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Structure of Light Nuclei: Spin, Isospin, Permutation symmetry
• A=3 structure; isoscalar and isovector µ

• Systematic accounting of permutation symmetry: Young diagrams
Coupling one to four valence-shell nucleons describes many low-lying

Jπ; T states in light nuclei + dominant L configuration (decays, reactions...)

• Simple guidelines on configurations with lowest energy then reproduce
lowest level order

Strong interaction, because it’s short range and attractive, favors
symmetric and lowest L

For a given L, spin-orbit ~L · ~S favors largest J

Demonstrative examples, not proofs. Some naive states will be ruled out.
Few explicit (anti)symmeterized ψ′s: instead arguments for their existence.
A=6,5,4,7,8 ‘Conspiracy’ against (S; T ) = (3/2, 3/2)

Refs. Bohr and Mottleson Appendix 1C; (EGA UW Phys562); PDG;
de-Shalit and Talmi, Nuclear Shell Theory (Dover) Ch. 32 “The Group Theoretical...”;
Frank Close “Intro to Quarks and Partons” for more general Young techniques
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A=3 µ⇔ ‘asymmetric nucleon’ calculation
Recall we worked out one ‘wrong’ constituent quark ψ for the nucleon,
antisymmetric in spin and isospin together (i.e., ignoring color).
Assuming ψspace is symmetric (more on that later) and also L = 0,
we can use that wf for spin-up 3He by replacing u→ p and d → n:

ψ3He =
√

1/6[ppn(↑↓↑ − ↓↑↑) +pnp(↓↑↑ − ↑↑↓) −npp(↑↓↑ − ↑↑↓)]

We see that all the like fermions for A=3 are always paired to spin zero in all
configurations satisfying permutation symmetry (and L=0).
This, of course, is what we expect if we ‘pair’ up the identical nucleons, but we can
see the explicit physics needed in this simple system.

µ(3He) = µn and µ(3H) = µp in this lowest-order approximation

µ(3He) = −2.12749772(3)nm, µn =-1.9130427(5)
µ(3H) = +2.97896244(4) µp=+2.79284734(3)

Note that spin-polarized 3He is used as a polarized neutron target, for experiments
at high enough momentum tranfer to be sensitive to the spin dependence of
nucleon substructure.
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Corrections: Isoscalar and Isovector Magnetic moments

Taking the sum (isoscalar) and difference (isovector) for A=3,
People take the “isoscalar” µ of isobaric analog nuclei and compare to experiment:

Difference (nm)
µ(3H) = +2.97896244(4) µp= +2.79284734(3) 0.19
µ(3He) = -2.12749772(3) nm µn = -1.9130427(5) -0.20
Isoscalar (sum) 0.852 0.880 -0.028
Isovector (diff) 5.106 4.706 0.401

Isoscalar µ agrees better.
So far, I’ve been ignoring interactions.
We sketched that the π exchange current is isovector– it doesn’t contribute to µ of
the T = 0 deuteron, nor to this isoscalar sum of µ’s.
The isoscalar µ commutes with the central component of the residual interaction,
so is sensitive to noncentral components, in particular the tensor interaction
(Towner and Khanna Nucl Phys A399 334 (1983); Arima, “A short history of
magnetic moments...” Science China 54 188 (2011) doi:10.1007/s11433-010-4224-6)
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Young Tableaux: systematic delineation of permutation symmetry.
No formal proofs here: just rules
Example
1 2
3

Diagram of permutations of n objects
In each box is a label for the state: here just the 1st, 2nd, 3rd object; labels
are in arbitrary order, but must keep that order
Rows are symmetric under permutation: this example is symmetric for first 2
objects
Columns antisymmetric under permutation
Labels can’t decrease going→ in any row
Labels can’t decrease going ↓ in any column
Can’t have same labels in any 2 elements (boxes) in any column (but can
duplicate in rows)
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Young Tableaux example: A=3 system
ψspaceψspinψisospin must be antisymmetric

ψspace
Consider states
where all 3
nucleons have
L=0
No sublevels: must
be symmetric, i.e.
ψS(1)ψS(2)−
ψS(2)ψS(1) = 0
1 2 3

ψspin
We had mixed
symmetry
1 2
3

ψisospin
We had mixed
symmetry
1 3
2

We’ve laid these functions out
previously– we’re just using
these diagrams as tools to
account for possibilities of
number of states with various
total quantum numbers and
properties

or consider ψisospinψspin
together for one example (it’s
ok– we’re just changing our
labels without explicitly
writing it...) and writing the
antisymmetric diagram filled
with 3 out of 4 states:

1
2
3

Can we have S=3/2 T=1/2?
(Remember ∆(1232)
S=3/2 t=3/2 is symmetric)
Evaluate by considering
A=3 as a ‘hole’ in the A=4
system→
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A=3 allowed spin, isospin

1
2
3
S=? T=?

Consider A=4

1
2
3
4

4 is the maximum number
of particles to be put into
4 states. Closed shell.
Totally antisymmetric.
S=0, T=0.

Then

1
2
3

S=?,
T=?

=
1
2
3
4

S=0,
T=0

-

S = 1
2 ,

T = 1
2

(S, T ) = (1
2 ,

1
2) only, no (3

2 ,
3
2)

These are the only A=3 bound
states.
There are no experimentally
known unbound resonances.
There are theoretical
possibilities for unbound
resonances in the 3 proton
and 3 neutron systems.
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Note tables of ∆ that include t have no S=3/2, t=1/2, π=+ resonance.
Wilson ‘The Excited States of the Proton’ Comments Nucl. Part. Phys 1
(1967) 128
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Young Tableaux example: ‘m-scheme’ Consider 2 P-shell particles, each with `=1
(Answer is obvious for 2 particles (A=6, 5), but we’ll need this for A=7)
• Label state boxes with m = `3
(Our arbitrary ordinal box labels end up kinda backwards in the simplest way to do
it: m = ` is the ‘first’ label, m = `− 1 the ‘second’, m = `− 2 the ‘third’...)
• Consider all configurations possible for each M = L3 (nonnegative for brevity)
• Account completely for these configurations with values of L, all M from same
permutation symmetry configuration

M = 2

M = 1

M = 0

1 1

1 0

�0 �1

1 -1

��−1 �1

L=2

�1
�1

1
0

1
-1

L=1

0 0

�0
�0

L=0

Summary:
• L=2, L=0 with symmetric configurations
We’ll be assuming symmetric configurations have
lower energy
• L=1 has an antisymmetric configuration.
Note that π given by (−1)`1 × (−1)`2 so we don’t
get π = − states with 2 p-shell nucleons
We’ll need this ‘m-scheme’ for 3 particles for A=7
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Parity from orbitals. (Not total L)

π =
unpaired∏

i=1

(−1)`i

← example from atomic physics

• First 3P has total orbital angular
momentum L = 1 (odd),
while π is from four p orbitals
(−1)1(−1)1(−1)1(−1)1 = +1.

• Similarly, this 5So has L = 0 but
three p orbitals and one s, so π= -1
(thus the o label used in atomic
physics)

• while same L=0 1S has even
number of p orbitals so has π=+1
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A=6 from two 1p nucleons; assume 1s shell is filled, S = T = 0, passive
2 particles in the 1p shell. Identify quantum numbers of partitions, couple them:

ψspace p p L=0, 2, not 1
Yes, ~1 +~1 can be 1, but we just
showed this was
antisymmetric under exchange

So ψspinψisospin must be
antisymmetric. For 2
particles exactly as in d:
(S;T) = (1;0) or (0;1)

There are π = − (unbound) states at much higher
excitation ?→

With permutation
symmetry under control,
couple these possibilities
to ~J = ~L + ~S:

Jπ; T 2S+1SJ
From L=0 “d-like” :

1+; 0 3S1
0+; 1 1S1

From L=2 :
1+, 2+, 3+; 0 3D1,2,3

2+; 1 1D2
For given space symmetry,
lowest L tends to lie lowest
Highest J has lowest
energy (spin-orbit ~L · ~S)
All states accounted for ,
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π = − states?
We found

ψspace

p
p

ψspin−iso

(S;T)= (0;0)
or (1;1)

⇒ π = + for L=1.

From next shell?
p s

predicts Jπ; T
2−; 0 1−; 0 0−; 0 1−; 1
none seen

To get 4−, 3−, maybe?
s s s
p p p

Tilley et al. Nuclear Physics A 708 (2002) 3
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A=4: only 1 bound state
ψspace
s s s s

L=0

ψspinψisospin

S=0, T=0

4He: Jπ; T = 0+; 0

Excited states?
ψspace
Since we can symmeterize anything, consider
s s s p

The center of mass is moving, and this is spurious.
Abstractly:
in many bases rφs ∝ φp

i.e. ~r s s s s → s s s p
A serious technical issue in many shell-model and
other calculations

So instead we
consider
ψspace
s s s
p
→
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A=4 excited
states

ψspace

s s s
p

L=1
π = −

ψspin−isosp

(S,T)=
(?,?)

( 1
2 ,

1
2 )

(one
hole)

⊗

( 1
2 ,

1
2 )

=
(1,1)
(1,0)
(0,1)
(0,0)

=

(0, 0)

⊕

⇒ (S;T)
(1;1)
(1;0)
(0;1)

T = 1 3P0,1,2,
1P1 Jπ = 0−, 1−, 1−, 2− , exactly these are there

T = 0 3P0,1,2 Jπ = 0−, 1−, 2− , exactly these are there

The first 0+, T = 0 state does not fit /: similar states exist in 16O, 40Ca, considered
‘intruder’ states from a higher shell. Higher-lying π = + states are ... two p particles?
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A=5: no bound states Can’t have for space:
1 2 3 4 5

because would need for
spin × isospin:
yet we only have 2 spin × 2
isospin = 4 possibilities

1
2
3
4
5

Instead we have:
space:
s s s s
p

L=1
(finally, a
π = − state)

spin-isospin:

S,T=
1/2,1/2

=

S,T=
0,0

+

S,T=
1/2,1/2

With antisymmeterization known ok,
we can couple these possibilities:
~J = ~L + ~S so Jπ; T = 1/2−; 1/2 and
3/2−; 1/2 with 2S+1LJ= 2P3/2, 2P1/2,
and higher J lower E
Consistent with shell model, with
fewer assumptions. Excited states→
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A=5 excited states
ψspace

s s s
p p

L=0, 2 π = +
ψspin−isospin to ‘balance’

((((
((((

((
(S; T ) = (3/2; 3/2)
is fully stretched
and symmetric

(S;T)=(3/2;1/2),(1/2;3/2),(1/2;1/2)
Jπ = 3/2+, 1/2+, 5/2+, 7/2+

,
The 5/2− / is maybe 3
p-shell particles?
The 16.8 MeV 4S3/2
Jπ = 3/2+ decays mostly to
d not α which needs final
state L=2
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low-lying A=7 will have
ψspace
symmetric
p p p
⇒

ψspin−isosp

(S; T ) = ( 1
2 ; 1

2 )

What L’s allowed? ‘m-scheme’
labels by m = L3
← rows don’t decrease m

M=3
M=2
M=1
M=0

1 1 1
1 1 0
1 0 0
0 0 0
↑
L=3

+ 1 1 -1
1 0 -1
↑
L=1

Lowest L lies lowest
For given L, highest J is lowest 2P3/2, 2P1/2, 2F7/2

2F5/2
L=1,3 fully account for m’s: No L = 0, 2, No T = 3/2. Need mixed symmetry
partitions for T = 3/2, or for π = + of which none are known.
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A=8 low-lying states
Assume inert 1s core of 4 nucleons

ψspace
symmetric
p p p p
⇒

ψspin−isosp
antisymmetric

S=0,T=0M = 4

M = 3

M = 2

M = 1

M = 0

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

0 0 0 0

L=4

1 1 1 -1

1 1 0 -1

1 0 0 -1

L=2

1 1 -1 -1

L=0
S = 0⇒ J = L: 1S0, 1D2, 1G4: 0+, 2+, 4+, all T = 0

All 8Be unbound to decay to α + α
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A=8 higher-lying states:
Assume inert core of four 1s nucleons

ψspace

p p p
p
⇒

Should be able to
make L = 1, 2, 3

ψspin−isosp

(S, T ) =
(1, 1), (1, 0), (0, 1)

(All π = +, 4 p-shell particles)
Lowest-energy expected states:
3P0,1,2 T = 1
3P0,1,2 T = 0
1P0 T = 1
with highest J lowest E
Then:
3D1,2,3 T = 1
3D1,2,3 T = 0
1D2 T = 1
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Observations 8Be 2+ T=0,1
← These configurations
look like 7Be+n

and 7Li+p→

⊗
=

⊕

In terms of isospin, we can
decompose
|7Be + n〉 = |10〉+|00〉√

2

|7Li + p〉 = |10〉−|00〉√
2

They would decay into these
channels, except it’s (slightly) energy
forbidden
Can investigate by 7Li(d, n)8Be and
(nowadays) 7Be(d, p)8Be

p p n
n

← p′s are
symmetric so
closer together,
Coulomb energy
higher than→

p n n
p

So the 16.92 MeV state looks more
like 7Be + n
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