since we can symmeterize anything, consider consider

"psoace

s|s|

The center of mass is moving, and this is spurious. s
Abstractly: P
in many bases ros «< ¢p —
ie.7 [slsls[s|, [s[s|s[p]

A serious technical issue in many shell-model and

other calculations e
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A=4 excited 'l/’space 'l,bspin—isosp
states s|s|s]
P L
L= L |
™= — (S,M)=
(2,?)

N

® [] = o
3, 3)
(3+3) _ N

(one -
(1,1)

hole) (1.0)
(0,1)
(0,0

(0,0

Deformation descriptions :

2713 -
~
2638 0] “~_
S~ <2596 44/ 26.072.
24.61 1" T~[2528 oy dtnre.
W—Z':\\‘~ 2425 ;0 23
! SO ~j23ea 49| 23:848
SQfezss eyl 29—
o 21.84 2-0!
- 20.57g 2RO —0:0
(S;T) 4H 3He+n 20.21 _ 0%0) 19.815
(1;1) t+p
(1;0) ‘ ,
(051)
‘He

T=1 3P071’2, Py J"=0",1",1",2" ® exactly these are there

T=03R,

J T =0",1",2" ©) exactly these are there

The first 07, T = 0 state does not fit ®: similar states exist in 8Be, 2C, 160, 4°Ca,
considered ‘intruder’ o states from a higher (or lower, excited) shell.
Higher-lving = = + states are ... two p particles?

_les21r 1
_|2544 O

23.68  1-
23.36 2°
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A=5: no bound states

Instead we have:

Mean Field, s.p.

spin-isospin:

Deformation descriptions

Can’t have for space:

space: | =

s|s|s|s]|

o |

L=1 ]

(finally, a ;|-= ST=

m=—state)  yp5 45 0,0

L
1.27 2

w371
Jt= ) T72

Structure A < 8: permutations

microscopic balsd Mean Field

because would need for
spin X isospin:

yet we only have 2 spin x 2
isospin = 4 possibilities

With antisymmeterization known ok,

+ |:| we can couple these possibilities:
ST= J=L+SsoJ™; T=1/2";1/2and
1/’23/23/2_, 1/2 with 25+1 L= 2P3/2, 2P1/2,

and higher J lower E
Consistent with shell model, with
fewer assumptions. Excited states —

—
—
—
—
——

1.49

_|-0.51] =

25/413
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A=5 excited states ]

.
£ 74 2542 2544 Iy
’(b 23.97 24.06 2 o
space 2374 3
S|s|s | 2 I 5% 3+ S ,
siasoigdlet 2 37 3 2206 < |
p p i 3 1+ !
119.7] I 1978 19.96 7+ 3o 20.53 bl =20.5]
L=0. 2 5 ' He+2n  [19.14.19.26 1931 22 3| e 093 10451271 LA 5
=V, ™=+ L H Heprng 1236 280 =21 |geo Bi
e = He +n+p
€ s 3 4+ 3 P
.. . H+2n 3 1+2p
Q/Jspm—lsospm to ‘balance 1679 |l6ss i ! -
M+d T _]I687 2 16.66

(8 T)= 3/2) Herd
is fully stretched
and symmetric
(S;T)=(3/2;1/2),(1/2;3/2),(1/2;1/2
.Cg =3/2+,1/2+,5/2+,7/2*

12-01

The 5/2~ ® is maybe 3
p-shell particles?

The 16.8 MeV *S;)

.
J™ = 3/2" decays mostly to T —
d not a which needs final oms SHe i — =
state L=2 ”“”’ *Li P

*He+p
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low-lying A=7 will have PYspin—isosp ] | 11.747
wspace 11.24 %_%il—_[? :"_E :I:TI 11.01 %-%
symmetric 7l B Ny
9.570 F499754. 19,9 >3
’*’%8 7575 34774 He + p—__ 9.7 3
1.1 B
= (8T)=(33) 7454 °° %}%ﬁfg .
What Ls allowed? ‘m-scheme’ 6.604 34 -2 2z
labels by m = L - 6.73 1)
+ rows don’t decrease m 4.652 k1 I 57 74
M=3 17171
M=l [ojo M IEIE 047761 %4 iy
M=0 : S eeeo . 10.4291 i
0 0 0 1 0 '1 J":%:T:% £ [0.24] J“:%;T:%
T T T -
L=3 L=1 Li 7Be

Lowest L lies lowest
For given L, highest J is lowest 2P; 5, 2P; 5, 2F7 2 2Fs 5
L=1,3 fully account for m’s: No L = 0,2, No T = 3/2. Need mixed symmetry

partitions for T = 3/2, or for # = + of which none are known. e
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. =067 1 h T
A=8 low-lying states oy ST U s
. = o e+
Assume inert 1s core of 4 nucleons 7.1 202808 240 02y
6.1 6.53 4%:1 5. “Li+d 22 98 11
¢space ";bspin—isosp 54 T): %%_%‘5_:22‘63” o=zd/ 21380
- A = = h13 (3)./ *He+'He / d
symmetric antisymmetric _21.688 A4 oo RS
321,/ 1l ’Llj;[l) 5 20.9 i J'ﬁyl(ﬂ) I
s 0 R AT G535 h232 il
B2 — ---kll%.%%:=18.91=l_gﬂ’—zv%§4ﬁg97 .
= 09808 1+ [ 150 07695 1t
[17.02] -
TT=2NT=
8L
M—4 [A[A[A[1] S=0T=0 o
g7
v_» GOOD \
- i
m=2 [1]1]ofo] [1[1]1]1] wwos
mM=1 [1]o]Jofo] [1[1]0]-1]
m=0 [ofoJofo] [1][o]o]-1] [1][1]-1]-1] v
L=4 L=2 L=0
S=0=>J=1L: 130, 1D2, 1G4: 0+, 2+, 4+, alT=0 _0.0918 I=0"T=0)
All 8Be unbound to decay to a + o ** *Be
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Mean Field, s.p.

A=8 higher-lying states:
Assume inert core of four 1s nucleons

space

plplp]

P
=

Should be able to

make L =1,2,3

spin—isosp

(37 T):
(1,1),(1,0),(0,1)

(All w = +, 4 p-shell particles)
Lowest-energy expected states:

3Pp12 T =1
3Pp12T=0

Py T =

with highest J lowest E
Then:

3Dip3 T =1

3Dy,23 T =0

D, T =1

20.1 MeV 0"; T = 0 has 2 possible mixed-symmetry configurations,
or is partly the qa.s. 2a-like configuration

Deformation descriptions

\

n‘l.r{4

201 |
— 19.235
—18.91—7 0(1"}

17.640—TL

16.92216 26—

P N T e T |

Field
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Observations Be 2+ T=0,1
[] « These configurations | | | | ® [
look like “Be+n -

and "Li+p — [(TT11] @ ||

In terms of isospin, we can plp[n] <« P’s are pin|n|
decompose n symmetric so
7Be + n) — [10)+100) closer together,
10y oy Coulomb energy
|"Li+ p) = By, higher than —
They would decay into these So the 16.92 MeV state looks more
channels, except it’s (slightly) energy like “Be + n
forbidden

Can investigate by “Li(d, n)®Be and
(nowadays) "Be(d, p)®Be

20/43
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Nuclear mean field model The mean field is an approximation in which each
particle of a system composed of A nucleons moves in an external field (mean
field) generated by the remaining A — 1 nucleons. In the HF theory, the mean
field is constructed self-consistently through N N interactions. The fundamental
assumption of the HF theory is an anti-symmetrized product of independent par-
ticle wave functions for A-body wave function, the so-called Slater determinant

Whp(ry, 1y, - -, ta) = A{dra - - - dal, 3.1
where A is the anti-symmetrization operator and ¢; is a single-particle wave
function. The single-particle wave function ¢; (r) is determined by an application
of variational principle. The variational principle states that the energy expectation
value of the Hamiltonian is stational for a small variation of a single-particle wave
function ¢, (r)

O (Yup|H|Wur) = (0%ar|H|War) = 0. (3.2)

Structure A < 8: permutations

microscopic-based Mean Field

Our A=3 configuration can be written
as a Slater determinant. JB surmises
we’re only entangling 2 degrees of
freedom, S, T.

Our premise was that almost all
ground states had vspace Symmetric,
and clearly then one can write vs 1
as Slater determinant.

JB surmises that our mixed
symmetry space/spin/isospin terms
may not be Slater determinants. Such
configurations entangle three
degrees of freedom.

We claimed these matched up with
excited states, so to get the HF g.s.
they are less important, but L is not a
good quantum number so they can
be part of g.s. v, too.

See next page for qualifications

See R. Santra and M. Obermeyer, “A 1st encounter with the H-F self-consistent-field method,” Amer Jour Phys 89 426 (2021)
Ring and Schuck “The Nuclear Many-Body Problem” works full examples, including Lipkin, Meshkov, and Glick NP 62 188 (1965) useful

exactly solvable nuclear model.

Zelevinsky and Volya “Physics of Atomic Nuclei” Wiley 2017 is $0 with UBC library. Full theory formalism and great insight.

Wong 7.3 shows details deriving HF equations
JB’s handwritten notes from S. Koonin’s lectures, Phys 98b has a little more detail —
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Addendum concerning p. 29

C. Robin PRC 103 034325 (2020) “Entanglement rearrangement in self-consistent nuclear structure calculations”:

The eigenstates of nuclei can be written as linear combinations of Slater
determinants of nucleon wf’s

JB notes: the space-symmetric g.s.’s of A=3 and A=4 with antisymmetric s 1 can
be written as a single Slater determinant. These would have the lowest possible
“entanglement entropy,’ a metric defined in this paper.

Vogel and Ormand PRC 47 623 (1993) evaluate overlap of sd-shell nuclei with SU(4)
Young tableaux. I1=0 even-even mid-shell have less than 0.5 overlap. I" = 0" and 1+
deuteron-like states have overlap 0.6-0.7. Two or three tableaux usually account for
more than 90% of the nuclear w.f.

To support these statements, it would be nice to write a mixed symmetry space with
mixed symmetry spin-isospin wf as an explicit linear combination of more than 1
Slater determinant, but this is beyond JB’s ken.

The question remains of what one can say about wf’s in self-consistent mean field
theories derived from variational principles that minimize the energy. One
operational, conceptual difficulty to get good wf’s comes from solving the
Schroedinger-like equation with a mean field that is sensitive to interactions and

things like sums of squares and exchanges of the wf’s, but not all details. e
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Moshinsky “How Good is the H-F Approximation?” Amer Jour Phys 36 52 (1968)

2 particles in common HO potential + interacting with HO force, is solvable exactly.
HF equations are also solvable analytically in 1 iteration.

H =1 [p? 4121 & ¥ [p2 4 r2]  heresulting ground state energy is The overlap between g.s. wf and HF wf is

_ o _1: f .
A2 (1 —1y)]  COMrectto~ 35%at k=t relatively poor:
i * et ot (ko1 2K 1)
The exact solution: B 100 T T2k T RO+ KN T
Y= Y2 (2 1) e~ RY -t ’
- o .90
. . 45 .80
The single-particle wf’s: g 70
B I E
Bilry) oc €= 2V 60
50 (v

The HF solution: 40 40
=92 (g L 1) g% w+D V2 r2+rE) 30

.20
.10

A 2 3 4 5 6 7.8 .9 10 1.5 2.0 25 K

30
20K

Even though the wf ansatz isn’t perfect, g.s. energy is given well because it’s the
result of a variational method.

The wf ansatz is important for convergence, but the HF method says little about the

accuracy of the resulting wf, even in this simple toy system
212/473
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Skyrme 1956 and Gogny 1975 forces
Optimized for H-F calculation simplicity
0&S Eq. 3.38 Parameters fit to binding energies, radii, and nuclear matter saturation

properties
Contact S-wave V(ri, 12) = to(1 + x9 P,)3(r; — 12)
momentum-dependent S-wave + (1 +x P,,)%[rS(r] — )k’ + K?5(r; —1y)]
momentum-dependent P wave + (1 +xP)K - 6(rp — )k
spin-orbit + iWo(o1 + o2k x 6(r1 — o)k,

Skyrme adds a contact 3-body term (approximating the A excitation one) that has
the same effect in HF as a 2-body p(r)-dependent contact term.

Gogny included finite-range forces V() = X,y e ® ™ (W, 4+ B, P, — H,P, — M, P,P,)
+iWo(o1 4+ 02K’ x §(r; — )k
+13(1 4 Po)p' A ((r) +12)/2)8(r) —12),
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Resulting H-F equations from O&S:

;;i (E=) & / I (r;)*dr;) =0, (3.47)

where ¢; is the single-particle energy. We thus obtain the HF equation,
gy HF
- EV @i (ri) + v ()i (r;) = €, (r:), (3.48)

where the two-body part of the mean field potential v}™f is expressed as

HF Lo . S ..
v (ry) Z/:fd;,<z]\V(r,,;,)|z]> +;/drjfdrk(z]kW(r,,r.,,rk)lz]k).
(3.49)
“V contains both the direct and exchange terms.”
These get solved iteratively:
Compute from the ¢;’s the mean field v/,
solve the Schroedinger-like equation for ¢;,
repeat until it converges.

}fp(rl

(efm

09
08
o[
06 [
.05
.04
.03

.02

microscopic-based Mean Field

3
Wong Fig. 7-4 has a similar
ult.

res
Outcomes: binding energies, ground-state densities, self-conS|stent mean fields.

Outcomes do not necessarily include good wf’s.
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Mean Field, s.p.

The total energy density of the Skyrme
Hamiltonian for N=Z

A 2 A A
s 1 ~ 1 ~
E= ’; < i|%\i >+ ?i < ijIV(;r)lij > +6i§jk < ijk|V(rj. ) rp)lijk >

2

h-
h(r) = TTZ +Ap? + Bp*+ Cpr + D(Vp)* + EpV - J+ FJ?

m
where 7 and J are the kinetic density and the spin-orbit density, respectively

@)=Yy Vi)

i

J@) =~y 67() - (Voi(r) x 0) .

h(r) is our energy density functional, an
analytic function of the Skyrme
parameters ©

(motivating Skyrme interactions?)

For N # Z use p. = (pn — pp)

Deformation descriptions

Structure A < 8: permutations microscopic-based Mean Field

O&S version of related Kohn-Sham eqs.
vary p and U, hot ¢

o,
{vaw Um} 61(1) = e1i (@), 334

2m

i.e., the density obtained p(r) = ), [¢; (r)|? is the exact density. The energy density
function is given by

K
Egslp, 71 = /dl” l ﬁr(r) + /‘(l”)v(l‘)} + Eulp0)] + Exclp®], (335

where 7 is the kinetic energy density. The effective single-particle potential is
obtained by the functional derivative of Exs — T with respect to the density,

) )
Ueit = — Enlpl + — Exelp] + v(r). (3.36)
ap ap

Kohn-Sham method

(1) determine the functional forms of Ey[p] and Eyc[p] at one’s best,

(2) obtain an initial guess for the density p,—o (“n” is the number of iteration),

(3) calculate the effective potential Uy in Eq.(3.36) with p = p,,

(4) solve the Schrodinger equation (3.34) with the effective potential Uey in
Eq.(3.36) and obtain ¢;(r),

(5) calculate the density p,4(r) for the next trial with the single-particle wave
functions ¢; (r) obtained in step 4,

(6) go back to step (3) and repeat the circle steps (3)—(5) replacing p, by p,+1 until
convergence is achieved.

typical Energy Density Functional approach fits parameters in h(r) directly to Epinging
and, since it’s natural to do, (r?) over many nuclei.

26//43
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some results of these mean field methods

Briickner-HF uses Table 3.5 Binding energies and rms charge radii of closed-shell nuclei. The BHF stands for

modern N-N Briickner-HF calculations with the Reid soft core potential. Skyrme and Gogny are HF results
interactions like the of effective interactions SIII and D1, respectively, while RMF is relativistic mean field (Hartree)
ones we’ve used calculations with NL1 interaction
Nuclei BHF Skyrme Gogny RMF Exp.
.before t.o?ay. 'It'!'iere are R{e] E/A —3.91 —7.96 —7.80 —7.95 —7.98
;isu:s :’n egrating over re 2.50 2.69 2.74 2.78 2.73
e a'_' -core 3ca E/A —3.88 —8.54 —8.45 —8.56 —8.55
repulsion. re 3.04 3.48 3.44 3.50 3.49
Skyrme, Gogny, RMF N7r E/A — —8.70 —8.66 —8.74 —8.71
are all fits to same re — 4.32 4.23 4.28 4.25
observables 25Pb E/A —2.52 —17.87 —17.86 —17.85 —7.87
re 4.51 5.57 5.44 5.51 5.50
Additional approaches to EDF’s include: getting some terms from microscopic derivation

of nuclear matter, then adding phenomenology including surface gradient term
(+Coulomb, spin-orbit, pairing) part of the Coulomb is fit to Nolen-Schiffer anomaly of
isobaric mirror masses which produces better fits than Skyrme or Gogny with fewer
parameters Fayans JETP Lett. 68, 169 (1998);

basing EDF’s on better NN interactions and many-body techniques marino Prc 104 024315 (2021)
27/413
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e For excited states:
Tamm-Dankoff and Random Phase Approximation... consider excited states of one
or two particles above the HF g.s., with interactions between the particles.

Variations on Mean Field approaches:

e Relativistic mean field version (Walecka). Adds fields for nucleons and selected
mesons.

(A version with HF exchange term <« includes =)

This gets spin-orbit coupling from relativistic effects, a major success.

Used for dense matter and neutron stars vang, piekarewicz AnnRevNuclPartSci 70 21 (2020)

e Covariant density functional theory approaches include relativistic Briickner HF
and a good NN interaction like Bonn

S. Shen, H. Liang, WH Long, J. Meng, P. Ring, Prog Part Nuc Phys 109 103713 (2019)

(with wf ansatz from Dirac-Woods-Saxon basis p.ring EPJ Web of Conferences 178, 02001 (2018))

e Attempts to use more realistic forces from chiral EFT to derive Energy Density
Functionals salvioni J. Phys. G. 47 085107 (2020)
There may be issues with whether chiral EFT should work at the energies needed.

e Attempts to derive Energy Density Functionals from 1st principles and EFT’s
Duauet EPJA 59 12 (2023). Furnstahl arXiv:1906.00833. 28/47
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Solving the many-body Schroedinger equation

I will only give a hint about how one method goes

Why wouldn’t we just do this? Computation power needed.

The issue, again, is that Hartree-Fock relies on a variational principle that gives an
accurate ground-state energy for the Hamiltonian and wave-function ansatz
described.

The Slater determinant produced by the Hartree-Fock iterative procedure is built
from single-particle wf’s that are iteratively produced solutions of the mean field +
exchange potentials. That particular Slater determinant has no guarantee to solve
the actual many-body Schroedinger equation— in fact we have seen a simple atomic
physics system where it doesn’t. JB observes naively that the H-F equations have
lots of density ¢*1) expressions, so it looks like phase info could be being lost.
Next, | introduce the Similarity Renormalization Group (it’s not a group btw) —

20/413
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Similarity renormalization group

“Similarity” might become clear with examples.

“Renormalization”: “In contrast to Wilsonian RG, which is based on decimation,
i.e., integrating out high-momentum degrees of freedom, SRGs decouple low- and
high-momentum physics using continuous unitary transformations.” Hergert op cit
“group” This is not a mathematical group. “QFT is full of historical misnomers” Zee.

SRG uses a unitary transformation of the Hamiltonian H. One goal is to simplify the
diagonalization of H by a basis change. Unitary transformations preserve
eigenvalues.

I will show you the unitary transformation part. TRIUMF co-op undergrads usually
do this in their talks. It’s all accessible QM manipulations.

Many unitary transformations are possible, and they leave a lot of room for
creativity. Another goal in some calculations is to separate high-momentum and
low-momentum components of the Hamiltonian.

One ends up with an equation for how a function changes wrt some parameter,
which can be the momentum scale. That equation resembles Zee’s QFT book
renormalization group equations for QED and for other interactions.

40/43
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derivation: SRG method

If we transform an original starting Hamiltonian Hy by a unitary transformation:

H = UHyU', where UUT = |

then eigenvalues are preserved, and new eigenstates simply change with the

basis according to U. U and H are functions of some parameter s.

(Note: this = UTH = HyU' and HU = UH)

Simply taking the derivative:

d — WUt + UHy YL
= QUtH + HU9Y

Using this identity:

dut)y _ di _ au gy _ _ ydut
ds _E_O_)dsu_ Uds

and defining this generator function n = 92 U",

we can rewrite that equation in commutator form:

H

s = [n(s), H(s)]

This is the very general SRG flow equation. It describes changes of the
Hamiltonian with a unitary transformation that is a function of some flow parameter

S. 41/43
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Consider the SRG flow equation: —=* = [n(s), H(S)]

s can be many things.

It can be the momentum scale p, in which case this is similar to the equation for
QED’s change in fine structure constant with momentum, or the strength of QCD’s
interaction. l.e. the ‘R’ in SRG is for ‘renormalization.” See Zee’s book on QFT in a
nutshell e.g., where he points out how normal and useful this form of
renormalization is.

There are many possibilities for U and thus n depending on what one wants to do.
Sagawa lists two,

e.g. "7( ) = [Hdlagonal(s) off—dlagonal(s)]

although it looks like a boostrap handwave, somehow helps one diagonalize H.
Sagawa writes an explicit form for n as a function of the kinetic energy of 2
nucleons that produces an equation for the change in the NN interaction with
momentum.

Antoine B. lectured in 2023, and made a toy problem diagonalizing a 2x2 using
SRG techniques.

SRG allows complete solutions of many-body Hv»=E+> in much heavier nuclei
42/43
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Summary

e Light nuclei: J™; T and energy order of levels for low-A can be accounted for by:
antisymmeterizing space-spin-isospin under exchange;
Spatially symmetric configurations have lower E (consequence of NN interaction);
Treating S; T together vin—isosp (“Wigner SU(4)”); higher J for same L lower in energy.
This approach is broken by spin-orbit coupling— does not work well at high-A
(One could account for most states by jj coupling of single particles, but this won’t tell
you which spin-isospin combinations are allowed.)
e Hartree-Fock and Kohn-Sham generate self-consistent mean fields by iteration,
minimizing g.s. energy by varying ¢>’s (HF) or the mean field directly (KS)
Variational principle — naturally accurate g.s. energies, but not necessarily v’s
Energy density functionals through Kohn-Sham allow introduction of terms into the
mean field, which still needs self-consistency with i’s— though the parameters are fit to
global Eg and (r?), this is much more than the semi-empirical mass guess
e Nuclear 1) can be written as superpositions of Slater determinants, yes. E.g. one a g.s.
is symmetric in space with all antisymmetry in S;T.)
Some approaches use “Hartree,” ignore “Fock” (RMF extension includes exchange.)
Is the hard-core NN repulsion still a difficulty for the HF integrals? doubtit
e Many-body Hvy)=E+ with chiral EFT N-N can be solved in more systems now
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