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Weak Interactions and Nuclei
• β decay basics

Lepton long-λ expansion, Fermi function
Allowed,Forbidden Decay; Selection Rules
•Weak quark eigenstates, CKM matrix
•Why the weak interaction is weak (at low
energies)
• Quark-lepton interaction+QCD induces

nucleon-lepton interaction terms:
Conserved Vector Current,
Partially (Poorly?) conserved Axial Current
•�P (complete) : lepton helicity

Decay correlations

Further Symmetries:
•�T (tiny)

CKM phase
Atomic Electric Dipole Moments from:

Nuclear Schiff, magnetic quadrupole,
and from QCD Lagrangian

Nuclear level spacing: Wigner distribution
Nuclear reactions
•Weak neutral current examples:

Weak interaction between nucleons
• 0νββ decay intro

Refs.: Wong 5.5-5.6;
Commins and Bucksbaum “Weak Interactions of Leptons and Quarks” and
Commins “Weak Interactions (Physics) 1st edition.”
Commins’ Notes Ph 250 UCB 1996 (see Canvas “Lecture Notes”)
N. A. Jelley “Fundamentals of nuclear physics” Cambridge U.P.
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β decay: Energy release, other basics, orbital angular momentum
Qβ− = M(Z,N) - M(Z+1,N-1) using atomic masses
(this is in some sense accidental: the β is created in the nucleus and leaves; if
nothing else happens, this would create a negative atomic ion...)
QEC = M(Z,N) - M(Z-1,N-1) - |B.E.(electron)|
Qβ+ = M(Z,N)-M(Z+1,N-1) + 2 me

Sometimes EC is allowed energetically when β+ is not.
Atomic electron overlap with nucleus is greater as one goes heavier; EC ∼ 1% at
Z∼40 isotopes where β+ is allowed, but can be 10’s of % at Z=82
Ratio is given well by atomic wavefunctions, and has some sensitivity to the weak
interaction nature (Brysk and Rose, Rev Mod Phys 30 (1958) 1169)
• Q can vary from 18 keV (t to 3He) to > 10 MeV
(mβ= 0.511 MeV, so β’s can be relativistic or non-relativistic.)

• electron DeBroglie wavelength: λ= h/p = 2π(197 MeV fm)/
√

E2 −m2
e

For kinetic energy 1 MeV, this is 870 fm, much larger than the nucleus.
So the long-wavelength expansion we’re about to make is a good one.
Similarly, `=rxp∼ 0.005 ~ is typically small
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Fermi’s Golden Rule, applied to β Decay to get rates
For now write the transition probability

W =
2π
~
|〈φf (~r)|H|φi(~r)〉|2ρ(Ef )

The initial state is simply the parent nucleus at rest:

|φi(~r)〉 = |Jimi~r〉
The final state consists of 3 particles. Ignoring for now Coulomb effect between the
β and final nucleus, this is a product of 3 parts, with plane waves for the leptons:

|φk (~r)〉 =
1
√

V
ei ~ke·~r 1

√
V

ei ~kν ·~r |Jf mf r ′〉

The V’s normalize the plane waves. Expand the plane waves in terms of spherical
harmonics (we could do this for γ-rays, too: we’re about to do a ‘long-wavelength
expansion’):

ei~k ·~r =
∞∑
0

√
4π(2λ + 1)iλjλ(kr)Yλ0(θ, 0)

where ~k = ~ke + ~kν and θ is the angle
between ~k and~r .

3/77



L16-18 Weak JB strengths Vud CVC,PCAC Correlations parity time Z0

Now we make the long-wavelength expansion:

jλ(kr)
kr<<1→

(kr)λ

(2λ + 1)!!

so that the final state wavefunction becomes:

|φk (~r)〉 =
1
V

1 + i

√
4π
3

(kr)Y10(θ, 0) + O(k2r2)

 |Jf mf r ′〉

Even without the formal weak interaction theory, we can now surmise the form of H,
the nuclear part of the β-decay operator.
Neutrons are transformed into protons⇒ the nuclear operator:
1) must be one-body, i.e.only one nucleon is involved at a time;
2) must involve single particle isospin raising/lowering operator τ± (this comes
from the ‘vector’ V ‘Fermi’ part of ‘V-A’)
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• The axial vector ‘A’ ‘Gamow-Teller’ part produces a product of σ and τ±
Then we can write the matrix element 〈φf (~r)|H|φi(~r)〉 =

1
V
〈Jf mf r |

A∑
j=1

(GVτ±(j) + GA~σ(j)τ±(j))

1− i

√
4π
3

(kr)Y10(θ, 0) + O(k2r2)

 |Jimir ′〉

• The Fermi operator does nothing to space/spin. So it only links isobaric analog
states, or pieces of isobaric analog states, i.e. states with same wavefuntion
except proton/neutron interchange.
• This form shows both the allowed terms and some ‘1st forbidden’ terms: these
are from the same nuclear operators σ and τ , but including the next order of the
lepton long wavelength expansion and thus suppressed. However, the nuclear
matrix elements also vary, so some 1st forbidden rates are faster than some G-T.
The 1st-forbidden operators all flip the nuclear parity, so don’t contribute at all to
the allowed transitions between states of same parity.
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Density of final states
We have to make sure that momentum and energy are conserved properly among
the 3-body final state.
We start by writing the ν density as a statistical mechanical result (and integrate
over all angles for the time being):

dnν =
V

2π2~3
p2
νdpν

E2
ν = m2

ν + p2
ν but mν < 3 eV ≈0 so Eν=pν .

We can ignore the recoil energy for kinematics
(though keeping it produces corrections to collelations, ‘recoil order terms’ ∼ 0.01)
which gives the relation:
Eν = Q − Ke
where Q is the total kinetic energy released in the decay, and Ke is the kinetic
energy of the electron. (This kinetic energy is sometimes written ‘E ’ in the literature)
I’ll also make use of maximum total e energy E0 = Q + me and Eν = E0 − Ee
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Density of charged lepton final states: Fermi function
The density of charged-lepton states gets perturbed in the presence of the nuclear
Coulomb field, so (also integrating over all angles)

dne =
V

2π2~3
F (Z ,Ke)p2

edpe

F (Z ,Ke) is a correction factor called the ‘Fermi’ function.
If the lepton is nonrelativistic, and the nucleus is pointlike, you can take the
probability of the lepton at the nucleus, given by the Coulomb wavefunction at the
origin:

F (Z ,Ke) =

∣∣∣∣ x
1− e−x

∣∣∣∣
where x = −1×±2παZc/v for β± decay, with α≈1/137 the fine structure constant.
This one misses the total decay strength by 10% at Z=26 and Q=7 MeV.
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Fermi function (continued)
Sometimes people use a relativistic expression, though since the relativistic
density is∞ at the nucleus, Fermi took it at the nuclear surface (deShalit and
Feshbach eq. IX.2.15, Fermi Zeit. Physik 88 (1934) 161):

F (Z ,Ke) = 2(2kr)2(s−1) 1 + s
s2 + η2

|
eπη/2Γ(s + 1 + iη)

Γ(2s + 1)
|2

using the Γ function and using η=x/(2π), and s =
√

1− (αZ)2

There are just-as-easy ones available around that do better.
To do the full job, you put in electron screening of the atom, and several other
effects (like realistic atomic wavefunctions instead of just relativistic Coulomb
functions for a point charge).
See Sir Denys Wilkinson’s 5-part series in Nuclear Inst. and Meth.
Soon we reach an example of why the Fermi function is important:
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β energy spectrum for allowed decay

Integrating p2
edpep2

νdpνδ(Q − Ke − Eν) over pν , ignoring recoil-order terms and forbidden
decay (so the nuclear matrix elements have no spatial/momentum dependence),

W (pe)dpe =
1

2π3~3c3

∑
µ mf

|〈Jf mf r |Oλµ(β)|Jimir ′〉|2F (Z ,Ke)p2
e(Q − Ke)

√
(Q − Ke)2 −m2

νdpe

with Oλµ =
∑A

j=1 (GVτ±(j) + GA~σ(j)τ±(j)). Differentiating E2 = p2 + m2 ⇒ pdp = EdE ,

W (Ee)dEe ∝ F (Z ,Ee)Eepe(E0 − Ee)
√

(E0 − Ee)2 −m2
νdEe

• The decay rate ∼ Q5, a large dependence. This is just from three powers of momentum for
each lepton, minus one for energy conservation.
• The spectrum gets distorted at the very endpoint (large Ke, near Q), by the ν mass, which
has upper limit (from 3H decay KATRIN) 1.1 eV at 90% confidence.
(Most forbidden decay operators produce large changes in this energy spectrum)
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Fermi function effect
on β energy
spectrum
β− is ’pulled into’
nucleus... a big
effect for high Z and
low Eβ
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ft value for allowed decay
After doing the phase space integration, we can write down the answer:

ft =
K

|MF |2 + g2
A|MGT |2

K =
2π3~7ln2
m5
βc4G2

V
= 6142± 3.2s

If you include isospin mixing and ‘radiative’ corrections, you can define the quantity
Ft that is actually constant for the Fermi transitions:

Ft = ft(1− δC)(1 + δR) =
K

G2
F |Vud |2|Mfi |2(1 + ∆R)

where |Mfi |2 = T(T+1)-T3(T3+1) as we saw last time.
Isospin-breaking corrections δC are parameterized by two sources:
1) isospin mixing of with other 0+ states
2) the spatial wavefunctions are slightly different because the protons repel each
other ‘radial mismatch’. 11/77
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Superallowed Ft values
Consider Fermi beta decay in many 0+ to 0+

cases. We can sum over the nucleons

A∑
k=1

τ±(k) = T±

where T± lowers or raises the 3rd
component of SU(2) isospin for the whole
nucleus, just like the lowering and raising
operators for SU(2) spin. The Fermi
operator’s matrix element is

〈Jf Mf Tf T0f |
A∑

k=1

τ±|JiMiTiT0i〉

=
√

Ti(Ti + 1)− T0i(T0i ± 1)

if Jf = Ji , Mf = Mi , Tf = Ti , and
T0f = T0i ± 1; 0 otherwise.

For these cases, the ft value then given by
just some constants, which are given by the
weak interaction strength. (f=integral over
phase space). I.e. they all should have the
same intrinsic strength.
The vector operator is related to the electric
charge operator. We know electric charge is
conserved. The “conserved vector current”
hypothesis of Feynman and Gell-Mann: by
analogy they theorized that the vector part of
the weak interaction is also conserved. This
eventually leads to electroweak unification.
This has many consequences. For example,
for the vector part of the weak interaction we
can go straight from the quark matrix
element to the nucleon one to the nucleus
one.
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Effect of different Fermi functions on superallowed Ft’s
Z Q no Fermi Non-rel Fermi’s Towner ’05 error
5 0.88577 3540.7 3005.8 3030.2 3073.0 4.9
7 1.80851 3618.7 2985.0 3028.2 3071.9 2.6
12 3.21071 3957.0 2905.2 3015.4 3072.9 1.5
16 4.46971 4252.2 2832.3 3010.9 3071.7 1.9
18 5.02234 4400.4 2786.2 3002.9 3072.2 2.1
20 5.40358 4548.1 2732.9 2991.7 3075.6 2.5
22 6.02863 4696.5 2679.4 2979.5 3078.5 2.4
24 6.61039 4846.2 2622.4 2966.1 3071.1 2.7
26 7.22056 5004.4 2566.7 2956.2 3071.2 2.8

Towner’s include isospin mixing corrections.
Note Fermi’s 1934 function isn’t really good enough for this, while “Towner”
includes 1% corrections from isospin mixing, or rather the difference in isospin
mixing between the parent and daughter. These are parameterized by:
1) different isospin configurations mixed;
2) different wavefunctions because the nuclei have different radii.
IMME is fit mass-by-mass, adjusting an effect Coulomb interaction in a shell model.
(A technical check of neutron occupancies is used in the 2020 versions.)
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These are all consistent: a test of CVC hypothesis
J.C. Hardy, I.S.Towner, Phys Rev C 102 044501 (2020)

Notice a constant goes through
all– 5/15 should miss at 1 σ.
There is a common systematic
uncertainty from a radiative
correction which is folded into
each of these points.
This test is used to gain
confidence in the isospin
breaking calculations.
It is also the strongest
constraint on a particular
non-SM interaction, though
there is known double-counting
if you’re using it to test the
isospin breaking– hopefully
more accurate calculations are
possible.
The actual value quoted for Vud
sets bF = 0; if bF floats, Vud ’s
uncertainty goes up. 14/77



L16-18 Weak JB strengths Vud CVC,PCAC Correlations parity time Z0

Quark eigenstates in the weak interaction: Cabibbo angle
To explain some weak decays, in particular ratios of semileptonic baryon decays
with and without strangeness,
the weak interaction mixes the d and s quarks, so you can think of the u changing
to d in β decay as:
|u〉 → |d〉+ ε|s〉 i.e. |u〉 → cos(θC)|d〉+ sin(θC)|s〉
θC , the Cabibbo angle, is a parameter whose value (13.04o) is unexplained so far
from underlying physics. (Like any mixing ‘angle’, the angle is in an abstract space,
and it’s just a simple way to normalize wavefunctions)
For 3 families of particles, this generalizes to
→ 3x3 unitary “CKM” matrix between |d〉, |s〉, |b〉
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From superallowed ft values we get a vital physics constant: Vud
The quark eigenstates of the weak interaction are not the same as the mass
eigenstates. They are related by a unitary transformation. d ′
s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b

 As for any unitary matrix, top row has the
property:
|Vud |2 + |Vus|2 + |Vub|2=1

The superallowed Ft value, compared to muon decay (the strength of the leptonic
weak interaction), gives you Vud . (Vub is very small and does not matter.)
There’s been a long struggle over Vus, which comes from kaon decays or hyperon β
decay, with useful checks from theory with more than one possible solution.
CKM unitarity test is off by 2-3 σ at 0.1% from most recent reevaluations of radiative
corrections (see Towner Hardy review below).
Again, each Ft value has an isospin mixing calculation done phenomenologically,
because initial and final wavefunctions are not identical. The uncertainty and
centroids of these calculations are still an open question.
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Phenomenological estimate of isospin breaking
uncertainty (and bF )
• Grinyer, Svensson, Brown NIMA 622 236 (2010)
Using ‘Wilkinson Method 2’
Correcting flucuations in Ft in each shell, yet
allowing magnitude of isospin breaking to vary
phenomenologically with Z2.
Vud changed by 0.2σ. σVud increased by 1.3.
• I, JB ,, then floated bFierz and isospin breaking
on compiled 2015 data set.
• If done on the 2020 data set (improved 14O, 62Ga,
etc.) could better assign σ to the isospin breaking
and the Fierz term, perhaps without much cost to
precision in Vud
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log(ft) for β decay
Wong Figure 5.8
As we said above, G-T
transitions preserve nuclear
π, while 1st-forbidden
transitions flip nuclear π.
If the ft values are different
enough, that can distinguish
the transition and be used to
determine π.
However, the ft values for
G-T and 1st forbidden
overlap.
Sometimes the nuclear
matrix element for G-T decay
is accidentally small.
(E.g. 14C GT decay has log(ft)
of 9.0, five orders slower rate
than the fastest GT’s)
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Selection rules

Fermi
G-T

γ5 dominates 0− → 0+

σ · r suppressed by r/λ

‘1st forb. unique’ 2± ↔ 0∓
One operator⇒ calculable
correlations from a.m.

Weidenmüller Rev Mod Phys 33 574 (1961)
19/77
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Why the Weak Interaction is weak at low energy
We’ve already developed the Yukawa potential using the Klein-Gordon equation.
The same physics can be looked at with the propagator in the Feynman diagram for
W± exchange:
β decay is purely weak⇒ physics at scale MW = 80GeV/c2

Propagator+vertices: T ∝ GS(−gµν+pµpν/M2
W )GS

p2−M2
W

p<<MW−→ G2
S

M2
W
⇒

Rates [ignoring interference!] ∝ G4
S

M4
W

So the massive W + makes the interaction strength small for β decay with p ∼ MeV
At high p ∼ MW , the interaction has the same coupling constant as
electromagnetism
For nucleons, G can be different from the quark-lepton couplings
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Conserved Vector Current hypothesis with Dirac formalism
CVC is sometimes considered more for its consequences than for the physics
behind it, so I’m going through the physics assumptions.
• Construct the E&M current for pointlike particles and show its derivative is zero,
simply because of conservation of electric charge.
• Consider what happens if the particles are composite, like nucleons. One gets
some relations for ‘form factors’ describing the nucleons, relations necessary to
keep this current conserved.
• Hypothesize that the vector part of the weak current should be similarly
conserved, and show what that implies for weak interaction physics.
I’ll use Dirac formalism, because the currents are all relativistic. I’ll cite the limited
formalism I need as I go along.
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The S.M. interaction has W exchange, which at momenta << MW produces this
quark-lepton current-current Langrangian density that is purely ‘V-A’ (using the
opposite-signed convention):

L =
G
√

2
JµJ̄†µ + h.c. with Jµ = J(lep)

µ + J(had)
µ and J(lep)

µ = ψ̄eγµ(1 + γ5)ψneutrino

We would really like to just deal with quarks, so that we could write something like:

J(had)
µ = Jquark

µ = ψ̄dγµ(1 + γ5)ψu

because then everything would be automatically V-A, just like purely leptonic weak
interactions (like µ decay).
However, we’re stuck with nucleons, composite particles made of quarks. So QCD
can ‘induce’ other terms as it combines quarks into the nucleon wf’s.
So we have to go back and construct a general Lorentz vector for the hadrons (to
make a bilinear covariant with the Lorentz vector of the leptons), along with an a
Lorentz axial vector for the hadrons (to make a bilinear covariant with the axial
current of the leptons).
First we’ll back up and do this for the E&M current, which is purely vector. The fact
that this vector current is conserved (electric charge is conserved) puts constraints
on the composite terms:
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First we consider the E&M current, take its divergence, and use Dirac equation
(γµ∂µ + m )ψ = (6 p + m)ψ=0

Jµ = −eψ̄γµψ (more properly, matrix element 〈p′|Jµ(E&M)|p〉) for particle with
momentum p → p′)

using plane-wave solution to Dirac eq. ψ = u(p)eip·x

∂µJµ/(−e) =

∂µ

[
ū(p2)γµu(p1)ei(p1−p2)·x

]
= [ū(p2)(p1 − p2)µγµu(p1)] ei(p1−p2)·x

= [ū(p2) 6 p1u(p1)− ū(p2) 6 p2u(p1)] ei(p1−p2)·x

= i(m1 −m2)ū(p2)u(p1)ei(p1−p2)·x = 0

because m1 = m2 in E+M interactions
So this E+M current is conserved, so charge is conserved, QED ,
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Electromagnetic current for composite particles

Before we go back to the weak interaction, it is instructive to write down a general
electromagnetic current for a composite particle, take its divergence, and set that to
zero. We will get a direct prediction about a corresponding term in β decay from
CVC.
For composite particles like nucleons, we have to again write the most general
Lorentz vector that can be constructed from γµ’s and momenta, subject to:
a) momentum conservation means there are only two independent momenta, the
difference kµ = (p2)µ − (p1)µ and the average Kµ = 1/2(p2 + p1)µ of the individual
momenta
b) not more than two γ matrices, because three γ’s can be written as one γ with γ5:
I, γµ, and σµν = 1

2i (γµγν − γνγµ)
c) use Dirac eq., i.e. replace 6 p1 with im1 when adjacent to spinors.
Then the most general forms of Lorentz vectors are: γµ, σµνkν , kν , σµνKν , Kν .
It turns out that the matrix elements of the last two can be rewritten in terms of the
other 3. (Perhaps just reflecting that in the CM frame the total momentum is zero.)
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So we can write a general form for the E&M current of a composite particle:

Jµ/e = ψ̄

[
F1γµ −

F2

2m
σµνkν + iF3kµ

]
ψ

where F1, F2, F3 are form factors, scalar functions of k2. Is this conserved?

−∂µJµ/e = ¯u(p2)

[
F1 6 k −

F2

2m
σµνkνkµ + iF3k2

]
u(p1)eik ·x

The 1st term vanishes as above
The 2nd term is zero independent of F2, because σµν is completely antisymmetric.

∑
µν

σµνkνkµ ≡
∑
µ<ν

[σµνkνkµ + σνµkµkν] =
∑
µ<ν

[σµν + σνµ] kµkν = 0

The third term is not zero, so for CVC to hold, F3(k2)=0.
The 2nd term can be related to the magnetic moments, in particular the non-Dirac
‘anomalous’ magnetic moments, so:
For the proton, F p

1 (0)=1, F2(p)=µp-1 = 1.793
For the neutron, F n

1 (0)=0, F2(n)=µn =-1.913
25/77
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Formally setting up isospin-changing operators for a weak ’current’:
Recall results from angular momentum algebra: define isospin raising/lowering
operators
T±= T1 ± iT2

T±|T , Tz〉 =
√

T (T + 1)− Tz(Tz ± 1)|T , Tz ± 1〉
For spin-1/2, Tz |1/2,±1/2〉 = ±1/2|1/2,±1/2〉

T+|1/2,−1/2〉 = |1/2, 1/2〉
Now write the E&M vertex function in terms of isoscalar and isovector parts:

e

(
1
2

[
F S

1 γµ −
F S

2

2m
σµνkν

]
+

[
F V

1 γµ −
F V

2

2m
σµνkν

]
Tz

)
F S

1 = F (p)
1 + F (n)

1 = 1 + 0 = 1

F V
1 = F (p)

1 − F (n)
1 = 1 + 0 = 1

F S
2 = F (p)

2 + F (n)
2 = −0.120

F V
2 = F (p)

2 − F (n)
2 = +3.706
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Now we can finally write the weak vertex function for the hadron part:

g

2
√

2
Vud

[(
gVγµ −

gM

2m
σµνkν + igSkµ

)
+

(
gAγµ −

gT

2m
σµνkν + igPkµ

)
γ5

]
T±

where we have also included the similar axial vector terms, to form the covariant
piece with the lepton axial vector current.
The CVC hypothesis includes some bold assertions:
a) Vector portion of weak current is conserved, analogous to E&M current
b) The two vector weak currents– the β+ and β− decay, given by the terms with T±
isospin raising/lowering operators– and the isovector part of the electromagnetic
current are members of an isotriplet of current operators
This implies:
i) gV = F V

1 =1.00. Presence of strong interactions has left this term completely
untouched⇒ unrenormalized. This has many physics consequences.
ii) gM = F V

2 = µp − µn − 1 = 3.70
This term in the weak current of the nucleon is related to the anomalous magnetic
moments of the nucleons, called “Weak magnetism”
iii) gS = 0! The “induced scalar” term must be zero for CVC to hold
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So now our full lepton-nucleon interaction density is (Morita Hyp. Int. 21 143 (1985)):
√

2L = [Vλ + Aλ]
[
ψ̄eγλ(1 + γ5)ψν

]
+
[
V ′λ + A′λ

] [
ψ̄νγλ(1 + γ5)ψe

]
with explicitly different forms for β± decay:

Vλ = ψ̄p

(
gVγλ +

gM

2m
σλρkρ + igSkλ

)
ψn Aλ = ψ̄pγ5

(
gAγλ +

gT

2m
σλρkρ + igPkλ

)
ψn

V ′λ = ψ̄n

(
g∗Vγλ +

g∗M
2m

σλρk ′ρ − ig∗Sk ′λ

)
ψp A′λ = ψ̄nγ5

(
g∗Aγλ −

g∗T
2m

σλρk ′ρ + igPk ′λ

)
ψn

k = kp − kn = −k ′

Yes, the hadron part, because of the QCD-driven “dressing” within the nucleon, is
more complicated than the lepton part.
gS and gT terms change sign from electron to positron decay. These are therefore
odd under charge symmetry. So they vanish in isobaric analog decays to the extent
that charge symmetry is good. These are called “2nd-class currents”→
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There are 2 ways to make 2nd-class currents in a quark model:
• Remembering Standard Model has ūγµd and ūγ5d terms only,
add derivative terms like ∂µūd and ∂ν ūσµνγ5d

These are not renormalizable, one large reason they were excluded from the
Standard Model (Weinberg Phys. Rev. 112 1375 (1958)).

[One perspective is that the Standard Model itself may be an Effective Field
Theory good up to some very high energy. Naively, maybe that means
renormalizability is not an exact logical requirement. However, deliberately
introducing a manifestly unrenormalizable term would still be a very complicated
move for the main part of one’s basic theory. ]
• Introduce a new quantum number in addition to color and flavor! (Feynman
famously called this q.n. ‘smell’? ). You can also interpret this as a second set of
quarks (Holstein Treiman PRD 13 3059 (1976)) carrying this quantum number.

A related scenario: recently people consider extra sectors of particles not
interacting much with us, but interacting strongly among themselves. QCD-like
symmetries turn out to be a feasible way to generate dark matter. There are tight
constraints from experiment on such scenarios.
• The best experimental limits on 2nd-class currents are from direct dedicated β
decay measurements, which allow 2nd-class current effects about an order of
magnitude larger than the known ones from charge-symmetry breaking in QCD. 29/77



L16-18 Weak JB strengths Vud CVC,PCAC Correlations parity time Z0

Formal extension from nucleons to nucleiThe hadron current we have written is for the
spin-1/2 nucleon, where the µ is the only non-Dirac electromagnetic moment.

If you are describing nuclei (or hadrons) with spin > 1/2, then higher-rank
electromagnetic moments also, by CVC, contribute to the weak vector current.
E.g., the electric quadrupole moment produces a component in the weak vector current.
Similarly, additional nuclear-structure dependent form factors appear for J > 1 in the axial
vector current.

Holstein generalizes from nucleons to nuclei and writes decay correlations: Rev. Mod.
Phys. 46 789 (1974) erratum 48 673; or “Weak Interactions in Nuclei”.
Nuclei are treated as “elementary particles” and form factors are introduced to include
moments and effects from their nonpointlike size. Finite-size effects are
In isobaric analog decays, the vector current part is given by the measured electromagnetic
moments. The gT term in isobaric analog decays is zero, but in pure Gamow-Teller decay it
is not zero, producing a part that depends on a nuclear structure calculation whose
accuracy can limit the sensitivity to new physics.
Holstein’s approach considers ‘recoil-order’ terms ∼ (Eβ/M)N for N=1,2,3. Convergence is
not guaranteed of such a series.

Behrens&Bühring “Electron Wavefunctions and Nuclear β Decay” has forbidden β decay
30/77
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Finite nuclear S.M. expressions gain complexity with those corrections

where x(q2) = x0 + x1q2...

for decay between isobaric analogs:

31/77



L16-18 Weak JB strengths Vud CVC,PCAC Correlations parity time Z0

Valence nucleon shell-model expressions for G-T, weak mag
This unpaired nucleon expression is
incomplete for G-T transitions:
(de-Shalit+Talmi Table 9.1)

but it can lend qualitative understanding
for why the G-T/Fermi ratio is so different
in n, 19Ne, 37K... e.g. both µ and G-T
transitions are smaller for d3/2 proton
because the orbital term partly cancels
the intrinsic spin term.

Weak magnetism in G-T transitions
(Wang+Hayes PRC 95 064313 (2017):

µv = 4.7
(isovector
nucleon moment
µp − µn)

For reactor ν production, some simple
estimates assumed the nucleon
contribution ± 100%.

32/77



L16-18 Weak JB strengths Vud CVC,PCAC Correlations parity time Z0

Weak Magnetism tests
• For isobaric analog decays, the ‘weak magnetism’ gM

2mσµνkν term is directly predicted by
CVC by the ‘anomalous’ magnetic moment difference of the parent and daughter.
• For ‘isospin mirror’ Gamow-Teller decays, it is related to the isovector M1 γ-decay
strength in the Tz=0 nucleus (Gell-Mann PhysRev 111 362 (1958)).
The k -dependence makes 20% distortions in the energy spectrum.
The axial vector gT

2mσµνkνγ5 term, cancels in the difference unless there is a 2nd-class gT .
The results are consistent with the CVC prediction
to ∼10% of the gM term
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Minamisono PRC84 055501 (2011) 2nd class constraints→

Further weak magnetism test:
The angular distribution of β’s is isotropic wrt
alignment 〈M2

J 〉 for Gamow-Teller decay.
Results agree with CVC to ∼5%

34/77



L16-18 Weak JB strengths Vud CVC,PCAC Correlations parity time Z0

Sketch of lowest-order calculation of gP Compare these diagrams:

A B
CBecause W is short-range, C is same as B

For A (in a pure Gamow-Teller case), transition rate is:

Tfi =
g

2
√

2
Vud ūp (gAγµγ5 + igPkµγ5) un

1
m2

W

g

2
√

2
ūeγµ(1 + γ5)vνe

For C:

Tfi = gπNN
√

2ūpγ5un
1

k2 + m2
π

G
√

2
ifπkµūeγµ(1 + γ5)vνeVud

So C is like the gP part of A; if we declare C responsible for all of
it:

gP(k2) =
gπNN

√
2fπ

k2 + m2
π

In β decay this is small,
but in µ capture it is a
large contribution: (in
computing the decay
lifetime, gP becomes
multiplied by the lepton
mass.)
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Continuing gP , weak and strong interactions together:
see Gorringe and Fearing Rev.Mod.Phys. 76 (2004) 1 for chiral perturbation theory
Further arguments (including PCAC below) give the ‘Goldberger-Treiman’
expression for the QCD-induced ‘pseudoscalar’ coupling:

gP(q2) =
2mµmN

m2
π − q2

gA(0)

This is now understood as the first term in an expansion using “chiral perturbation
theory”; modern calculations gp(−0.88m2

µ) = 8.23.
“Chiral perturbation theory” is a systematic expansion in mπ/mnucleon, guided by
similar concepts to our considered “chiral EFT’s”, (small mquark, π’s as Goldstone
bosons from the underlying broken chiral symmetry...) but a calculation, not with
free parameters.
History: Experiments in radiative capture on hydrogen: 12.4±0.9±0.4
Experiments as of 2004 in ordinary µ capture on hydrogen: 10.5±1.8
As of 2004, not good enough to help yet: PSI was working on it
This rigorous prediction of low-energy QCD’s effects on weak interaction was not
working in 2004. A more accurate PSI experiment resolved the discrepancy with
theory: Andreev Phys Rev Lett 110 012504 (2013) gp(−0.88µ2)=8.06±0.55.
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Conserved Vector Current and ‘Partially Conserved Axial Current’: qualitative
One consequence of the conserved ‘V’ vector current is that the equivalent gV =1.
I.e. the interaction between quarks goes directly over to the interaction between
nucleons and nuclei because the ‘vector current’ is conserved.
People looked pretty hard to find a way to find an axial ‘A’ current that was also
conserved (look at Feynman and Gell-Mann PR ’57).

Wong writes Eq. 5-52:

4∑
µ=1

∂Vµ
∂xµ

= 0

and then by analogy

4∑
µ=1

∂Aµ
∂xµ

= constantφπ

where φπ represents the
pion field.

This predicts a relation between the weak coupling
constants GA and GV , given by :

gA ≡
GA

GV
=

fπgπN

MNc2

where fπ scales π decay and gπN can be deduced from
π-nucleon scattering. This ‘Goldberger-Treiman relation’
predicts |gA| = 1.31; experimental value is gA=-1.259±0.004
This either ‘confirms PCAC’ or enforces that ‘PCAC is a bad
name for a poor approximation’.
Lattice QCD is at 1% accuracy for gA
Note that this is all at momentum transfer q2∼0: the
constants are really ‘form factors,’ functions of momentum.37/77
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PCAC in more detail
Axial (hadronic) Current:

Aµ = −i
g

2
√

2
ū(p2)(gAγµγ5 + igPkµγ5)u(p1)ei(p1−p2)·x

PCAC hypothesis: the non-conservation of this
current is due entirely to pions, and Aµ becomes
conserved as mπ goes to 0:
∂µAµ

mπ→0→ 0
So evaluate the divergence of this current:
∂µAµ =

−ig

2
√

2
ū(p2)

(
gAi 6 p1γ5 − gAi 6 p2γ5 + gPk2γ5

)
u(p1)ei(p1−p2)·x =

using Dirac eq.
−ig

2
√

2
ū(p2)

(
2mgA + gPk2)γ5

)
u(p1)ei(p1−p2)·x

By PCAC this vanishes as mπ→0, so:

gA
mπ→0→

gPk2

2m
=

gπNN
√

2fπ
k2 + m2

π

k2

2m
=

−
gπNN

√
2fπ

2m

the Goldberger-Treiman relation
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Summary of hadronic weak current form factors in S.M.
• Exact Predictions of CVC for vector current:
1) gV =1...: Experimental 0+→ 0+ Ft values same to ≈ 0.001. CKM unitarity has a 0.001
deficit at 2 to 3 σ. (π+→π0 + ν + β+ agrees to 0.005 (PIBETA)
2) gM=3.70: Weak magnetism measured to ≈ 5% of its value
3) gS=0: Ft , and relative helicity of leptons from β-ν correlation and π→eν, show no
evidence for scalar term at CS<0.05 level.
• Estimates from PCAC (Goldberger-Treiman) and similar:
1) gA= gπNN

√
2fπ

2m = −1.32; Decay of neutron⇒ -1.26

2) mµgP = gπNN
√

2fπmµ

m2
π

= 9.2 Including chiral perturbation theory more like 8.0, PSI’s µCAP
experiment µ capture on hydrogen agrees well.
Charge Symmetry (G-parity): No 2nd-class currents: f3≈0, g2≈ 0
(The best tests of this SU(2) symmetry are still in β decay: similar tests in hadronic decays
of τ )
• V and A are the dominant known couplings for nuclear β decay. The most precise aβ
measurement in the neutron diagrees badly, suggesting a large Lorentz tensor interaction.
Interesting that a couple of simple surmises determined 6 couplings so well– reasonable to
call it an “effective field theory” for the lepton-nucleon weak interaction. See Ando
PhysLettB595 250 (2004) for an EFT of neutron β decay including radiative corrections. 39/77
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Clarification of gV
I said gV =1.00 was experimentally shown, which was pretty sloppy. Better to say
gV =1 is a prediction of CVC:
• The 0+ → 0+ Ft values are experimentally constant, testing whether gV is a
constant for all transitions, but not necessarily gv =1.000...

• Backing up, GV is determined by

and then Vud is determined by

So the present deficit in Vud could
also be a change for gV from its
value of 1 from electroweak
unification.

E.g., e and µ weak couplings could
be different.
Crivellin and Hoferichter PRL 125
111801 (2020) consider keeping CKM
unitarity while considering
constraints from
(π → eν)/(π → µν)
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Axial vector is not conserved. Is gA the same in nuclei? G-T (“Ikeda”) sum rule:

Similarly, S−= 3N , and S+ − S−=3(Z-N)
Detailed studies with high-Q β decay (and
(p,n) and (n,p) reactions at 100-200
MeV)found ≈ 75% of the sum rule.
Recent calculations (Gysberg Nat Phys 15
428 2019) reproduce GT strength with
about 5-10% accuracy, combining chiral
EFT’s with accurate many-body
techniques and considering ‘2-body
currents’ 41/77
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Jackson, Treiman, Wyld 1957 wrote down 4-Fermi vertex interaction H for nucleon
beta decay. (These could be written in a more natural helicity basis...)

You construct Lorentz-invariant
quantities, i.e. a Lorentz scalar,
from the possible objects which
Lorentz transform like vectors,
axial vectors, scalars, tensors,
pseudoscalars (it turns out all
combinations of more Dirac
matrices reduce to these).
Assuming pointlike
high-mass-bosons only, one
would now call this an EFT:

Quark-lepton interactions have been found experimentally to be V,A only so far.
V is assumed conserved (like electric charge), so CV =1 is often assumed. QCD still
can change A, and ‘induce’ all the other terms for hadron-lepton interactions,
changing all these constants but CV . We’ve seen how this creates interesting ways
to test QCD’s influence on weak interactions, and we’ve already seen |CA| = 1.26...
I.e. this looks a lot like the S.M. quark-lepton Lagrangian
but of course we have to be careful about the Cx ’s
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Jackson, Treiman, Wyld 1957 wrote down observables before angular
integration, and the answers

Rather than use JTW’s answers here,

we’ll assume the functional form of the
correlations. In limiting cases, assumptions
about S.M. lepton helicity will then let us deduce
the S.M. predictions soon.
The S.M. weak interaction makes left-handed
leptons and right-handed antileptons in decays,
Helicity ŝ · p̂
Note p

E is, of course, v
c . One can always boost to

a frame moving faster than a massive particle–
reversing p̂ but preserving ŝ. That’s intuitively
why there’s a factor of v

c multiplying the
helicities.

Re: the ‘Fierz interference’ term b me
Ee

,
product of a SM term with normal helicity and a��SM term with non-normal helicity:√

1 + pe
Ee
×
√

1− pe
Ee

=
√

1− p2
e

E2
e

= me
Ee

take care with particle physics ‘chirality’ vs. ‘helicity’
Reference for non-Dirac treatment: R. Hong, M. Sternberg, A. Garcia, “Helicity and nuclear
β decay correlations,” American Journal of Physics 85 p 45 (2017). 43/77
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Measure ν helicity ε=ŝν · k̂ν directly: transfer ŝν to γ circular polarization; boost ~kγ by ± ~kν
Goldhaber, Grodzins, Sunyar
Phys Rev 109 1015 (Dec 1957)

• ν with ŝ = -1 populates
〈Jz〉 = 0,+1 not -1
• So γ is circularly polarized–
transmission through magnet
depends on iron polarization:
N+−N−
N++N−

=0.017±0.003

• Upward ν boosts γ
momentum so it can be
absorbed on-resonance
⇒ ν helicity -1 ± 10%
(• ν̄ helicity ∼ +1
Palathingal PRL 524 24 ’69)

e−+152m Eu→
ν +152 Sm

Surprisingly enough, this is the best direct measurement of ν helicity = ŝν · k̂ν
44/77
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The β-ν angular distribution in the SM
W [θβν] = 1 + a vβ

c cos θβν

For 38mK, 0+→0+ decay:
a= +1 ‘Proof’:
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The β-ν angular distribution in the SM
W [θβν] = 1 + a vβ

c cos θβν

For 38mK, 0+→0+ decay:
a= +1 ‘Proof’:

For scalar exchange, lepton helicities are same: a= -1
No nuclear structure corrections until 10−6 accuracy
Note aβν depends on the relative helicity of β and ν, but not the absolute sign. The
observable is parity-even, and is not actually sensitive to parity violation.
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β-ν correlation from recoil momentum spectrum Kofoed-Hansen Dan. Mat. Fys. Medd. 28 nr9 (1954)

The recoil momentum spectrum is
straightforward and analytic:
If we write angular distribution in terms of
E (β total energy), θ (β-ν angle),
p (β momentum), q (ν momentum)
(it’s understood we have to evaluate q to
conserve energy-momentum; it’s not a
free parameter)

P(E, θ)dEdΩθ =

F (Z ,E)pEq2
(

1 +
b
E

+ a
p
E

cos θ

)
dEdΩθ

Then if the recoil momentum is r ,
energy conservation E+q=E0 (E0=Q+mβ),
then we just use law of cosines:

p2 + q2 + 2pq cos θ = r2

differentiate θ with respect to r :

| sin θdθ| = 2dΩθ =
r

pq
dr

we immediately get the recoil momentum
spectrum
P(E, r) =

1
2

F (Z ,E)

(
rEq + brq + r

a
2

(r2 − p2 − q2)

)
dEdr

at fixed E , it’s linear in recoil energy R
P(E,R)dEdR =

M
2

F (Z ,E)

(
Eq + bq +

a
2

(2MR − p2 − q2)dEdR
)
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1963 6He aβν definitive evidence for V,A instead of S,T.
Feynman&Gell-Mann paper PR 109 193
(1957) proposing both CVC and V±A:
“These theoretical arguments seem to the
authors to be strong enough to suggest
that the disagreement with the He6 recoil
experiment... indicates that these
experiments are wrong.”
Then Johnson, Pleasonton, Carlson
PhysRev 132 1149 (1963)
aβν = -0.3308 ± 0.0030
agreed much better with V,A (-1/3) than
S,T (+1/3).
(This 0+ → 1+ decay is pure
Gamow-Teller, hence axial vector,
sensitive to Lorentz axial vector and
tensor interactions, though not the sign
wrt vector and scalar)
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β − ν correlation for pure Fermi
transition 38mK 0+ → 0+

Angular distribution of ν wrt β
determined from other observables

(except Eβ).
Gorelov PRL 94 142501 (2005)
ã=0.9981 ± 0.0030(stat) ± 0.0037(syst)

(Adelberger 32Ar also 0+ → 0+

PRL 83 1299 (1999) (err. 83 3101)
ã=0.9989 ± 0.0052(stat) ± 0.0039(syst)

Together constrain that Lorentz scalar
contribution is small→
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Summarizing info on Lorentz structure from β-ν correlation
Interaction is mostly vector and axial
vector, i.e. V and A

[Except aSPECT has difference in a for
neutron (2.57± 0.84)x10−3

Explainable by a finite Lorentz tensor
allowed by other nuclear β decay]

For the sign between them, we need to
consider parity violation→
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Symmetries: Continuous, Discrete
• Noether’s theorem (1915):

Continuous symmetry → Conserved quantity
Time-translational invariance → Energy

Space-translational invariance → Momentum
Rotational invariance → Angular momentum

(Laplace-Runge-Lenz vector) → name?

In Ted Chiang’s “Story of
Your Life” [Movie “Arrival”]:
aliens think in terms of the
action, not position and
momentum

• Discrete symmetries in quantum mechanics: Parity, Time reversal→
51/77
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Historical Ideas about P, T breaking
•Wigner considered implications of P, T symmetry conservation in atomic spectra
1926-28. Showed 〈Tψi , Tψf 〉 = 〈ψf , ψi〉∗
“In quantum theory, invariance principles permit even further reaching
conclusions than in classical mechanics.” (D. Gross, Physics Today 48 46 (1995))
•Weyl 1931 considered C,P, T and CPT in “Maxwell-Dirac theory”: C⇒ Dirac eq.
negative energy states had to have same mass as the e− plato.stanford.edu
• From “CP Violation Without Strangeness” Khriplovich and Lamoreaux:
1949 Dirac “I do not believe there is any need for physical laws to be invariant under
reflections in space and time although the exact laws of nature so far known do have this
invariance.”

• 1956 Lee and Yang proposed ��P in weak decays to fix the θ-τ puzzle

• Feynman gives Ramsey 50:1 odds ��P would not be observable
Ramsey experiment starting at ORNL gets derailed by fission experiments...
it’s OK, Ramsey won 1989 Nobel for his fringes

• 1957 3 simultaneous experimental measurements of ��P → 52/77
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Parity (From A. Zee “Fearful Symmetry”)
As of 1956, we thought
all interactions
respected parity
Parity operator
P ψ(~r)→ ± ψ(−~r)

1957:
τ − θ Puzzle
+ µ decay
+ 60Co decay⇒
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Decays: Parity Operation can be simulated by Spin Flip
Under Parity operation P:
~r→ -~r ~p ∼ d~r

dt → -~p ~J=~r×~p→ +~J

⇒ A spin flip corresponds exactly to P reversal
Decays don’t exactly test T -reversal symmetry
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One experimental discovery of parity violation
Wu, Ambler, Hayward, Hopper, Hobson, PR 105 1413 Feb ’57

Dilution Refrigerator to
spin-polarize
with nuclear polarization
P = 〈 Jz

J 〉
60Co→ 60Ni + β− + ν̄

W [θ] = 1 + PAĴ · ~pβ

Eβ

= 1 + AP v
c cos[θ]

Aβ− ≈ −1.0

Note: 5+→4+ Null
if left-handed β−→ ~J

mi
J=+5

mβ=-1/2, mf
J=+4

Wauters 2010 PRC A60Co = −1.014± 0.020 [SM −0.987± 0.009]
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Jackson Treiman Wyld
NuclPhysA 4 206 (1957)

For pure G-T: Aβ± = ± λJ′,J
Textbooks with calculations:
a, the ‘β − ν correlation’:
Halzen&Martin “Quarks&Leptons,”
my notes ph505jbVIII 2005 aBetaNu WithDirac.pdf

Melconian’s notes include Fierz term!
A, the ‘β asymmetry wrt spin’:
Greiner and Müller “Gauge Theory of Weak Interactions”
Towner’s notes within mine

upper sign for β−, lower sign for β+

+ Bν ,�T D, ...
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β+ asymmetry 37K data
Fenker et al. Phys Rev
Lett 120, 062502 (2018)

Aβ[experiment]=
-0.5707 ± 0.0019
Aβ[theory] =
-0.5706 ± 0.0007
theory prediction needs
GT/F ratio from t1/2

The best fractional
accuracy achieved in
nuclear or neutron β
decay
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Still no wrong-handed ν’s
Extra W ′ with
heavier mass,
couples to
wrong-handed νR
We can evade
TWIST limits by
assuming the
muon νR is heavy
LHC M ′W > 3.7 TeV
90%
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Weak interaction: same strength, all nuclei?

Hayen and Severijns, arXiv:1906.09870 (June 2019)

Deduced Vud
from mirror decays
Are people overestimating
their uncertainties? We
aren’t ,

We project to reach 0.0005
accuracy, as good as any
0+ → 0+ except 26mAl.

Assumes 5% isospin
breaking calculation.
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Physics and time reversal
When t→ -t, does anything change?
•Wave Equ. is 2nd-order in t: ∇2u = 1

c2
∂2u
∂t2 symmetric in t

• Heat Equ. is 1st-order in t: ∇2u = −∂u
∂t t→ -t, boom?

‘Dissipation’, like friction... The arrow of time remains a
research problem in stat mech, but it’s not from (known)
particle physics

• Schroedinger Equation is 1st order: i~∂ψ
∂t = − ~2

2m
∂2ψ
∂x2

‘Take the complex conjugate’
(but see Dressel et al. PRL 119 220507 (2017)
“Arrow of Time for Continuous Quantum Measurements”)
Microscopic physics was thought to be symmetric in t 60/77
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Simulating ��T in decays?
We’ve constructed an angular correlation, a scalar
observable, by a dot product of two vectors
1+ p̂ · Ĵ
which is odd under P as we need
(~p is even, ~J = ~r × ~p is odd)

But ~J is odd under T , not even

So we need at least 3 vectors to have a T-odd scalar
observable,
the scalar triple product ~v1 · ( ~v2× ~v3)

An example→
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��T correlation of 3 of 4 momenta

t→ -t⇒ ~p ∝ d~r
dt → -~p

but ~precoil · ~pβ × ~pν ≡ 0 /
~pν · ~pβ × ~pγ = −~precoil · ~pβ × ~pγ

t→−t−→ ~precoil · ~pβ × ~pγ

•We can test symmetry of apparatus with coincident pairs ,
• Not exact. Outgoing particles interact→ fake ��T
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Parity broken, why not ��T ime?
Immediately after ��Parity was seen to be totally broken in
β decay (‘ν left-handed’)
Wu, Ambler, Hayward, Hopper, Hobson,
PR 105 (1957) 1413
Many T-odd observables were proposed:

Need scalar triple products of 3 vectors:
observables involving spin
DĴ · ~pβ

Eβ
× ~pν

Eβ
R~σβ · Ĵ×

~pβ

Eβ

are consistent with ��T < 0.001
but some has been found→
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�
��CP discovered in KK̄ meson decays in 1963,

though not much (Cronin and Fitch Nobel prize 1980)
Quark eigenstates in the weak interaction:
To explain some weak decays we saw,
|u〉 → |d〉+ ε|s〉 i.e. |u〉 → cos(θC)|d〉+ sin(θC)|s〉
Maybe one reason for 3 families of particles,
→ 3x3 unitary “CKM” matrix between |d〉, |s〉, |b〉
There is one complex phase, which leads to this type of ���CP
A reason for 3 generations of particles?
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That one phase is consistent with ���CP in KK̄ and BB̄ systems
There have been hints in
KK̄ and BB̄ of more ���CP
than in the standard
model,
pp̄→ µ+µ+ or µ−µ− ���CP
at 3.6 σ Abazov PRD 2014
Fermilab;
so this 2001 cartoon was
a little premature→

T2K νµ oscillations different from ν̄µ at 2 to 3 σ Nature 580
339 (2020)
���CP could have some utility for cosmology→ 65/77
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The excess of matter over antimatter can come from ���CP

Sakharov JETP Lett 5 24 (1967) used �
��CP to generate the

universe’s excess of matter over antimatter:
• ���CP,
• baryon nonconservation, and
• nonequilibrium.
But known ���CP is too small by 1010, so ‘we’ need more to
exist. Caveats:
• You could use ����CPT [Dolgov Phys Rep 222 (1992) 309]
•We need ���CP in the early universe, not necessarily now
So we look for more �

��CP. How is this related to ��T ?
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this seems a
little abstract
concrete
demonstrative
example from
Ramsey-Musolf
at INT 2020
��CP explaining
T2K’s ν vs. ν̄
result lets heavy
N decay this
way in some
models
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��T is related to ���CP by the “CPT Theorem”
“All local Lorentz invariant
QFT’s are invariant under CPT”
Schwinger Phys Rev 82 914
(1951)
Lüders, Pauli, Bell 1954
• Gravity→ not flat:

K meson experiments Adler
PhysLettB 364 (1995) 239 test
���CPT to within 1000x expected
from quantum gravity
• Strings not ‘local’

Proofs still pursued→
Assuming CPT, ��CP⇔ ��T in most physics theories
The matter excess then motivates ��T searches
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EDM in a fundamental particle breaks T : this is exact
Landau, Nucl. Phys. 3 (1957) p. 127

Electric Dipole moment ~d =
∑

qi~ri

Since the angular momentum is the
only vector in the problem, ~d = a~J

Under T , ~J t→−t→ −~J ~d t→−t→ +~d
If the physics is invariant under T ,
this is a contradiction,⇒ a = 0

[• The other logical possibility: there are 2 states, with opposite sign
of the EDM, and T just formally changes one state to the other.
For most fundamental particles, we know there aren’t 2 states
Why do we know the electron doesn’t have 2 states?
E.g. some polar molecules have a dipole moment listed in tables,
which produces degenerate states and does not break T ...]
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Schiff’s Theorem: does a nuclear EDM make an atomic EDM?
Schiff’s Theorem PR 132 2194 (1963): The nuclear electric dipole moment dnuclear =

∑
qiri r̂i causes

the atomic e−’s to rearrange themselves so they develop an opposite dipole moment.
In the limit of nonrelativistic e−’s and a point nucleus, the e−’s dipole moment exactly
cancels the nuclear moment, so that the net atomic dipole moment vanishes.

(For the e−’s EDM, there is ‘antiscreening,’ and datom
Z�1
� de− Sandars Phys Lett 14 194 (1965))

The Schiff moment S involves
∑

qir2
i r̂i does not get screened completely:

〈S〉 =
∑

qi(r2
i −

5
3〈R

2
ch〉) ≈ R2

nucleusdnucleus, so datom/dnucleus ∼ R2
nucleus/R2

atom ∼ 10−8

Combination of Large Z and relativistic wf’s offset by 10 Z 2 ≈ 105, with overall suppression
of datom ∼ 10−3dnucleus

Best measurements in diamagnetic (atomic total angular momentum 0) 199Hg constrain
strong interaction�T competitive with neutron EDM.
A nuclear magnetic quadrupole moment is also�T . This also produces an observable
atomic EDM, yet with no screening Haxton+Henley PRL 51 1937 (1983), so it’s more accurate to interpret
experiments. (The total atomic angular momentum must be nonzero, so stray Larmor
precession of 1000x greater µ makes experiments challenging.)
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Butler, Proc. R. Soc. A 476: 20200202 (2020)

Enhancement by octupole deformation

‘Octupole deformation’ produces low-lying
parity doublet with strong E1 transition
between them. This:
• enhances mixing of opposite-parity states
• enhances the resulting Schiff moment

because of the octupole and quadrupole
deformations.

In one model Flambaum Feldmeier PRC 101 015502 (2020) in
terms of strong�T constant η:
S ≈ 1× 10−4 J

J+1β2β
2
3ZA

2
3 keV

E−−E+ eηfm3

Result is 100-1000 x enhancement, in a sense
restoring the full effect of the nuclear EDM,
and in one case 104 or 105 enhancement
going beyond (if a low-lying state is really the
same J with opposite π).
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�T in QCD and nucleon-nucleon interactions

L��CP = θQCD
g2

32π2 Fµνα F∗αµν
From the small neutron EDM, θQCD . 0.5x10−10

Peccei-Quinn mechanism drives θQCD small by a
global U(1):
breaking the U(1) produces a 0− axion with
mass ∝ (symmetry-breaking scale)/(coupling).
Null experiments drive that scale high.

Other�T physics in the N-N potential is
parameterized by
isoscalar, isovector, and isotensor terms,
with a separate set for whether or not
they break P.
(These can be related by the 1/Nc
expansion Samart PRC 94 024001 (2016))

The QCD and effective nucleon-nucleon�T physics produces:
•�T nuclear Schiff and magnetic quadrupole moments,
•�T asymmetries in polarized beam experiments (Simonius PRL 78 4161 (1997))
•�T asymmetries in polarized neutron experiments on polarized targets (. 10−5 Huffman et
al. PRC 55 2284 (1997), with plans to improve these at next-generation neutron sources
enough to complement n and 199Hg EDM experiments.)
If one sees these asymmetries, they are from�T : unlike decays, they are free of ‘final-state
interaction’ false effects.
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Nuclear nearest-level spacing and�T
Bohr and Mottleson 2C-2:
Assume a Hamiltonian matrix with random values,
the Gaussian Orthogonal Ensemble (GOE).
Diagonalizing the Hamiltonian produces a
statistical distribution of level spacings ε in terms
of average spacing D (the “Wigner distribution”)

P(ε) = π
2D2 εe

−π
4

ε2

D2

P(ε)
ε→0∝ ε

This was for time-reversal invariant interactions.
If you allow for�T ,
you have unitary matrices instead,
the Gaussian Unitary Ensemble (GUE) with twice
as many elements,
because they’re complex. Then
P(ε)

ε→0∝ ε2

Bohigas+Weindenmüller Ann Rev Nucl Part Sci 38 421 1988

More sophisticated statistical
measures extract an upper limit for
the amount of�T in nuclear
interactions α . 2× 10−3

(J.B.French Ann. Phys. 181 235
(1988)). It’s treated as an upper
bound, since nuclear level spacings
are not necessarily random ,
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Weak Neutral Current
Existence of Z 0 boson, spin-1 partner of W± and the photon, was a S.M. prediction.

Searched for in :
• ν scattering (winner: Gargamelle)
• Atomic�P by mixing levels of opposite parity
(1st answers came in small, creating concern for the S.M. prediction; now the best
low-energy measurement of electron-quark weak neutral coupling)
• A few years ago, “coherent” scattering of ν from nuclei is agreeing so far with SM
cross-section
• parity violating nucleon-nucleon interaction, via γ asymmetries from decay of nuclear
states: was in the race, but the effect was smaller than known→
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Gardner Haxton Holstein ARNPS 2017+ Blythe PRL 121 242002 (2018)

Weak interaction between nucleons,�P
W±, Z 0 (m=80.4, 91.2 GeV) are very
short-ranged compared to mesons.
• Parameterized by meson exchange
(emitted weakly, absorbed strongly...)
The isovector piece was long expected to be
enhanced by the weak neutral current, but
the 1/Nc expansion suppresses
isovector/isoscalar by sin2(θW )/NC ≈ 1/12
(Phillips et al. PRL 114 062301 (2015).
• A formal EFT produces similar results.
• Isovector and isoscalar parts now
considered measured.
An isotensor part is interesting and inspiring
proposals like ~γ + d → n + p
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E.g. measuring N-N�P by mixing of 18F 0−

and 0+ states: much nuclear physics
• Observable is the circular polarization
of the 1.081 MeV γ-ray, caused by E1
interference with the parity-violating M1,
−0.7± 2.0× 10−3

Sensivity is enhanced by:
Barnes et al. PRL 40 840 (1977)

• The J+; T = 0−; 0 and 0+; 1 states lie close together in energy, admixture ∝ 〈0
−|OWeakNN|0+〉

∆E
• The E1 operator is isovector (except for a tiny correction from the long-wavelength
approximation), so is suppressed by ∼ 10−4 between the T=0 states, so the parity-violating
M1 competes better so the circular polarization is larger ,
• A hard-to-calculate nuclear matrix element is needed to extract the weak N-N physics.
(We noticed the 0− state involves excitations of the p shell, which is quite complicated.)
The same effective operator contributes, with known β-decay constants of proportionality,
to the forbidden β decay of the isobaric analog 0+; T = 1 state in 18Ne.
Summarized in Haxton PRL 46 698 (1981) and the experimental paper before it Adelberger, Hoyle, Swanson, Lintig 695

• The experimental asymmetry measured was ∼ 10−5, while in n(p,d)γ was 3x10−8
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SM 2nd-order weak ννββ vs��SM 0νββ decay
We’ve already seen SM ββνν decay. 1st measured geochemically, then directly in
very-low-background experiments. In 0νββ all energy is captured, a distinctive signature.

Kayser Journal of Physics: Conference Series 173 (2009) 012013;
Primakoff and Rosen 1959 Rep. Prog. Phys. 22 121

Particle physics for 0νββ to happen:
• Lepton number must not be conserved
• ν’s have mass
• At least one of these two:

a��SM interaction breaks lepton number; or,
the ν has a “Majorana mass term” so

part of ν = ν̄
Much phenomenology happens then: e.g.

diagonalizing the Dirac+Majorana mass
matrix to find the actual masses naturally
generates the light ν mass observed

To quantify dependence on ν mass, nuclear
matrix elements need calculation
Suhonen Front. Phys. 5 art 55 p.1 (2017)

• 0+ parent, progeny, ννββ dominated by 1+

intermediate states, GT transitions.
• 0νββ has contributions from forbidden
operators and more spins, so ννββ is not a
complete benchmark for theory.
• A variety of approximate many-body
answers vary by 2-4×.
48Ca is reachable now by more exact
many-body methods

There are several approaches with detectors made out of the parent nuclei.
( Boehm+Vogel “Physics of massive ν’s” crudely set non-rel F (Z ,E) ∼ E

p
2παZ

1−e−2παZ (sort of ok for spectrum,
poor for rates) to allow analytic phase space integrals ∼ E11

0 for ννββ and ∼ E5
0 for 0νββ)
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