Weak Interactions and Nuclei

• β decay basics

Lepton long- λ expansion, Fermi function Allowed,Forbidden Decay; Selection Rules

- Weak quark eigenstates, CKM matrix
- Why the weak interaction is weak (at low energies)
- Quark-lepton interaction+QCD induces nucleon-lepton interaction terms: Conserved Vector Current.

Partially (Poorly?) conserved Axial Current

• P (complete) : lepton helicity Decay correlations

Refs.: Wong 5.5-5.6;

Commins and Bucksbaum "Weak Interactions of Leptons and Quarks" and Commins "Weak Interactions (Physics) 1st edition." Commins' Notes Ph 250 UCB 1996 (see Canvas "Lecture Notes")

N. A. Jelley "Fundamentals of nuclear physics" Cambridge U.P.

- **Further Symmetries:**
- *T* (tiny)
 - CKM phase

Atomic Electric Dipole Moments from:

parity

Nuclear Schiff, magnetic quadrupole, and from QCD Lagrangian

Nuclear level spacing: Wigner distribution Nuclear reactions

- Weak neutral current examples: Weak interaction between nucleons
- $0\nu\beta\beta$ decay intro

Zo

eta decay: Energy release, other basics, orbital angular momentum

 $Q_{\beta-} = M(Z,N) - M(Z+1,N-1)$ using atomic masses (this is in some sense accidental: the β is created in the nucleus and leaves; if nothing else happens, this would create a negative atomic ion...)

 $\mathbf{Q}_{EC} = \mathbf{M}(\mathbf{Z},\mathbf{N}) - \mathbf{M}(\mathbf{Z}-\mathbf{1},\mathbf{N}-\mathbf{1}) - |\mathbf{B}.\mathbf{E}.(\text{electron})|$

 $\mathbf{Q}_{\beta+} = \mathbf{M}(\mathbf{Z},\mathbf{N}) - \mathbf{M}(\mathbf{Z}+1,\mathbf{N}-1) + 2 m_e$

Sometimes EC is allowed energetically when β^+ is not.

Vud

Atomic electron overlap with nucleus is greater as one goes heavier; EC \sim 1% at 7, 40 instance where d^+ is ellowed, but can be 10's of % at 7–82

Z~40 isotopes where β^+ is allowed, but can be 10's of % at Z=82

Ratio is given well by atomic wavefunctions, and has some sensitivity to the weak interaction nature (Brysk and Rose, Rev Mod Phys 30 (1958) 1169)

 \bullet Q can vary from 18 keV (t to $^{3}\textrm{He})$ to > 10 MeV

(m_{β} = 0.511 MeV, so β 's can be relativistic or non-relativistic.)

• electron DeBroglie wavelength: $\lambda = h/p = 2\pi (197 \text{ MeV fm}) / \sqrt{E^2 - m_e^2}$ For kinetic energy 1 MeV, this is 870 fm, much larger than the nucleus. So the long-wavelength expansion we're about to make is a good one. Similarly, $\ell = rxp \sim 0.005 \hbar$ is typically small

time

Zo

Fermi's Golden Rule, applied to β Decay to get rates For now write the transition probability

Vud

$$W = rac{2\pi}{\hbar} |\langle \phi_f(\vec{r})|H|\phi_i(\vec{r})
angle|^2
ho(E_f)$$

The initial state is simply the parent nucleus at rest:

 $|\phi_i(\vec{r})\rangle = |J_i m_i \vec{r}\rangle$

The final state consists of 3 particles. Ignoring for now Coulomb effect between the β and final nucleus, this is a product of 3 parts, with plane waves for the leptons:

$$|\phi_k(\vec{r})\rangle = rac{1}{\sqrt{V}} e^{i \vec{k_v} \cdot \vec{r}} rac{1}{\sqrt{V}} e^{i \vec{k_v} \cdot \vec{r}} |J_f m_f r'
angle$$

The V's normalize the plane waves. Expand the plane waves in terms of spherical harmonics (we could do this for γ -rays, too: we're about to do a 'long-wavelength expansion'):

$$e^{i\vec{k}\cdot\vec{r}} = \sum_{0}^{\infty} \sqrt{4\pi(2\lambda+1)} i^{\lambda} j_{\lambda}(kr) Y_{\lambda 0}(\theta, 0) \qquad \text{where } \vec{k} = \vec{k_{e}} + \vec{k_{\nu}} \text{ and } \theta \text{ is the angle between } \vec{k} \text{ and } \vec{r}.$$

Now we make the long-wavelength expansion:

$$j_{\lambda}(kr) \stackrel{kr < <1}{\rightarrow} \frac{(kr)^{\lambda}}{(2\lambda+1)!!}$$

so that the final state wavefunction becomes:

$$|\phi_k(\vec{r})\rangle = \frac{1}{V}\left(1+i\sqrt{\frac{4\pi}{3}}(kr)Y_{10}(\theta,0)+O(k^2r^2)\right)|J_fm_fr'\rangle$$

Even without the formal weak interaction theory, we can now surmise the form of H, the nuclear part of the β -decay operator.

Neutrons are transformed into protons \Rightarrow the nuclear operator:

1) must be one-body, i.e.only one nucleon is involved at a time;

2) must involve single particle isospin raising/lowering operator τ_{\pm} (this comes from the 'vector' V 'Fermi' part of 'V-A')

• The axial vector 'A' 'Gamow-Teller' part produces a product of σ and τ_{\pm} Then we can write the matrix element $\langle \phi_f(\vec{r}) | H | \phi_i(\vec{r}) \rangle =$

$$\frac{1}{V}\langle J_f m_f r | \sum_{j=1}^A \left(G_V \tau_{\pm}(j) + G_A \vec{\sigma}(j) \tau_{\pm}(j) \right) \left(1 - i \sqrt{\frac{4\pi}{3}} (kr) Y_{10}(\theta, 0) + O(k^2 r^2) \right) | J_i m_i r' \rangle$$

• The Fermi operator does nothing to space/spin. So it only links isobaric analog states, or pieces of isobaric analog states, i.e. states with same wavefuntion except proton/neutron interchange.

• This form shows both the allowed terms and some '1st forbidden' terms: these are from the same nuclear operators σ and τ , but including the next order of the lepton long wavelength expansion and thus suppressed. However, the nuclear matrix elements also vary, so some 1st forbidden rates are faster than some G-T. The 1st-forbidden operators all flip the nuclear parity, so don't contribute at all to the allowed transitions between states of same parity.

Density of final states

We have to make sure that momentum and energy are conserved properly among the 3-body final state.

We start by writing the ν density as a statistical mechanical result (and integrate over all angles for the time being):

$$dn_
u = rac{V}{2\pi^2\hbar^3} p_
u^2 dp_
u$$

 $E_
u^2 = m_
u^2 + p_
u^2$ but $m_
u < 3 \ {
m eV} pprox 0$ so $E_
u = p_
u$.

We can ignore the recoil energy for kinematics

(though keeping it produces corrections to collelations, 'recoil order terms' \sim 0.01) which gives the relation:

$$E_{
u} = Q - K_e$$

where Q is the total kinetic energy released in the decay, and K_e is the kinetic energy of the electron. (This kinetic energy is sometimes written '*E*' in the literature) I'll also make use of maximum total *e* energy $E_0 = Q + m_e$ and $E_{\nu} = E_0 - E_e$

parity

time

Zo

Density of charged lepton final states: Fermi function

Vud

The density of charged-lepton states gets perturbed in the presence of the nuclear Coulomb field, so (also integrating over all angles)

$$dn_e = rac{V}{2\pi^2\hbar^3}F(Z,K_e)p_e^2dp_e$$

 $F(Z, K_e)$ is a correction factor called the 'Fermi' function.

If the lepton is nonrelativistic, and the nucleus is pointlike, you can take the probability of the lepton at the nucleus, given by the Coulomb wavefunction at the origin:

$$F(Z,K_e)=\left|\frac{x}{1-e^{-x}}\right|$$

where $x = -1 \times \pm 2\pi \alpha Zc/v$ for β^{\pm} decay, with $\alpha \approx 1/137$ the fine structure constant. This one misses the total decay strength by 10% at Z=26 and Q=7 MeV.

Fermi function (continued)

Sometimes people use a relativistic expression, though since the relativistic density is ∞ at the nucleus, Fermi took it at the nuclear surface (deShalit and Feshbach eq. IX.2.15, Fermi Zeit. Physik 88 (1934) 161):

$$F(Z, K_e) = 2(2kr)^{2(s-1)} \frac{1+s}{s^2+\eta^2} |\frac{e^{\pi\eta/2}\Gamma(s+1+i\eta)}{\Gamma(2s+1)}|^2$$

using the Γ function and using $\eta = x/(2\pi)$, and $s = \sqrt{1 - (\alpha Z)^2}$

There are just-as-easy ones available around that do better.

To do the full job, you put in electron screening of the atom, and several other effects (like realistic atomic wavefunctions instead of just relativistic Coulomb functions for a point charge).

See Sir Denys Wilkinson's 5-part series in Nuclear Inst. and Meth.

Soon we reach an example of why the Fermi function is important:

parity

β energy spectrum for allowed decay

Vud

Integrating $p_e^2 dp_e p_{\nu}^2 dp_{\nu} \delta(Q - K_e - E_{\nu})$ over p_{ν} , ignoring recoil-order terms and forbidden decay (so the nuclear matrix elements have no spatial/momentum dependence),

$$W(p_e)dp_e = rac{1}{2\pi^3\hbar^3c^3}\sum_{\mu} |\langle J_f m_f r | O_{\lambda\mu}(eta) | J_i m_i r'
angle|^2 F(Z,K_e) p_e^2 (Q-K_e) \sqrt{(Q-K_e)^2 - m_
u^2} dp_e$$

with $O_{\lambda\mu} = \sum_{j=1}^{A} (G_V \tau_{\pm}(j) + G_A \vec{\sigma}(j) \tau_{\pm}(j))$. Differentiating $E^2 = p^2 + m^2 \Rightarrow pdp = EdE$,

$$W(E_e) dE_e \propto F(Z,E_e) E_e p_e (E_0-E_e) \sqrt{(E_0-E_e)^2-m_
u^2} dE_e$$

• The decay rate $\sim Q^5$, a large dependence. This is just from three powers of momentum for each lepton, minus one for energy conservation.

• The spectrum gets distorted at the very endpoint (large K_e , near Q), by the ν mass, which has upper limit (from ³H decay KATRIN) 1.1 eV at 90% confidence. (Most forbidden decay operators produce large changes in this energy spectrum)

ft value for allowed decay

After doing the phase space integration, we can write down the answer:

$$ft = rac{K}{|M_F|^2 + g_A^2|M_{GT}|^2} \ K = rac{2\pi^3 \hbar^7 ln2}{m_eta^5 c^4 G_V^2} = 6142 \pm 3.2 {
m s}$$

If you include isospin mixing and 'radiative' corrections, you can define the quantity *Ft* that is actually constant for the Fermi transitions:

$$Ft = ft(1 - \delta_C)(1 + \delta_R) = \frac{K}{G_F^2 |V_{ud}|^2 |M_{fi}|^2 (1 + \Delta_R)}$$

where $|M_{fi}|^2 = T(T+1)-T_3(T_3+1)$ as we saw last time. Isospin-breaking corrections δ_C are parameterized by two sources: 1) isospin mixing of with other 0⁺ states 2) the spatial wavefunctions are slightly different because the protons repel each other 'radial mismatch'. Zo

time

time

 Z_0

Superallowed Ft values

Consider Fermi beta decay in many 0^+ to 0^+ cases. We can sum over the nucleons

$$\sum_{k=1}^{A} \tau_{\pm}(k) = T_{\pm}$$

where T_{\pm} lowers or raises the 3rd component of SU(2) isospin for the whole nucleus, just like the lowering and raising operators for SU(2) spin. The Fermi operator's matrix element is

$$\begin{aligned} \langle J_f M_f T_f T_{0f} | \sum_{k=1}^{A} \tau_{\pm} | J_i M_i T_i T_{0i} \rangle \\ &= \sqrt{T_i (T_i + 1) - T_{0i} (T_{0i} \pm 1)} \end{aligned}$$

if $J_f = J_i, \ M_f = M_i, \ T_f = T_i, \text{ and}$

 $T_{0f} = T_{0i} \pm 1$; 0 otherwise.

For these cases, the ft value then given by just some constants, which are given by the weak interaction strength. (f=integral over phase space). I.e. they all should have the same intrinsic strength. The vector operator is related to the electric charge operator. We know electric charge is conserved. The "conserved vector current" hypothesis of Feynman and Gell-Mann: by analogy they theorized that the vector part of the weak interaction is also conserved. This eventually leads to electroweak unification. This has many consequences. For example, for the vector part of the weak interaction we can go straight from the guark matrix element to the nucleon one to the nucleus one.

parity

	_16-18 Weak JB	strengths	Vud	CVC,PCAC	Correlations	parity	tim
--	----------------	-----------	-----	----------	--------------	--------	-----

Effect of different Fermi functions on superallowed Ft's

50.885773540.73005.83030.23073.04.971.808513618.72985.03028.23071.92.6	r
7 1.80851 3618.7 2985.0 3028.2 3071.9 2.6	
12 3.21071 3957.0 2905.2 3015.4 3072.9 1.5	
16 4.46971 4252.2 2832.3 3010.9 3071.7 1.9	
18 5.02234 4400.4 2786.2 3002.9 3072.2 2.1	
20 5.40358 4548.1 2732.9 2991.7 3075.6 2.5	
22 6.02863 4696.5 2679.4 2979.5 3078.5 2.4	
24 6.61039 4846.2 2622.4 2966.1 3071.1 2.7	
26 7.22056 5004.4 2566.7 2956.2 3071.2 2.8	

Towner's include isospin mixing corrections.

Note Fermi's 1934 function isn't really good enough for this, while "Towner" includes 1% corrections from isospin mixing, or rather the difference in isospin mixing between the parent and daughter. These are parameterized by: 1) different isospin configurations mixed;

2) different wavefunctions because the nuclei have different radii.

IMME is fit mass-by-mass, adjusting an effect Coulomb interaction in a shell model.

(A technical check of neutron occupancies is used in the 2020 versions.)

time

These are all consistent: a test of CVC hypothesis J.C. Hardy, I.S.Towner, Phys Rev C 102 044501 (2020)

Vud

J. C. HARDY AND I. S. TOWNER

FIG. 7. Corrected $\mathcal{F}t$ values from Table XVI plotted as a function of the charge on the daughter nucleus, Z. The curved lines represent the approximate loci the $\mathcal{F}t$ values would follow if a scalar current existed with $b_F = \pm 0.002$.

Notice a constant goes through all- 5/15 should miss at 1 σ . There is a common systematic uncertainty from a radiative correction which is folded into each of these points. This test is used to gain confidence in the isospin breaking calculations. It is also the strongest constraint on a particular non-SM interaction, though there is known double-counting if you're using it to test the isospin breaking-hopefully more accurate calculations are possible.

The actual value quoted for V_{ud} sets $b_F = 0$; if b_F floats, V_{ud} 's uncertainty goes up.

time

 Z_0

Quark eigenstates in the weak interaction: Cabibbo angle

To explain some weak decays, in particular ratios of semileptonic baryon decays with and without strangeness,

the weak interaction mixes the *d* and *s* quarks, so you can think of the *u* changing to *d* in β decay as:

 $|u
angle
ightarrow |d
angle + \epsilon |s
angle$ i.e. $|u
angle
ightarrow \cos(heta_{\mathcal{C}})|d
angle + \sin(heta_{\mathcal{C}})|s
angle$

 θ_{C} , the Cabibbo angle, is a parameter whose value (13.04°) is unexplained so far from underlying physics. (Like any mixing 'angle', the angle is in an abstract space, and it's just a simple way to normalize wavefunctions)

For 3 families of particles, this generalizes to

ightarrow 3x3 unitary "CKM" matrix between $| m{d}
angle, | m{s}
angle, | m{b}
angle$

parity

time

Zo

From superallowed ft values we get a vital physics constant: V_{ud} The quark eigenstates of the weak interaction are not the same as the mass eigenstates. They are related by a unitary transformation.

(d ' \		(V ud	Vus	$V_{ub} \setminus f$	′ d \	As for any unitary matrix, top row has the
s' b'	=	V _{cd} V _{td}	V _{cs} V _{ts}	$\begin{pmatrix} V_{cb} \\ V_{tb} \end{pmatrix} \Big($	s b	property: $ V_{ud} ^2 + V_{us} ^2 + V_{ub} ^2 = 1$

The superallowed *Ft* value, compared to muon decay (the strength of the leptonic weak interaction), gives you V_{ud} . (V_{ub} is very small and does not matter.)

There's been a long struggle over V_{us} , which comes from kaon decays or hyperon β decay, with useful checks from theory with more than one possible solution.

CKM unitarity test is off by 2-3 σ at 0.1% from most recent reevaluations of radiative corrections (see Towner Hardy review below).

Again, each *Ft* value has an isospin mixing calculation done phenomenologically, because initial and final wavefunctions are not identical. The uncertainty and centroids of these calculations are still an open question.

Fig. 2. Plot of the $(ft)_1^*$ data points that do not include theoretical corrections for isospin symmetry breaking and the resulting quadratic fit giving the global trend

Phenomenological estimate of isospin breaking uncertainty (and b_F)

parity

Correlations

• Grinyer, Svensson, Brown NIMA 622 236 (2010) Using 'Wilkinson Method 2' Correcting flucuations in *Ft* in each shell, yet allowing magnitude of isospin breaking to vary phenomenologically with Z^2 .

 $V_{\rm ud}$ changed by 0.2 σ . σ_{Vud} increased by 1.3.

• I, JB B, then floated b_{Fierz} and isospin breaking on compiled 2015 data set.

• If done on the 2020 data set (improved ¹⁴O, ⁶²Ga, etc.) could better assign σ to the isospin breaking and the Fierz term, perhaps without much cost to precision in V_{ud}

Zη

time

strengths

Vud

log(ft) for β decay

Wong Figure 5.8 As we said above, G-T transitions preserve nuclear π , while 1st-forbidden transitions flip nuclear π .

If the *ft* values are different enough, that can distinguish the transition and be used to determine π .

However, the *ft* values for G-T and 1st forbidden overlap.

Sometimes the nuclear matrix element for G-T decay is accidentally small. (E.g. ¹⁴C GT decay has log(ft) of 9.0, five orders slower rate than the fastest GT's)

Zο

L16-18 Weak JB strengths Vud Selection rules		Vud	TABLE I. Allowed and first-forbidden nuclear matrix elements and their selection rules (K designates the rank of the transition operator, when regarded as a tensor).					
			Matrix element		K	ΔJ	$\Delta \pi$	
Fermi			Allowed	<i>C</i> _{<i>V</i>} ∫1	0	0	+1	
G-T				С⊿∫б	1	0, ± 1 (no 0 \rightarrow 0)	+1	
γ_5 dominates $\sigma \cdot {\it r}$ suppres	s 0 $^- ightarrow$ 0 $^+$ ssed by r/ λ		First for- bidden	$C_{A} \int \gamma_{5} \\ C_{A} \int (0 \cdot \mathbf{r}/i) \right\}$	0	0	-1	
				$ C_{V} \int \mathbf{r} i C_{V} \int \mathbf{\alpha} C_{A} \int (\mathbf{d} \times \mathbf{r}) $	1	0, ±1 (no 0→0)	-1	
'1st forb. uni One operato correlations	ique' $2^{\pm} \leftrightarrow 0^{\mp}$ r \Rightarrow calculable from a.m.			C₄∫iB _{ij}	2	$0, \pm 1, \pm 2 \text{ (no } 0 \rightarrow 0,$ no $1 \rightarrow 0, \text{ no } 0 \rightarrow 1$)	-1	

Weidenmüller Rev Mod Phys 33 574 (1961)

, 0

Why the Weak Interaction is weak at low energy

We've already developed the Yukawa potential using the Klein-Gordon equation. The same physics can be looked at with the propagator in the Feynman diagram for W^{\pm} exchange:

 β decay is purely weak \Rightarrow physics at scale M_W = 80GeV/c²

$$d \qquad G \qquad G \qquad G \qquad \beta$$

 $u \qquad W^+$

Propagator+vertices: T $\propto \frac{G_{S}(-g^{\mu\nu}+p^{\mu}p^{\nu}/M_{W}^{2})G_{S}}{p^{2}-M_{W}^{2}} \xrightarrow{p < <M_{W}} \frac{G_{S}^{2}}{M_{W}^{2}} \Rightarrow$ Poteo figurating interferencell $q_{S} \xrightarrow{G_{S}^{4}}$

Rates [ignoring interference!] $\propto \frac{G_s^4}{M_{\odot}^4}$

So the massive W^+ makes the interaction strength small for β decay with $p \sim MeV$ At high $p \sim M_W$, the interaction has the same coupling constant as electromagnetism

For nucleons, G can be different from the quark-lepton couplings

CVC,PCAC

Correlations

time

Zo

Conserved Vector Current hypothesis with Dirac formalism

Vud

CVC is sometimes considered more for its consequences than for the physics behind it, so I'm going through the physics assumptions.

- Construct the E&M current for pointlike particles and show its derivative is zero, simply because of conservation of electric charge.
- Consider what happens if the particles are composite, like nucleons. One gets some relations for 'form factors' describing the nucleons, relations necessary to keep this current conserved.

• Hypothesize that the vector part of the weak current should be similarly conserved, and show what that implies for weak interaction physics. I'll use Dirac formalism, because the currents are all relativistic. I'll cite the limited formalism I need as I go along.

time

 Z_0

The S.M. interaction has W exchange, which at momenta $<< M_W$ produces this quark-lepton current-current Langrangian density that is purely 'V-A' (using the opposite-signed convention):

$$L = \frac{G}{\sqrt{2}} J^{\mu} \bar{J}^{\dagger}_{\mu} + h.c. \text{ with } J_{\mu} = J^{(lep)}_{\mu} + J^{(had)}_{\mu} \text{ and } J^{(lep)}_{\mu} = \bar{\psi}_{e} \gamma_{\mu} (1 + \gamma_{5}) \psi_{\text{neutrino}}$$

We would really like to just deal with quarks, so that we could write something like:

$$J^{(had)}_{\mu}=J^{quark}_{\mu}=ar{\psi_d}\gamma_{\mu}(1+\gamma_5)\psi_u$$

because then everything would be automatically V-A, just like purely leptonic weak interactions (like μ decay).

However, we're stuck with nucleons, composite particles made of quarks. So QCD can 'induce' other terms as it combines quarks into the nucleon wf's.

So we have to go back and construct a general Lorentz vector for the hadrons (to make a bilinear covariant with the Lorentz vector of the leptons), along with an a Lorentz axial vector for the hadrons (to make a bilinear covariant with the axial current of the leptons).

First we'll back up and do this for the E&M current, which is purely vector. The fact that this vector current is conserved (electric charge is conserved) puts constraints on the composite terms:

parity

time

 Z_0

First we consider the E&M current, take its divergence, and use Dirac equation $(\gamma_{\mu}\partial_{\mu} + m)\psi = (\not p + m)\psi=0$

 $J_{\mu} = -e\bar{\psi}\gamma_{\mu}\psi$ (more properly, matrix element $\langle p'|J_{\mu}(E\&M)|p\rangle$) for particle with momentum $p \to p'$)

using plane-wave solution to Dirac eq. $\psi = u(p)e^{ip \cdot x}$

Vud

$$\partial_{\mu} J_{\mu} / (-e) = \\ \partial_{\mu} \left[\bar{u}(p_2) \gamma_{\mu} u(p_1) e^{i(p_1 - p_2) \cdot x} \right] \\ = \left[\bar{u}(p_2) (p_1 - p_2)_{\mu} \gamma_{\mu} u(p_1) \right] e^{i(p_1 - p_2) \cdot x} \\ = \left[\bar{u}(p_2) \not p_1 u(p_1) - \bar{u}(p_2) \not p_2 u(p_1) \right] e^{i(p_1 - p_2) \cdot x} \\ = i(m_1 - m_2) \bar{u}(p_2) u(p_1) e^{i(p_1 - p_2) \cdot x} = 0$$

because $m_1 = m_2$ in E+M interactions So this E+M current is conserved, so charge is conserved, QED

Zo

Electromagnetic current for composite particles

Vud

Before we go back to the weak interaction, it is instructive to write down a general electromagnetic current for a composite particle, take its divergence, and set that to zero. We will get a direct prediction about a corresponding term in β decay from CVC.

For composite particles like nucleons, we have to again write the most general Lorentz vector that can be constructed from γ_{μ} 's and momenta, subject to:

a) momentum conservation means there are only two independent momenta, the difference $k_{\mu} = (p_2)_{\mu} - (p_1)_{\mu}$ and the average $K_{\mu} = 1/2(p_2 + p_1)_{\mu}$ of the individual momenta

b) not more than two γ matrices, because three γ 's can be written as one γ with γ_5 : I, γ_{μ} , and $\sigma_{\mu\nu} = \frac{1}{2i}(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})$

c) use Dirac eq., i.e. replace p_1 with im_1 when adjacent to spinors.

Then the most general forms of Lorentz vectors are: γ_{μ} , $\sigma_{\mu\nu}k_{\nu}$, k_{ν} , $\sigma_{\mu\nu}K_{\nu}$, K_{ν} . It turns out that the <u>matrix elements</u> of the last two can be rewritten in terms of the other 3. (Perhaps just reflecting that in the CM frame the total momentum is zero.)

time

So we can write a general form for the E&M current of a composite particle:

$$m{J}_{\mu}/m{e} = ar{\psi} \left[m{F}_{1} \gamma_{\mu} - rac{m{F}_{2}}{2m} \sigma_{\mu
u} m{k}_{
u} + m{i}m{F}_{3} m{k}_{\mu}
ight] \psi$$

where F_1, F_2, F_3 are form factors, scalar functions of k^2 . Is this conserved?

$$-\partial_{\mu}J_{\mu}/e = u(\bar{p}_{2})\left[F_{1} k - \frac{F_{2}}{2m}\sigma_{\mu\nu}k_{\nu}k_{\mu} + iF_{3}k^{2}\right]u(p_{1})e^{ik\cdot x}$$

The 1st term vanishes as above

The 2nd term is zero independent of F_2 , because $\sigma_{\mu\nu}$ is completely antisymmetric.

$$\sum_{\mu\nu}\sigma_{\mu\nu}\mathbf{k}_{\nu}\mathbf{k}_{\mu}\equiv\sum_{\mu<\nu}\left[\sigma_{\mu\nu}\mathbf{k}_{\nu}\mathbf{k}_{\mu}+\sigma_{\nu\mu}\mathbf{k}_{\mu}\mathbf{k}_{\nu}\right]=\sum_{\mu<\nu}\left[\sigma_{\mu\nu}+\sigma_{\nu\mu}\right]\mathbf{k}_{\mu}\mathbf{k}_{\nu}=\mathbf{0}$$

The third term is <u>not</u> zero, so for CVC to hold, $F_3(k^2)=0$.

The 2nd term can be related to the magnetic moments, in particular the non-Dirac 'anomalous' magnetic moments, so:

For the proton,
$$F_1^{\mu}(0)=1$$
, $F_2(p)=\mu_p-1=1.793$
For the neutron, $F_1^{n}(0)=0$, $F_2(n)=\mu_n$ =-1.913

time

Zo

Formally setting up isospin-changing operators for a weak 'current': Recall results from angular momentum algebra: define isospin raising/lowering operators $T_{\pm} = T_1 \pm iT_2$

 $T_{\pm}|T, T_z\rangle = \sqrt{T(T+1) - T_z(T_z \pm 1)}|T, T_z \pm 1\rangle$ For spin-1/2, $T_z|1/2, \pm 1/2\rangle = \pm 1/2|1/2, \pm 1/2\rangle$ $T_+|1/2, -1/2\rangle = |1/2, 1/2\rangle$

Now write the E&M vertex function in terms of isoscalar and isovector parts:

$$e\left(\frac{1}{2}\left[F_{1}^{S}\gamma_{\mu}-\frac{F_{2}^{S}}{2m}\sigma_{\mu\nu}k_{\nu}\right]+\left[F_{1}^{V}\gamma_{\mu}-\frac{F_{2}^{V}}{2m}\sigma_{\mu\nu}k_{\nu}\right]T_{z}\right)$$

$$F_{1}^{S}=F_{1}^{(p)}+F_{1}^{(n)}=1+0=1$$

$$F_{1}^{V}=F_{1}^{(p)}-F_{1}^{(n)}=1+0=1$$

$$F_{2}^{S}=F_{2}^{(p)}+F_{2}^{(n)}=-0.120$$

$$F_{2}^{V}=F_{2}^{(p)}-F_{2}^{(n)}=+3.706$$

time

Now we can finally write the weak vertex function for the hadron part:

$$\frac{g}{2\sqrt{2}}V_{ud}\left[\left(g_V\gamma_{\mu}-\frac{g_M}{2m}\sigma_{\mu\nu}k_{\nu}+ig_Sk_{\mu}\right)+\left(g_A\gamma_{\mu}-\frac{g_T}{2m}\sigma_{\mu\nu}k_{\nu}+ig_Pk_{\mu}\right)\gamma_5\right]T_{\pm}$$

where we have also included the similar <u>axial vector</u> terms, to form the covariant piece with the lepton axial vector current.

The CVC hypothesis includes some bold assertions:

Vud

a) Vector portion of weak current is conserved, analogous to E&M current b) The two vector weak currents– the β^+ and β^- decay, given by the terms with T_{\pm} isospin raising/lowering operators– and the isovector part of the electromagnetic current are members of an isotriplet of current operators This implies:

i) $g_V = F_1^V = 1.00$. Presence of strong interactions has left this term completely untouched \Rightarrow unrenormalized. This has many physics consequences.

ii)
$$g_M = F_2^V = \mu_p - \mu_n - 1 = 3.70$$

This term in the weak current of the nucleon is related to the anomalous magnetic moments of the nucleons, called "Weak magnetism"

iii) $g_s = 0!$ The "induced scalar" term must be zero for CVC to hold

So now our full lepton-nucleon interaction density is (Morita Hyp. Int. 21 143 (1985)):

$$\sqrt{2}L = \left[V_{\lambda} + A_{\lambda}\right] \left[\bar{\psi_e}\gamma_{\lambda}(1+\gamma_5)\psi_{\nu}\right] + \left[V_{\lambda}' + A_{\lambda}'\right] \left[\bar{\psi_{\nu}}\gamma_{\lambda}(1+\gamma_5)\psi_{e}\right]$$

with explicitly different forms for β^{\pm} decay:

$$V_{\lambda} = \bar{\psi}_{p} \left(g_{V} \gamma_{\lambda} + \frac{g_{M}}{2m} \sigma_{\lambda \rho} k_{\rho} + i g_{S} k_{\lambda} \right) \psi_{n} \quad A_{\lambda} = \bar{\psi}_{p} \gamma_{5} \left(g_{A} \gamma_{\lambda} + \frac{g_{T}}{2m} \sigma_{\lambda \rho} k_{\rho} + i g_{P} k_{\lambda} \right) \psi_{n}$$
$$V_{\lambda}' = \bar{\psi}_{n} \left(g_{V}^{*} \gamma_{\lambda} + \frac{g_{M}^{*}}{2m} \sigma_{\lambda \rho} k_{\rho}' - i g_{S}^{*} k_{\lambda}' \right) \psi_{p} \quad A_{\lambda}' = \bar{\psi}_{n} \gamma_{5} \left(g_{A}^{*} \gamma_{\lambda} - \frac{g_{T}^{*}}{2m} \sigma_{\lambda \rho} k_{\rho}' + i g_{P} k_{\lambda}' \right) \psi_{n}$$
$$k = k_{p} - k_{n} = -k'$$

Yes, the hadron part, because of the QCD-driven "dressing" within the nucleon, is more complicated than the lepton part.

 g_S and g_T terms change sign from electron to positron decay. These are therefore odd under charge symmetry. So they vanish in isobaric analog decays to the extent that charge symmetry is good. These are called "2nd-class currents" \rightarrow

Zo

There are 2 ways to make 2nd-class currents in a quark model:

• Remembering Standard Model has $\bar{u}\gamma_{\mu}d$ and $\bar{u}\gamma_{5}d$ terms only, add derivative terms like $\partial_{\mu}\bar{u}d$ and $\partial^{\nu}\bar{u}\sigma_{\mu\nu}\gamma_{5}d$

Vud

These are not renormalizable, one large reason they were excluded from the Standard Model (Weinberg Phys. Rev. 112 1375 (1958)).

[One perspective is that the Standard Model itself may be an Effective Field Theory good up to some very high energy. Naively, maybe that means renormalizability is not an exact logical requirement. However, deliberately introducing a manifestly unrenormalizable term would still be a very complicated move for the main part of one's basic theory.]

• Introduce a new quantum number in addition to color and flavor! (Feynman famously called this q.n. 'smell'?). You can also interpret this as a second set of quarks (Holstein Treiman PRD 13 3059 (1976)) carrying this quantum number.

A related scenario: recently people consider extra sectors of particles not interacting much with us, but interacting strongly among themselves. QCD-like symmetries turn out to be a feasible way to generate dark matter. There are tight constraints from experiment on such scenarios.

• The best experimental limits on 2nd-class currents are from direct dedicated β decay measurements, which allow 2nd-class current effects about an order of magnitude larger than the known ones from charge-symmetry breaking in QCD.

Formal extension from nucleons to nucleiThe hadron current we have written is for the spin-1/2 nucleon, where the μ is the only non-Dirac electromagnetic moment.

If you are describing nuclei (or hadrons) with spin > 1/2, then higher-rank electromagnetic moments also, by CVC, contribute to the weak vector current. E.g., the electric quadrupole moment produces a component in the weak vector current. Similarly, additional nuclear-structure dependent form factors appear for J > 1 in the axial vector current.

Holstein generalizes from nucleons to nuclei and writes decay correlations: Rev. Mod. Phys. 46 789 (1974) erratum 48 673; or "Weak Interactions in Nuclei". Nuclei are treated as "elementary particles" and form factors are introduced to include moments and effects from their nonpointlike size. Finite-size effects are In isobaric analog decays, the vector current part is given by the measured electromagnetic moments. The g_T term in isobaric analog decays is zero, but in pure Gamow-Teller decay it is not zero, producing a part that depends on a nuclear structure calculation whose accuracy can limit the sensitivity to new physics. Holstein's approach considers 'recoil-order' terms ~ $(E_\beta/M)^N$ for N=1,2,3. Convergence is

not guaranteed of such a series.

Behrens&Bühring "Electron Wavefunctions and Nuclear β Decay" has forbidden β decay

time

 $c = \sqrt{3}g_A$ $d = \sqrt{3}g_T$ $h = \sqrt{3}g_P.$

Finite nuclear S.M. expressions gain complexity with those corrections

$$\begin{split} l^{\mu} \langle \beta | V_{\mu} | \alpha \rangle &= \delta_{JJ'} \delta_{MM'} \left(a(q^2) \frac{P \cdot l}{2M} + e(q^2) \frac{q \cdot l}{2M} \right) + ib(q^2) \frac{1}{2M} C_{J'1;J}^{M'k;M} \left(\mathbf{q} \times \mathbf{l} \right)_k \qquad a = g_V \\ &+ C_{J'2;J}^{M'k;M} \left[\frac{1}{2M} f'(q^2) C_{11;2}^{nn';k} l_{\eta} q_{n'} + \frac{1}{(2M)^3} g(q^2) P \cdot l \sqrt{\frac{4\pi}{5}} Y_2^{k}(\mathbf{q}) \right] \qquad b - a = \sqrt{3} g_M \\ &e = g_S \end{split} \\ l^{\mu} \langle \beta | A_{\mu} | \alpha \rangle &= C_{J'1;J}^{M'k;M} \varepsilon_{ijk} \varepsilon_{ijk} \eta_{\eta} \frac{1}{4M} \left[c(q^2) l^{\lambda} P^{\eta} - d(q^2) l^{\lambda} q^{\eta} \right] \qquad \text{for decay between is} \\ &+ \frac{1}{(2M)^2} h(q^2) q^{\lambda} P^{\eta} q \cdot l \right] \qquad \langle I, I_z \pm 1 | V_{\mu}^W | I, I_z + \frac{1}{(2M)^2} l_{j'2;J} C_{12;2}^{nn';k} l_n \sqrt{\frac{4\pi}{5}} Y_2^{n'}(\mathbf{q}) \frac{1}{(2M)^2} j_2(q^2) \qquad b(0) = a(0) \sqrt{\frac{J+1}{J}} (\mu_{\beta} - \mu_{\alpha} + C_{J'3;J}^{M'k;M} C_{12;3}^{nn';k} l_n \sqrt{\frac{4\pi}{5}} Y_2^{n'}(\mathbf{q}) \frac{1}{(2M)^2} j_3(q^2), \qquad e(0) = f(0) = 0 \end{split}$$

where
$$x(q^2) = x_0 + x_1 q^2 \dots$$

obaric analogs:

$$\langle I, I_z \pm 1 | V_{\mu}^{W} | I, I_z \rangle,$$

$$\begin{aligned} a(0) &= \left[(I \mp I_z)(I \pm I_z + 1) \right]^{1/2} \\ b(0) &= a(0) \sqrt{\frac{J+1}{J}} \left(\mu_\beta - \mu_\alpha \right) \\ e(0) &= f(0) = 0 \\ g(0) &= -a(0) \left(\frac{(J+1)(2J+3)}{J(2J-1)} \right)^{1/2} \frac{2M^2}{3} \left(Q_\beta - Q_\alpha \right), \end{aligned}$$

time

Valence nucleon shell-model expressions for G-T, weak mag

Vud

This unpaired nucleon expression is incomplete for G-T transitions: (de-Shalit+Talmi Table 9.1)

The Values of $\langle \sigma \rangle^2$ for Single Nucleon Transitions

j_{\prime} j_{i}	$l+rac{1}{2}$	$l - \frac{1}{2}$ $4 \frac{l+1}{2l+1}$		
$l+rac{1}{2}$	$\frac{2l+3}{2l+1} = \frac{j_{\prime}+1}{j_{\prime}}$			
$l-rac{1}{2}$	$\frac{4l}{2l+1}$	$\frac{2l-1}{2l+1} = \frac{j_{\prime}}{j_{\prime}+1}$		

but it can lend qualitative understanding for why the G-T/Fermi ratio is so different in *n*, ¹⁹Ne, ³⁷K... e.g. both μ and G-T transitions are smaller for $d_{3/2}$ proton because the orbital term partly cancels the intrinsic spin term.

Weak magnetism in G-T transitions (Wang+Hayes PRC 95 064313 (2017):

parity

$$\begin{split} \frac{d\omega}{lE_e} &= \frac{G_F^2 \cos^2 \theta_C}{2\pi^3} p_e E_e (E_0 - E_e)^2 F(E_e, Z) g_A^2 |\langle \vec{\Sigma} \rangle|^2 \\ &\times \left(1 + \frac{4}{3} \left[\frac{\mu_v + \frac{\langle J_f ||\vec{\Lambda}|| J_i \rangle}{\langle J_f ||\vec{\Sigma}|| J_i \rangle}}{2 M_N g_a} \right] (2E_e - m_e^2 / E_e - E_0) \right) \\ \delta_{LS}^{j_f j_i} &= \frac{\langle nl j_f ||\vec{\Lambda}|| nl j_i \rangle}{\langle nl j_f ||\vec{\Sigma}|| nl j_i \rangle} & \mu_v = 4.7 \\ \text{(isovector nucleon moment} \\ \text{with } j_i = l \mp 1/2 \text{ and } j_f = l \pm 1/2 \quad \mu_p - \mu_n) \\ \delta_{LS}^{--} &= -(l+1), \quad \delta_{LS}^{-+} = -1/2, \\ \delta_{LS}^{+-} &= -1/2, \quad \delta_{LS}^{++-} = +l. \end{split}$$

For reactor ν production, some simple estimates assumed the nucleon contribution \pm 100%.

parity

Zο

Weak Magnetism tests

• For isobaric analog decays, the 'weak magnetism' $\frac{g_M}{2m}\sigma_{\mu\nu}k_{\nu}$ term is directly predicted by CVC by the 'anomalous' magnetic moment difference of the parent and daughter.

• For 'isospin mirror' Gamow-Teller decays, it is related to the isovector M1 γ -decay strength in the T_z =0 nucleus (Gell-Mann PhysRev 111 362 (1958)).

The *k*-dependence makes 20% distortions in the energy spectrum.

Vud

The axial vector $\frac{g_T}{2m}\sigma_{\mu\nu}k_{\nu}\gamma_5$ term, cancels in the difference unless there is a 2nd-class g_T . The results are consistent with the CVC prediction

to \sim 10% of the g_M term

33/77

/c.Further weak magnetism test:

The angular distribution of β 's is isotropic wrt alignment $\langle M_J^2 \rangle$ for Gamow-Teller decay. Results agree with CVC to ~5%

 Z_0

time

Sketch of lowest-order calculation of g_P Compare these diagrams:

$$T_{fi} = \frac{g}{2\sqrt{2}} V_{ud} \bar{u_p} \left(g_A \gamma_\mu \gamma_5 + i g_P k_\mu \gamma_5 \right) u_n \frac{1}{m_W^2} \frac{g}{2\sqrt{2}} \bar{u_e} \gamma_\mu (1 + \gamma_5) v_{\nu e}$$

For C:

$$T_{fi} = g_{\pi NN} \sqrt{2} \bar{u_p} \gamma_5 u_n \frac{1}{k^2 + m_\pi^2} \frac{G}{\sqrt{2}} i f_\pi k_\mu \bar{u_e} \gamma_\mu (1 + \gamma_5) v_{\nu e} V_{ud}$$

In β decay this is small, but in μ capture it is a large contribution: (in computing the decay lifetime, g_P becomes multiplied by the lepton mass.)

So C is like the g_P part of A; if we declare C responsible for all of mas it:

Continuing *g*_{*P*}, weak and strong interactions together:

see Gorringe and Fearing Rev.Mod.Phys. 76 (2004) 1 for chiral perturbation theory Further arguments (including PCAC below) give the 'Goldberger-Treiman' expression for the QCD-induced 'pseudoscalar' coupling:

$$g_P(q^2) = rac{2m_\mu m_N}{m_\pi^2 - q^2} g_A(0)$$

This is now understood as the first term in an expansion using "chiral perturbation theory"; modern calculations $g_p(-0.88m_{\mu}^2) = 8.23$.

"Chiral perturbation theory" is a systematic expansion in $m_{\pi}/m_{\text{nucleon}}$, guided by similar concepts to our considered "chiral EFT's", (small m_{quark}, π 's as Goldstone bosons from the underlying broken chiral symmetry...) but a calculation, not with free parameters.

History: Experiments in radiative capture on hydrogen: $12.4\pm0.9\pm0.4$ Experiments as of 2004 in ordinary μ capture on hydrogen: 10.5 ± 1.8 As of 2004, not good enough to help yet: PSI was working on it This rigorous prediction of low-energy QCD's effects on weak interaction was not working in 2004. A more accurate PSI experiment resolved the discrepancy with theory: Andreev Phys Rev Lett 110 012504 (2013) $g_p(-0.88\mu^2)=8.06\pm0.55$.
Conserved Vector Current and 'Partially Conserved Axial Current': qualitative One consequence of the conserved 'V' vector current is that the equivalent g_V =1. I.e. the interaction between quarks goes directly over to the interaction between nucleons and nuclei because the 'vector current' is conserved. People looked pretty hard to find a way to find an axial 'A' current that was also conserved (look at Feynman and Gell-Mann PR '57).

Wong writes Eq. 5-52:

$$\sum_{\mu=1}^{4} \frac{\partial V_{\mu}}{\partial x_{\mu}} = 0$$

and then by analogy

$$\sum_{\mu=1}^{4} \frac{\partial \mathbf{A}_{\mu}}{\partial \mathbf{x}_{\mu}} = \text{constant}\phi_{\pi}$$

where ϕ_{π} represents the pion field.

This predicts a relation between the weak coupling constants G_A and G_V , given by :

$$g_A\equiv rac{G_A}{G_V}=rac{f_\pi g_{\pi N}}{M_N c^2}$$

where f_{π} scales π decay and $g_{\pi N}$ can be deduced from π -nucleon scattering. This 'Goldberger-Treiman relation' predicts $|g_A| = 1.31$; experimental value is g_A =-1.259 \pm 0.004 This either 'confirms PCAC' or enforces that 'PCAC is a bad name for a poor approximation'. Lattice QCD is at 1% accuracy for g_A Note that this is all at momentum transfer $q^2 \sim 0$: the constants are really 'form factors,' functions of momentum. $\partial_{\mu} A_{\mu} \stackrel{m_{\pi} \to 0}{\to} 0$

 $\partial .. \mathbf{A} .. =$

 $A_{\mu} = -i\frac{g}{2\sqrt{2}}\bar{u}(p_2)(g_A\gamma_{\mu}\gamma_5 + ig_Pk_{\mu}\gamma_5)u(p_1)e^{i(p_1-p_2)\cdot x}$

PCAC hypothesis: the non-conservation of this current is due entirely to pions, and A_{μ} becomes

So evaluate the divergence of this current:

Vud

strengths

PCAC in more detail Axial (hadronic) Current:

conserved as m_{π} goes to 0:

Correlations

time

By PCAC this vanishes as $m_{\pi} \rightarrow 0$, so:

$$g_{A} \xrightarrow{m_{\pi} \to 0} \frac{g_{P}k^{2}}{2m} =$$

$$\frac{g_{\pi NN}\sqrt{2}f_{\pi}}{k^{2} + m_{\pi}^{2}} \frac{k^{2}}{2m} =$$

$$-\frac{g_{\pi NN}\sqrt{2}f_{\pi}}{2m}$$

the Goldberger-Treiman relation

$$\frac{-ig}{2\sqrt{2}}\bar{u}(p_2)\left(g_Ai \not p_1\gamma_5 - g_Ai \not p_2\gamma_5 + g_Pk^2\gamma_5\right)u(p_1)e^{i(p_1-p_2)\cdot x} = using \text{ Dirac eq.}$$

$$\frac{-ig}{2\sqrt{2}}\bar{u}(p_2)\left(2mg_A+g_Pk^2\right)\gamma_5\right)u(p_1)e^{i(p_1-p_2)\cdot x}$$

Zo

Vud Summary of hadronic weak current form factors in S.M.

Exact Predictions of CVC for vector current:

1) q_V =1...: Experimental 0+ \rightarrow 0⁺ Ft values same to \approx 0.001. CKM unitarity has a 0.001 deficit at 2 to 3 σ . ($\pi^+ \rightarrow \pi_0 + \nu + \beta^+$ agrees to 0.005 (PIBETA)

2) a_{M} =3.70: Weak magnetism measured to \approx 5% of its value

3) $q_s=0$: Ft, and relative helicity of leptons from $\beta - \nu$ correlation and $\pi \rightarrow e\nu$, show no evidence for scalar term at $C_{\rm S} < 0.05$ level.

Estimates from PCAC (Goldberger-Treiman) and similar:

1)
$$g_{\mathsf{A}} = rac{g_{\pi NN}\sqrt{2}t_{\pi}}{2m} = -1.32;$$
 Decay of neutron \Rightarrow -1.26

2) $m_{\mu}g_{P} = \frac{g_{\pi NN}\sqrt{2}f_{\pi}m_{\mu}}{m^{2}} = 9.2$ Including chiral perturbation theory more like 8.0, PSI's μ CAP experiment μ capture on hydrogen agrees well.

Charge Symmetry (G-parity): No 2nd-class currents: $f_3 \approx 0$, $a_2 \approx 0$

(The best tests of this SU(2) symmetry are still in β decay: similar tests in hadronic decays of τ)

• V and A are the dominant known couplings for nuclear β decay. The most precise a_{β} measurement in the neutron diagrees badly, suggesting a large Lorentz tensor interaction. Interesting that a couple of simple surmises determined 6 couplings so well- reasonable to call it an "effective field theory" for the lepton-nucleon weak interaction. See Ando PhysLettB595 250 (2004) for an EFT of neutron β decay including radiative corrections.

time

Zo

Clarification of *g_V*

I said g_V =1.00 was experimentally shown, which was pretty sloppy. Better to say g_V =1 is a prediction of CVC:

- The $0^+ \rightarrow 0^+$ *Ft* values are experimentally constant, testing whether g_V is a constant for all transitions, but not necessarily g_v =1.000...
- Backing up, G_V is determined by

strengths

$$\mathcal{F}t \equiv ft(1+\delta_R')(1+\delta_{\rm NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)}, \quad (1)$$

where $K/(\hbar c)^6 = 2\pi^3 \hbar \ln 2/(m_e c^2)^5 = 8120.27648(26) \times 10^{-10}$ GeV⁻⁴s, G_V is the vector coupling constant for semileptonic weak interactions, δ_C is the isospin-symmetrybreaking correction, and Δ_R^V is the transition-independent part of the radiative correction. The terms δ_R' and $\delta_{\rm NS}$ comprise the transition-dependent part of the radiative correction, the **and then** V_{ud} is determined by

$$V_{ud} = G_V / G_F, \tag{2}$$

where G_F is the well-known weak-interaction constant for muon decay. Once the value of V_{ud} is established it can be

So the present deficit in V_{ud} could also be a change for g_V from its value of 1 from electroweak unification.

E.g., e and μ weak couplings could be different.

Crivellin and Hoferichter PRL 125 111801 (2020) consider keeping CKM unitarity while considering constraints from

$$(\pi
ightarrow oldsymbol{e}
u)/(\pi
ightarrow \mu
u)$$

40/77

L16-18 Weak JB

strengths

Vud

CVC,PCAC

time

Axial vector is not conserved. Is g_A the same in nuclei? G-T ("lkeda") sum rule:

define the sum rule strength

$$S_{\pm} = G_A^{-2} \sum_{f} |\langle f | \boldsymbol{O}_{\mathrm{GT}}(\beta^{\pm}) | i \rangle|^2$$

$$S_{\pm} = G_A^{-2} \sum_{f} \langle f | \boldsymbol{O}_{\mathrm{GT}}(\beta^{\pm}) | i \rangle^* \langle f | \boldsymbol{O}_{\mathrm{GT}}(\beta^{\pm}) | i \rangle$$

$$= G_A^{-2} \sum_{f} \langle i | \boldsymbol{O}_{\mathrm{GT}}^{\dagger}(\beta^{\pm}) | f \rangle \langle f | \boldsymbol{O}_{\mathrm{GT}}(\beta^{\pm}) | i \rangle$$

$$= G_A^{-2} \langle i | \boldsymbol{O}_{\mathrm{GT}}^{\dagger}(\beta^{\pm}) \boldsymbol{O}_{\mathrm{GT}}(\beta^{\pm}) | i \rangle$$

operators involved here have the following p

$$\sigma_{\mu}^{\dagger} = (-1)^{\mu} \sigma_{-\mu} \qquad \tau_{\mp}^{\dagger} = \tau_{\pm}$$

$$S_{+} = \langle i | \sum_{k=1}^{A} \sum_{\mu} (-1)^{\mu} \sigma_{-\mu}(k) \tau_{+}(k) \sigma_{\mu}(k) \tau_{-}(k) | i \rangle$$

$$= \langle i | \sum_{k=1}^{A} \sigma^{2}(k) \tau_{+}(k) \tau_{-}(k) | i \rangle$$

In a spherical basis, the scalar product m

$$\boldsymbol{J}\cdot\boldsymbol{V}=\sum_{\boldsymbol{q}}(-1)^{\boldsymbol{q}}\boldsymbol{J}_{1\boldsymbol{q}}\boldsymbol{V}_{1,-\boldsymbol{q}}$$

 $\boldsymbol{\tau}_{+}\boldsymbol{\tau}_{-}|p\rangle = |p\rangle \qquad \boldsymbol{\tau}_{+}\boldsymbol{\tau}_{-}|n\rangle = 0$

expectation value of σ^2 is 3.

$$S_{+} = \langle i | \sum_{k=1}^{Z} \sigma^{2}(k) | i \rangle = 3Z$$

Similarly, S_{-} = 3N , and $S_{+} - S_{-}$ =3(Z-N) Detailed studies with high-Q β decay (and (p,n) and (n,p) reactions at 100-200 MeV)found \approx 75% of the sum rule. Recent calculations (Gysberg Nat Phys 15 428 2019) reproduce GT strength with about 5-10% accuracy, combining chiral EFT's with accurate many-body techniques and considering '2-body currents'

time

Jackson, Treiman, Wyld 1957 wrote down 4-Fermi vertex interaction H for nucleon beta decay. (These could be written in a more natural helicity basis...)

You construct Lorentz-invariant quantities, i.e. a Lorentz scalar, from the possible objects which Lorentz transform like vectors. axial vectors, scalars, tensors, pseudoscalars (it turns out all combinations of more Dirac matrices reduce to these). Assuming pointlike high-mass-bosons only, one would now call this an EFT:

$$H_{int} = (\bar{\psi}_{p}\psi_{n})(C_{S}\bar{\psi}_{e}\psi_{\nu}+C_{S}'\bar{\psi}_{e}\gamma_{5}\psi_{\nu}) + (\bar{\psi}_{p}\gamma_{\mu}\psi_{n})(C_{V}\bar{\psi}_{e}\gamma_{\mu}\psi_{\nu}+C_{V}'\bar{\psi}_{e}\gamma_{\mu}\gamma_{5}\psi_{\nu}) + \frac{1}{2}(\bar{\psi}_{p}\sigma_{\lambda\mu}\psi_{n})(C_{T}\bar{\psi}_{e}\sigma_{\lambda\mu}\psi_{\nu}+C_{T}'\bar{\psi}_{e}\sigma_{\lambda\mu}\gamma_{5}\psi_{\nu}) - (\bar{\psi}_{p}\gamma_{\mu}\gamma_{5}\psi_{n})(C_{A}\bar{\psi}_{e}\gamma_{\mu}\gamma_{5}\psi_{\nu}+C_{A}'\bar{\psi}_{e}\gamma_{\mu}\psi_{\nu}) + (\bar{\psi}_{p}\gamma_{5}\psi_{n})(C_{P}\bar{\psi}_{e}\gamma_{5}\psi_{\nu}+C_{P}'\bar{\psi}_{e}\psi_{\nu}) + Hermitian co$$

Quark-lepton interactions have been found experimentally to be V,A only so far. V is assumed conserved (like electric charge), so C_V =1 is often assumed. QCD still can change A, and 'induce' all the other terms for hadron-lepton interactions, changing all these constants but C_V . We've seen how this creates interesting ways to test QCD's influence on weak interactions, and we've already seen $|C_A| = 1.26...$ I.e. this looks a lot like the S.M. quark-lepton Lagrangian but of course we have to be careful about the C_X 's

 Z_0

time

Jackson, Treiman, Wyld 1957 wrote down observables before angular integration, and the answers

 $\omega(\langle J \rangle | E_e, \Omega_e, \Omega_{\nu}) dE_e d\Omega_e d\Omega_{\nu}$

$$= \frac{1}{(2\pi)^5} p_e E_e (E^0 - E_e)^2 dE_e d\Omega_e d\Omega_\nu \xi \bigg\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m}{E_e} \bigg\}$$
$$+ c \bigg[\frac{1}{3} \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} - \frac{(\mathbf{p}_e \cdot \mathbf{j})(\mathbf{p}_\nu \cdot \mathbf{j})}{E_e E_\nu} \bigg] \bigg[\frac{J(J+1) - 3\langle (\mathbf{J} \cdot \mathbf{j})^2 \rangle}{J(2J-1)} \bigg]$$
$$+ \frac{\langle \mathbf{J} \rangle}{J} \cdot \bigg[A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \bigg] \bigg\}.$$

Rather than use JTW's answers here,

Re: the 'Fierz interference' term $b\frac{m_e}{F_e}$,

we'll assume the functional form of the correlations. In limiting cases, assumptions about S.M. lepton helicity will then let us deduce the S.M. predictions soon.

The S.M. weak interaction makes left-handed leptons and right-handed antileptons in decays, Helicity $\hat{s} \cdot \hat{p}$

Note $\frac{p}{E}$ is, of course, $\frac{v}{c}$. One can always boost to a frame moving faster than a massive particle– reversing \hat{p} but preserving \hat{s} . That's intuitively why there's a factor of $\frac{v}{c}$ multiplying the helicities.

product of a SM term with normal helicity and a SM term with non-normal helicity:

 $\sqrt{1 + \frac{p_e}{E_e}} \times \sqrt{1 - \frac{p_e}{E_e}} = \sqrt{1 - \frac{p_e^2}{E_e^2}} = \frac{m_e}{E_e}$ take care with particle physics 'chirality' vs. 'helicity' Reference for non-Dirac treatment: R. Hong, M. Sternberg, A. Garcia, "Helicity and nuclear β decay correlations," American Journal of Physics 85 p 45 (2017).

transmission through magnet depends on iron polarization: $\frac{N_+ - N_-}{N_+ + N_-} = 0.017 \pm 0.003$

• Upward ν boosts γ momentum so it can be absorbed on-resonance $\Rightarrow \nu$ helicity -1 \pm 10%

(• $\bar{\nu}$ helicity \sim +1 Palathingal PRL 524 24 '69)

24% Pb Sm 2 0 1 SCATTERER Fe + Pb SHIELD 837 96 830 ± 50 key 0.02 % LOG FT # 8.2 ₅₂Sm¹⁵² RCA 6342 U METAL SHIELD

Surprisingly enough, this is the best direct measurement of ν helicity = $\hat{s}_{\nu} \cdot \hat{k}_{\nu}$

Correlations

 Z_0

45/77

time

The β - ν angular distribution in the SM $W[\theta_{\beta\nu}] = 1 + a \frac{v_{\beta}}{c} \cos \theta_{\beta\nu}$ For ^{38m}K, $0^+ \rightarrow 0^+$ decay: a= +1 'Proof': β**+** μCΡ 38m_K leptons have Ar m=+1/2 opposite helicity m = -1/2for W (vector) boson exchange ≯β m=+1/2 m = +1/2

Correlations

parity

time

 Z_0

The β - ν angular distribution in the SM $W[\theta_{\beta\nu}] = 1 + a \frac{v_{\beta}}{2} \cos \theta_{\beta\nu}$ For ^{38m}K. $0^+ \rightarrow 0^+$ decay: a = +1 'Proof': μCΡ 38m_K leptons have m = +1/2Ar opposite helicity for W (vector) boson exchange m = +1/2 $m = \pm 1/2$

Vud

For scalar exchange, lepton helicities are same: a= -1 No nuclear structure corrections until 10⁻⁶ accuracy

Note $a_{\beta\nu}$ depends on the relative helicity of β and ν , but not the absolute sign. The observable is parity-even, and is not actually sensitive to parity violation.

Correlations

time

Zo

β-ν correlation from recoil momentum spectrum Kofoed-Hansen Dan. Mat. Fys. Medd. 28 nr9 (1954)

The recoil momentum spectrum is straightforward and analytic: If we write angular distribution in terms of E (β total energy), θ (β - ν angle), p (β momentum), q (ν momentum) (it's understood we have to evaluate q to conserve energy-momentum; it's not a free parameter)

 $P(E, \theta) dEd\Omega_{\theta} =$

$$F(Z, E)pEq^{2}\left(1+rac{b}{E}+arac{p}{E}\cos heta
ight)dEd\Omega_{ heta}$$

Then if the recoil momentum is r, energy conservation $E+q=E_0$ ($E_0=Q+m_\beta$), then we just use law of cosines:

$$p^2 + q^2 + 2pq\cos\theta = r^2$$

differentiate θ with respect to r:

$$|\sin heta d heta| = 2d\Omega_{ heta} = rac{r}{pq}dr$$

we immediately get the recoil momentum spectrum P(E, r) =

$$\frac{1}{2}F(Z,E)\left(rEq+brq+r\frac{a}{2}(r^2-p^2-q^2)\right)dEdr$$

at fixed E, it's linear in recoil energy RP(E, R)dEdR =

$$\frac{M}{2}F(Z,E)\left(Eq+bq+\frac{a}{2}(2MR-p^2-q^2)dEdR\right)$$

Zο

Vud 1963 ⁶He $a_{\beta\nu}$ definitive evidence for V,A instead of S,T.

Feynman&Gell-Mann paper PR 109 193 (1957) proposing both CVC and V \pm A: "These theoretical arguments seem to the authors to be strong enough to suggest that the disagreement with the He⁶ recoil experiment... indicates that these experiments are wrong."

parity

Then Johnson, Pleasonton, Carlson PhysRev 132 1149 (1963) $a_{\beta\nu} = -0.3308 \pm 0.0030$ agreed much better with V.A (-1/3) than S.T (+1/3). (This $0^+ \rightarrow 1^+$ decay is pure Gamow-Teller, hence axial vector, sensitive to Lorentz axial vector and tensor interactions, though not the sign wrt vector and scalar)

Correlationsparitytime $\beta - \nu$ correlation for pure Fermi
transition 38m K 0⁺ \rightarrow 0⁺Angular distribution of ν wrt β
determined from other observables
(except E_{β}).Gorelov PRL 94 142501 (2005)
 \tilde{a} =0.9981 \pm 0.0030(stat) \pm 0.0037(syst)(Adelberger 32 Ar also 0⁺ \rightarrow 0⁺

(Adelberger 52 Ar also $0^+ \rightarrow 0^+$ PRL 83 1299 (1999) (err. 83 3101) \tilde{a} =0.9989 ± 0.0052(stat) ± 0.0039(syst)

Together constrain that Lorentz scalar contribution is small \rightarrow

Z₀

Summarizing info on Lorentz structure from β - ν correlation

Interaction is mostly vector and axial vector, i.e. V and A

[Except aSPECT has difference in *a* for neutron (2.57 \pm 0.84)*x*10⁻³ Explainable by a finite Lorentz tensor allowed by other nuclear β decay]

For the sign between them, we need to consider parity violation \rightarrow

Z₀

CVC,PCAC

 \rightarrow

 \rightarrow

Correlations

parity

time

Symmetries: Continuous, Discrete

Vud

- Noether's theorem (1915):
 - Continuous symmetry Time-translational invariance
 - Space-translational invariance

Rotational invariance

(Laplace-Runge-Lenz vector)

THE LATE EMMY NOETHER.

Professor Einstein Writes in Appreciation of a Fellow-Mathematician.

To the Editor of The New York Times :

In Ted Chiang's "Story of Your Life" [Movie "Arrival"]: aliens think in terms of the action, not position and momentum

- \rightarrow Conserved quantity
 - Energy
 - Momentum
- \rightarrow Angular momentum

name?

gan. In the realm of algebra, in which the most gifted mathematicians have been busy for centuries, she discovered methods which have proved of enormous importance in the development of the present-day younger generation of mathematicians. Pure mathematics is, in its way, the poetry of logical ideas. One socks the most general ideas of operation which will bring together in simple. logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulae are discovered necessary for the deeper penetration into the laws of nature.

Emmy Noether's WONDERFUL THEOREM

ullet Discrete symmetries in quantum mechanics: Parity, Time reversal ightarrow

Zο

Historical Ideas about P, T breaking

• Wigner considered implications of P, T symmetry conservation in atomic spectra 1926-28. Showed $\langle T\psi_i, T\psi_f \rangle = \langle \psi_f, \psi_i \rangle^*$

"In quantum theory, invariance principles permit even further reaching conclusions than in classical mechanics." (D. Gross, Physics Today 48 46 (1995))

- Weyl 1931 considered *C*, *P*, *T* and *CPT* in "Maxwell-Dirac theory": $C \Rightarrow$ Dirac eq. negative energy states had to have same mass as the e^- plato.stanford.edu
- From "CP Violation Without Strangeness" Khriplovich and Lamoreaux: 1949 Dirac "I do not believe there is any need for physical laws to be invariant under reflections in space and time although the exact laws of nature so far known do have this invariance."
- 1956 Lee and Yang proposed ${\cal P}$ in weak decays to fix the heta-au puzzle
- Feynman gives Ramsey 50:1 odds *P* would not be observable Ramsey experiment starting at ORNL gets derailed by fission experiments... it's OK, Ramsey won 1989 Nobel for his fringes

Zo

parity

time

Zη

Parity (From A. Zee "Fearful Symmetry")

Vud

P

As of 1956, we thought all interactions respected parity Parity operator $P \psi(\vec{r}) \rightarrow \pm \psi(-\vec{r})$

1957: $\tau - \theta$ Puzzle + μ decay + ⁶⁰Co decay \Rightarrow

 \Rightarrow A spin flip corresponds exactly to *P* reversal Decays don't exactly test *T*-reversal symmetry L16-18 Weak JB

strengths

CVC.PCAC

Correlations

IS

parity

time

 Z_0

One experimental discovery of parity violation

Vud

Wu, Ambler, Hayward, Hopper, Hobson, PR 105 1413 Feb '57

Dilution Refrigerator to spin-polarize with nuclear polarization $P = \langle \frac{J_z}{I} \rangle$ $^{60}\text{Co}
ightarrow ^{60}\text{Ni} + eta^- + ar{
u}$ $W[\theta] = 1 + PA\hat{J} \cdot \frac{\vec{p}_{\beta}}{F_{\alpha}}$ $= 1 + AP \frac{v}{c} \cos[\theta]$ $A_{\beta-}\approx -1.0$ Note: $5^+ \rightarrow 4^+$ Null if left-handed $\beta^- \rightarrow \vec{J}$ $m_{1}^{i} = +5$ $m_{\beta}=-1/2, m_{J}^{f}=+4$

55/77

L16-18 Weak Bup for afformed *β*-decay correlations

Jackson Treiman Wyld NuclPhysA 4 206 (1957)

 ± 1 , no nuclear parity change, $f = 0 \rightarrow J' = 0$ forbidden. J and J' are the angular momenta of the original and final nuclei, $\delta_{J'J}$ is the Kronecker delta symbol and

$$\begin{split} \lambda_{I'I} = \begin{cases} 1 & J \to J' = J - 1 \\ \frac{1}{J+1} & J \to J' = J \\ -\frac{J}{J+1} & J \to J' = J + 1 \end{cases} \tag{A.1} \\ A_{I'I} = \begin{cases} 1 & J \to J' = J - 1 \\ -\frac{(2J-1)}{J+1} & J \to J' = J \\ \frac{J(2J-1)}{(J+1)(2J+3)} & J \to J' = J + 1. \end{cases} \end{split}$$

Z is the atomic number of the final nucleus, α is the fine structure constant, and $\gamma = (1-\alpha^2 Z^2)^{\frac{1}{2}}$.

For pure G-T:
$$oldsymbol{A}_{eta\pm}$$
 = \pm $\lambda_{oldsymbol{J}',oldsymbol{J}}$

Textbooks with calculations: a, the ' $\beta - \nu$ correlation': Halzen&Martin "Quarks&Leptons," my notes ph505jbVIII.2005.aBetaNu_WithDirac.pdf

Melconian's notes include Fierz term! A, the ' β asymmetry wrt spin': Greiner and Müller "Gauge Theory of Weak Interactions" Towner's notes within mine

$$\begin{aligned} & \text{upper sign for } \beta^{-}, \text{ lower sign for } \beta^{+} \\ \xi &= |M_{\text{F}}|^{2} (|C_{\text{S}}|^{2} + |C_{\text{V}}|^{2} + |C'_{\text{S}}|^{2} + |C'_{\text{V}}|^{2}) \\ &+ |M_{\text{GT}}|^{2} (|C_{\text{T}}|^{2} + |C_{\text{A}}|^{2} + |C'_{\text{T}}|^{2} + |C'_{\text{A}}|^{2}) \end{aligned}$$
(A.3)
$$& a\xi &= |M_{\text{F}}|^{2} \left\{ [-|C_{\text{S}}|^{2} + |C_{\text{V}}|^{2} - |C'_{\text{S}}|^{2} + |C_{\text{V}}|^{2}] \mp \frac{\alpha Zm}{p_{\text{e}}} 2 \operatorname{Im} (C_{\text{S}}C_{\text{V}}^{*} + C'_{\text{S}}C'_{\text{V}}^{*}) \right\} \\ &+ \frac{|M_{\text{GT}}|^{2}}{3} \left\{ [|C_{\text{T}}|^{2} - |C_{\text{A}}|^{2} + |C'_{\text{T}}|^{2} - |C'_{\text{A}}|^{2}] \pm \frac{\alpha Zm}{p_{\text{e}}} 2 \operatorname{Im} (C_{\text{T}}C_{\text{A}}^{*} + C'_{\text{T}}C'_{\text{A}}^{*}) \right\}$$
(A.4)
$$& b\xi &= \pm 2\gamma \operatorname{Re}[|M_{\text{F}}|^{2} (C_{\text{S}}C_{\text{V}}^{*} + C'_{\text{S}}C'_{\text{V}}^{*}) + |M_{\text{GT}}|^{2} (C_{\text{T}}C_{\text{A}}^{*} + C'_{\text{T}}C'_{\text{A}}^{*})]$$
(A.5)
$$& c\xi &= |M_{\text{GT}}|^{2} A_{J'J} \left[|C_{\text{T}}|^{2} - |C_{\text{A}}|^{2} + |C'_{\text{T}}|^{2} - |C'_{\text{A}}|^{2} \pm \frac{\alpha Zm}{p_{\text{e}}} 2 \operatorname{Im} (C_{\text{T}}C_{\text{A}}^{*} + C'_{\text{T}}C'_{\text{A}}^{*}) \right]$$
(A.6)
$$& A\xi &= |M_{\text{GT}}|^{2} \lambda_{J'J} \left[\pm 2 \operatorname{Re} (C_{\text{T}}C'_{\text{T}}^{*} - C_{\text{A}}C'_{\text{A}}^{*}) + \frac{\alpha Zm}{p_{\text{e}}} 2 \operatorname{Im} (C_{\text{T}}C'_{\text{A}}^{*} + C'_{\text{T}}C_{\text{A}}^{*}) \right] \right] \\& + \delta_{J'J} M_{\text{F}} M_{\text{GT}} \sqrt{\frac{J}{J+1}} \left[2 \operatorname{Re} (C_{\text{S}}C'_{\text{T}}^{*} + C'_{\text{S}}C_{\text{T}}^{*} - C_{\text{V}}C'_{\text{A}}^{*} - C'_{\text{V}}C_{\text{A}}^{*}) \right] \end{aligned}$$

parity

Correlations

$$\pm \frac{\alpha Zm}{p_{\rm e}} 2 \, {\rm Im} \left(C_{\rm s} C'_{\rm A} * + C'_{\rm s} C_{\rm A} * - C_{\rm v} C'_{\rm T} * - C'_{\rm v} C_{\rm T} * \right) \right]$$
(A.7)

+ B_{ν} , $\mathcal{T}D$, ...

Zο

time

Extra W' with heavier mass, couples to wrong-handed ν_B LHC $M'_{W} > 3.7 \text{ TeV}$ 90%

Z₀

time

TEXAS A&M

time

֎ Weak interaction: same strength, all nuclei?

Deduced V_{ud} from mirror decays Are people overestimating their uncertainties? We aren't 🙂

We project to reach 0.0005 accuracy, as good as any $0^+ \rightarrow 0^+$ except ^{26m}Al.

Assumes 5% isospin breaking calculation.

strengths

time

WTRIUMF Physics and time reversal

When t \rightarrow -t, does anything change?

Vud

- Wave Equ. is 2nd-order in t: $\nabla^2 u = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ symmetric in t
- Heat Equ. is 1st-order in t: $\nabla^2 u = -\frac{\partial u}{\partial t}$ t \rightarrow -t, boom? 'Dissipation', like friction... The arrow of time remains a research problem in stat mech, but it's not from (known) particle physics
- Schroedinger Equation is 1st order: $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2}$ 'Take the complex conjugate' (but see Dressel et al. PRL 119 220507 (2017) "Arrow of Time for Continuous Quantum Measurements") Microscopic physics was thought to be symmetric in t

parity

Simulating \mathcal{T} in decays?

We've constructed an angular correlation, a scalar observable, by a dot product of two vectors

 $1+\hat{p}\cdot\hat{J}$

which is odd under *P* as we need

Vud

(
$$ec{m{
m p}}$$
 is even, $ec{m{J}}=ec{m{r}} imesec{m{
m p}}$ is odd)

But \vec{J} is odd under T, not even

So we need at least 3 vectors to have a T-odd scalar observable, the scalar triple product $\vec{v1} \cdot (\vec{v2} \times \vec{v3})$

An example \rightarrow

®TRIUMF *T* correlation of 3 of 4 momenta

Vud

$$ext{t}
ightarrow ext{-t} \Rightarrow \vec{p} \propto rac{\mathrm{d}\vec{r}}{\mathrm{d}t}
ightarrow ext{-}\vec{p}$$

but $\vec{p}_{\mathrm{recoil}} \cdot \vec{p}_{\beta} imes \vec{p}_{\nu} \equiv \mathbf{0}$ ©

$$ec{m{
ho}}_{
u}\cdotec{m{
ho}}_{eta} imesec{m{
ho}}_{\gamma}^{\gamma}=-ec{m{
ho}}_{
m recoil}\cdotec{m{
ho}}_{eta} imesec{m{
ho}}_{\gamma}^{\gamma}$$
 $\stackrel{t
ightarrow t
ightarrow t
ightarrow ec{m{
ho}}_{\gamma} imesec{m{
ho}}_{\gamma} imesec{m{
ho}}_{\gamma}$

parity

We can test symmetry of apparatus with coincident pairs ☺
 Not exact. Outgoing particles interact → fake X

time

parity

Vud

Immediately after P arity was seen to be totally broken in β decay (' ν left-handed') Wu, Ambler, Hayward, Hopper, Hobson, PR 105 (1957) 1413 Many T-odd observables were proposed:

PHYSICAL REVIEW

VOLUME 106, NUMBER 3

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. JACKSON,^{*} S. B. TREIMAN, AND H. W. WYLD, JR. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

Need scalar triple products of 3 vectors: observables involving spin

$$\begin{split} D\hat{J} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}} & R\vec{\sigma}_{\beta} \cdot \hat{J} \times \frac{\vec{p}_{\beta}}{E_{\beta}} \\ \text{are consistent with } \mathcal{T} < 0.001 \end{split}$$

but some has been found ightarrow

Zο

time

parity

PHYSICAL REVIEW

VOLUME 106, NUMBER 3

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. JACKSON,* S. B. TREIMAN, AND H. W. WYLD, JR. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

CP discovered in $K\bar{K}$ meson decays in 1963. though not much (Cronin and Fitch Nobel prize 1980) Quark eigenstates in the weak interaction: To explain some weak decays we saw. $|u\rangle \rightarrow |d\rangle + \epsilon |s\rangle$ i.e. $|u\rangle \rightarrow \cos(\theta_{c})|d\rangle + \sin(\theta_{c})|s\rangle$ Maybe one reason for 3 families of particles, \rightarrow 3x3 unitary "CKM" matrix between $|d\rangle$, $|s\rangle$, $|b\rangle$ There is one complex phase, which leads to this type of CP A reason for 3 generations of particles?

That one phase is consistent with \mathcal{CP} in $K\bar{K}$ and $B\bar{B}$ systems

There have been hints in $K\bar{K}$ and $B\bar{B}$ of more CP than in the standard model,

 $p\bar{p} \rightarrow \mu^+\mu^+ \text{ or } \mu^-\mu^- CP$ at 3.6 σ Abazov PRD 2014 Fermilab; so this 2001 cartoon was a little premature \rightarrow

J. Faberge, CERN Courter, 6, No. 10, 193 (October 1966). [Courtesy of Madame Faberge.]

T2K ν_{μ} oscillations different from $\bar{\nu_{\mu}}$ at 2 to 3 σ Nature 580 339 (2020) *CP* could have some utility for cosmology \rightarrow Zο

The excess of matter over antimatter can come from CP

Sakharov JETP Lett 5 24 (1967) used CP to generate the universe's excess of matter over antimatter:

- CP,
- baryon nonconservation, and
- nonequilibrium.

But known \mathbb{CP} is too small by 10¹⁰, so 'we' need more to exist. Caveats:

- You could use CPT [Dolgov Phys Rep 222 (1992) 309]
- We need CP in the early universe, not necessarily now

So we look for more \mathcal{CP} . How is this related to \mathcal{T} ?

Zο

this seems a little abstract concrete demonstrative example from Ramsey-Musolf at INT 2020 CP explaining T2K's ν vs. $\bar{\nu}$

result lets heavy N decay this way in some models

 Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons Zη

L16-18 Weak JB

time

${\ensuremath{\mathcal{T}}}$ is related to ${\ensuremath{\mathbb{CP}}}$ by the "CPT Theorem"

Vud

"All local Lorentz invariant QFT's are invariant under CPT" Schwinger Phys Rev 82 914 (1951)

Lüders, Pauli, Bell 1954

● Gravity → not flat:

K meson experiments Adler PhysLettB 364 (1995) 239 test *CPT* to within 1000x expected from quantum gravity

• Strings not 'local' Proofs still pursued \rightarrow

	Contents lists available at ScienceDirect Studies in History and Philosophy	Studies in History and Philosophy of Modern Physics
ELSEVIER	OI IVIOCIETE PHYSICS journal homepage: www.elsevier.com/locate/shpsb	·····
Hilary Greaves 🏘 Teri	uii Thomas ^{b,1}	•
Hilary Greaves ^{a,*} , Tern ^s somerville College, Oxford OX2 6HD, ^s Wolfson College, Oxford OX2 6UD, U	uji Thomas ^{b,1} 	Ū
Hilary Greaves ^{a,e} , Terr ^a Somerville College, Oxford OX2 6HD, ^b Wolfson College, Oxford OX2 6UD, U	ијі Thomas ^{b,1} ж А В S T R A C T	

When citing this paper, please use the full journal title Studies in History and Philosophy of Modern Physics

Assuming CPT, $\mathcal{CP} \Leftrightarrow \mathcal{T}$ in most physics theories The matter excess then motivates \mathcal{T} searches

EDM in a fundamental particle breaks T: this is exact

Landau, Nucl. Phys. 3 (1957) p. 127 Electric Dipole moment $\vec{d} = \sum q_i \vec{r_i}$

Since the angular momentum is the only vector in the problem, $\vec{d} = a\vec{J}$

Under $T, \vec{J} \stackrel{t \to -t}{\to} -\vec{J} \quad \vec{d} \stackrel{t \to -t}{\to} +\vec{d}$

If the physics is invariant under T, this is a contradiction, $\Rightarrow a = 0$

The other logical possibility: there are 2 states, with opposite sign of the EDM, and *T* just formally changes one state to the other.
For most fundamental particles, we know there aren't 2 states
Why do we know the electron doesn't have 2 states?
E.g. some polar molecules have a dipole moment listed in tables, which produces degenerate states and does not break *T* ...]

Zο

time

Schiff's Theorem: does a nuclear EDM make an atomic EDM?

Vud

Schiff's Theorem PR 132 2194 (1963): The nuclear electric dipole moment $d_{\text{nuclear}} = \sum q_i r_i \hat{r}_i$ causes the atomic e^- 's to rearrange themselves so they develop an opposite dipole moment. In the limit of nonrelativistic e^- 's and a point nucleus, the e^- 's dipole moment exactly cancels the nuclear moment, so that the net atomic dipole moment vanishes.

(For the *e*⁻'s EDM, there is 'antiscreening,' and $d_{atom} \stackrel{Z \gg 1}{\gg} d_{e-}$ Sandars Phys Lett 14 194 (1965)) The Schiff moment *S* involves $\sum q_i r_i^2 \hat{f}_i$ does not get screened completely: $\langle S \rangle = \sum q_i (r_i^2 - \frac{5}{3} \langle R_{ch}^2 \rangle) \approx R_{nucleus}^2 d_{nucleus}$, so $d_{atom}/d_{nucleus} \sim R_{nucleus}^2 / R_{atom}^2 \sim 10^{-8}$ Combination of Large Z and relativistic wf's offset by $10 Z^2 \approx 10^5$, with overall suppression of $d_{atom} \sim 10^{-3} d_{nucleus}$

Best measurements in diamagnetic (atomic total angular momentum 0) 199 Hg constrain strong interaction \mathscr{T} competitive with neutron EDM.

A nuclear magnetic quadrupole moment is also \mathcal{T} . This also produces an observable atomic EDM, yet with no screening Haxton+Henley PRL 51 1937 (1983), so it's more accurate to interpret experiments. (The total atomic angular momentum must be nonzero, so stray Larmor precession of 1000x greater μ makes experiments challenging.)

time

Enhancement by octupole deformation

'Octupole deformation' produces low-lying parity doublet with strong E1 transition between them. This:

- enhances mixing of opposite-parity states
- enhances the resulting Schiff moment because of the octupole and quadrupole deformations.

In one model Flambaum Feldmeier PRC 101 015502 (2020) in terms of strong \mathcal{T} constant η : $S \approx 1 \times 10^{-4} \frac{J}{J+1} \beta_2 \beta_3^2 Z A^{\frac{2}{3}} \frac{\text{keV}}{E^- - E^+} e \eta \text{fm}^3$

Result is 100-1000 x enhancement, in a sense restoring the full effect of the nuclear EDM, and in one case 10^4 or 10^5 enhancement going beyond (if a low-lying state is really the same *J* with opposite π).

time

 Z_0

 $\mathcal{L}_{\mathcal{QP}} = \theta_{\mathcal{QCD}} \, \frac{g^2}{32\pi^2} \, \mathbf{F}^{\mu\nu}_{\alpha} \mathbf{F}^*_{\alpha\mu\nu}$

From the small neutron EDM, $heta_{\it QCD} \lesssim 0.5 x 10^{-10}$

Peccei-Quinn mechanism drives θ_{QCD} small by a global U(1):

breaking the U(1) produces a 0⁻ axion with mass \propto (symmetry-breaking scale)/(coupling). Null experiments drive that scale high.

Other \mathcal{T} physics in the N-N potential is parameterized by isoscalar, isovector, and isotensor terms, with a separate set for whether or not they break *P*. (These can be related by the $1/N_c$ expansion Samart PRC 94 024001 (2016))

parity

The QCD and effective nucleon-nucleon $\mathcal T$ physics produces:

Vud

- T nuclear Schiff and magnetic quadrupole moments,
- X asymmetries in polarized beam experiments (Simonius PRL 78 4161 (1997))
- \mathcal{T} asymmetries in polarized neutron experiments on polarized targets ($\lesssim 10^{-5}$ Huffman et al. PRC 55 2284 (1997), with plans to improve these at next-generation neutron sources enough to complement *n* and ¹⁹⁹Hg EDM experiments.)

If one sees these asymmetries, they are from \mathcal{T} : unlike decays, they are free of 'final-state interaction' false effects.
Nuclear nearest-level spacing and \mathcal{T}

Bohr and Mottleson 2C-2: Assume a Hamiltonian matrix with random values, the Gaussian Orthogonal Ensemble (GOE). Diagonalizing the Hamiltonian produces a statistical distribution of level spacings ϵ in terms of average spacing *D* (the "Wigner distribution")

Vud

 $\begin{aligned} \boldsymbol{P}(\epsilon) &= \frac{\pi}{2D^2} \epsilon \boldsymbol{e}^{-\frac{\pi}{4}\frac{\epsilon^2}{D^2}} \\ \boldsymbol{P}(\epsilon) & \stackrel{\epsilon \to 0}{\propto} \epsilon \end{aligned}$

This was for time-reversal invariant interactions. If you allow for \mathcal{T} ,

you have unitary matrices instead,

the Gaussian Unitary Ensemble (GUE) with twice as many elements,

because they're complex. Then

 $P(\epsilon) \stackrel{\epsilon o 0}{\propto} \epsilon^2$

Correlations

More sophisticated statistical measures extract an upper limit for the amount of \mathcal{T} in nuclear interactions $\alpha \lesssim 2 \times 10^{-3}$ (J.B.French Ann. Phys. 181 235 (1988)). It's treated as an upper bound, since nuclear level spacings are not necessarily random B

 Z_0

time

Weak Neutral Current

Existence of Z^0 boson, spin-1 partner of W^{\pm} and the photon, was a S.M. prediction.

Searched for in :

- v scattering (winner: Gargamelle)
- Atomic *P* by mixing levels of opposite parity (1st answers came in small, creating concern for the S.M. prediction; now the best low-energy measurement of electron-quark weak neutral coupling)
- \bullet A few years ago, "coherent" scattering of ν from nuclei is agreeing so far with SM cross-section
- parity violating nucleon-nucleon interaction, via γ asymmetries from decay of nuclear states: was in the race, but the effect was smaller than known \rightarrow

Weak interaction between nucleons, P' W^{\pm} , Z^0 (*m*=80.4, 91.2 GeV) are very short-ranged compared to mesons.

Correlations

• Parameterized by meson exchange (emitted weakly, absorbed strongly...) The isovector piece was long expected to be enhanced by the weak neutral current, but the 1/Nc expansion suppresses isovector/isoscalar by $\sin^2(\theta_W)/N_C \approx 1/12$ (Phillips et al. PRL 114 062301 (2015).

parity

• A formal EFT produces similar results.

• Isovector and isoscalar parts now considered measured.

An isotensor part is interesting and inspiring proposals like $\vec{\gamma} + d \rightarrow n + p$

Z₀

time

time

E.g. measuring N-N $\not P$ by mixing of ¹⁸F 0⁻

Vud

and 0⁺ states: much nuclear physics

 Observable is the circular polarization of the 1.081 MeV γ -ray, caused by E1 interference with the parity-violating M1. $-0.7 + 2.0 \times 10^{-3}$

Sensivity is enhanced by:

Barnes et al. PRL 40 840 (1977)

Correlations

• The J^+ ; $T = 0^-$; 0 and 0^+ ; 1 states lie close together in energy, admixture $\propto \frac{\langle 0^- | \mathcal{O}_{\text{WeakNN}} | 0^+ \rangle}{\Lambda E}$ • The E1 operator is isovector (except for a tiny correction from the long-wavelength approximation), so is suppressed by $\sim 10^{-4}$ between the T=0 states, so the parity-violating M1 competes better so the circular polarization is larger \mathfrak{S}

 A hard-to-calculate nuclear matrix element is needed to extract the weak N-N physics. (We noticed the 0^{-} state involves excitations of the p shell, which is quite complicated.) The same effective operator contributes, with known β -decay constants of proportionality. to the forbidden β decay of the isobaric analog 0^+ : T = 1 state in ¹⁸Ne.

Summarized in Haxton PRL 46 698 (1981) and the experimental paper before it Adelberger, Hoyle, Swanson, Lintig 695

• The experimental asymmetry measured was $\sim 10^{-5}$, while in n(p,d) γ was $3x10^{-8}$

Correlations

time

Z₀

We've already seen SM $\beta\beta\nu\nu$ decay. 1st measured geochemically, then directly in very-low-background experiments. In $0\nu\beta\beta$ all energy is captured, a distinctive signature.

CVC PCAC

Kayser Journal of Physics: Conference Series 173 (2009) 012013: Primakoff and Rosen 1959 Rep. Prog. Phys. 22 121

Particle physics for $0\nu\beta\beta$ **to happen:**

- Lepton number must not be conserved
- ν 's have mass
- At least one of these two:

a SM interaction breaks lepton number; or, the ν has a "Majorana mass term" so part of $\nu = \bar{\nu}$

Much phenomenology happens then: e.g. diagonalizing the Dirac+Majorana mass matrix to find the actual masses naturally generates the light ν mass observed

To quantify dependence on ν mass, nuclear matrix elements need calculation

parity

Suhonen Front. Phys. 5 art 55 p.1 (2017)

• 0⁺ parent, progeny, $\nu\nu\beta\beta$ dominated by 1⁺ intermediate states, GT transitions.

- $0\nu\beta\beta$ has contributions from forbidden operators and more spins, so $\nu\nu\beta\beta$ is not a complete benchmark for theory.
- A variety of approximate many-body answers vary by 2-4 \times .

⁴⁸Ca is reachable now by more exact many-body methods

There are several approaches with detectors made out of the parent nuclei.

(Boehm+Vogel "Physics of massive ν 's" crudely set non-rel $F(Z, E) \sim \frac{E}{n} \frac{2\pi \alpha Z}{1 - e^{-2\pi \alpha Z}}$ (sort of ok for spectrum, poor for rates) to allow analytic phase space integrals $\sim E_0^{11}$ for $\nu\nu\beta\beta$ and $\sim E_0^5$ for $0\nu\beta\beta$)