Structure of Light Nuclei: Spin, Isospin, Permutation symmetry

- A=3 structure; isoscalar and isovector μ
- Systematic accounting of permutation symmetry: Young diagrams Coupling one to four valence-shell nucleons describes many low-lying J^{π} ; *T* states in light nuclei + dominant *L* configuration (decays, reactions...)

Young

• Simple guidelines on configurations with lowest energy then reproduce lowest level order

Strong interaction, because it's short range and attractive, favors symmetric and lowest L

For a given *L*, spin-orbit $\vec{L} \cdot \vec{S}$ favors largest *J*

Demonstrative examples, not proofs. Some naive states will be ruled out. Few explicit (anti)symmeterized ψ 's: instead arguments for their existence. A=6,5,4,7,8 'Conspiracy' against (S; T) = (3/2, 3/2)

Refs. Bohr and Mottleson Appendix 1C; (EGA UW Phys562); PDG; de-Shalit and Talmi, Nuclear Shell Theory (Dover) Ch. 32 "The Group Theoretical..."; Frank Close "Intro to Quarks and Partons" for more general Young techniques

A=3 $\mu \Leftrightarrow$ 'asymmetric nucleon' calculation

Recall we worked out one 'wrong' constituent quark ψ for the nucleon, antisymmetric in spin and isospin together (i.e., ignoring color). Assuming ψ_{space} is symmetric (more on that later) and also L = 0, we can use that wf for spin-up ³He by replacing $u \rightarrow p$ and $d \rightarrow n$:

$$\psi_{3\text{He}} = \sqrt{1/6} [ppn(\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow) + pnp(\downarrow\uparrow\uparrow - \uparrow\uparrow\downarrow) - npp(\uparrow\downarrow\uparrow - \uparrow\uparrow\downarrow)]$$

We see that all the like fermions for A=3 are always paired to spin zero in all configurations satisfying permutation symmetry (and L=0).

This, of course, is what we expect if we 'pair' up the identical nucleons, but we can see the explicit physics needed in this simple system.

Young

$$\mu(^{3}\text{He}) = \mu_{n} \text{ and } \mu(^{3}\text{H}) = \mu_{p} \text{ in this lowest-order approximation}$$

 $\mu(^{3}\text{He}) = -2.12749772(3)\text{nm}, \mu_{n} = -1.9130427(5)$
 $\mu(^{3}\text{H}) = +2.97896244(4) \qquad \mu_{p} = +2.79284734(3)$

Note that spin-polarized ³He is used as a polarized neutron target, for experiments at high enough momentum tranfer to be sensitive to the spin dependence of nucleon substructure.

Corrections: Isoscalar and Isovector Magnetic moments

Taking the sum (isoscalar) and difference (isovector) for A=3, People take the "isoscalar" μ of isobaric analog nuclei and compare to experiment: Difference (nm)

Young

 μ (³H) = +2.97896244(4)+2.79284734(3)0.19 $\mu_{D} =$ μ (³He) = -2.12749772(3) nm -1.9130427(5) -0.20 $\mu_n =$ Isoscalar (sum) 0.852 0.880 -0.028Isovector (diff) 5.106 4.706 0.401

Isoscalar μ agrees better.

So far, I've been ignoring interactions.

We sketched that the π exchange current is isovector– it doesn't contribute to μ of the T = 0 deuteron, nor to this isoscalar sum of μ 's.

The isoscalar μ commutes with the central component of the residual interaction, so is sensitive to noncentral components, in particular the tensor interaction (Towner and Khanna Nucl Phys A399 334 (1983); Arima, "A short history of magnetic moments..." Science China 54 188 (2011) doi:10.1007/s11433-010-4224-6)

Young Tableaux: systematic delineation of permutation symmetry. No formal proofs here: just rules Example

12 3

Diagram of permutations of *n* objects

In each box is a label for the state: here just the 1st, 2nd, 3rd object; labels are in arbitrary order, but must keep that order

Young

Rows are symmetric under permutation: this example is symmetric for first 2 objects

Columns antisymmetric under permutation

Labels can't decrease going \rightarrow in any row

Labels can't decrease going \downarrow in any column

Can't have same labels in any 2 elements (boxes) in any column (but can duplicate in rows)

Young Tableaux example: A=3 system

 $\psi_{ ext{space}}\psi_{ ext{spin}}\psi_{ ext{isospin}}$ must be antisymmetric $\psi_{ ext{spin}}$ $\psi_{ ext{isospin}}$

 ψ_{space} Consider states where all 3 nucleons have L=0

No sublevels: must be symmetric, i.e. $\psi_{S}(1)\psi_{S}(2) - \psi_{S}(2)\psi_{S}(1) = 0$ 1 2 3

We had mixed We had mixed symmetry symmetry 2 3 2 3 We've laid these functions out previously-we're just using these diagrams as tools to account for possibilities of number of states with various total quantum numbers and properties

or consider $\psi_{isospin}\psi_{spin}$ together for one example (it's ok– we're just changing our labels without explicitly writing it...) and writing the antisymmetric diagram filled with 3 out of 4 states:

Young

1

2

3

Can we have S=3/2 T=1/2? (Remember Δ (1232) S=3/2 t=3/2 is symmetric) Evaluate by considering A=3 as a 'hole' in the A=4 system \rightarrow

Note tables of Δ that include *t* have no S=3/2, t=1/2, π =+ resonance. Wilson 'The Excited States of the Proton' Comments Nucl. Part. Phys 1 (1967) 128

Notation	Mass (MeV)	Spin	Parity	Isotopic spin	Width (MeV)
3.7	\$ 939	1/2	+	1/2	Stable
N_{α} N_{γ}	1688	5/2	+-	1/2	110
	(1518	$3/2 \vee$		1/2	105
	2190	7/2 V		1/2	200
	2650	(11/2)	—	1/2	300
	(3030	(15/2)	(-)	1/2	400
	1400	1/2	+	1/2	200
	1570	$1/2 \vee$	-	1/2	130
	1670	5/2 ✓	-	1/2	140
	1700	1/2 v		1/2	240
	/1236	3/2	+	3/2	120
Δ_{δ}	1920	7/2	+	3/2	200
	2420	(11/2)	+	3/2	275
	2850	(15/2)	(+)	3/2	300
	3230	(19/2)	(+)	3/2	440
	1670	1/2 v	1.000	3/2	180
	2080				40
	2190				40

TABLE OF RESONANCES^a

7/19

Young Tableaux example: 'm-scheme' Consider 2 P-shell particles, each with ℓ =1 (Answer is obvious for 2 particles (A=6, 5), but we'll need this for A=7)

Δ_3

0 0

Ø Ø

I = 0

• Label state boxes with $m = \ell_3$

(Our arbitrary ordinal box labels end up kinda backwards in the simplest way to do it: $m = \ell$ is the 'first' label, $m = \ell - 1$ the 'second', $m = \ell - 2$ the 'third'...)

• Consider all configurations possible for each $M = L_3$ (nonnegative for brevity)

• Account completely for these configurations with values of *L*, all *M* from same permutation symmetry configuration

Summary:

• L=2, L=0 with symmetric configurations We'll be assuming symmetric configurations have lower energy

• L=1 has an antisymmetric configuration.

Young

Note that π given by $(-1)^{\ell_1} \times (-1)^{\ell_2}$ so we don't get $\pi = -$ states with 2 p-shell nucleons

We'll need this 'm-scheme' for 3 particles for A=7

exam	p	les

Configuration	Term	J	Level(cm ⁻¹)	Ref.	
2s ² 2p ⁴	³ Р	2	0.000	MG93	
		1	158.265	MG93	
		Θ	226.977	MG93	
2s ² 2p ⁴	¹D	2	15867.862	MG93	
2s ² 2p ⁴	¹ S	0	33792.583	MG93	
2 <i>s</i> ²2p³(4S°)3 <i>s</i>	⁵ S°	2	73768.200	MG93	
2 <i>s</i> ²2p³(4S°)3 <i>s</i>	³ S°	1	76794.978	MG93	
2 <i>s</i> ² 2p ³ (⁴ S°)3p	⁵ P	1	86625.757	MG93	
		2	86627.778	MG93	
		3	86631.454	MG93	
2 <i>s</i> ² 2p ³ (⁴ S°)3p	³ Р	2	88631.146	MG93	
		1	88630.587	MG93	
		Θ	88631.303	MG93	
2s ² 2p ³ (⁴ S°)4s	⁵ S°	2	95476.728	MG93	
2s ² 2p ³ (⁴ S°)4s	³ S°	1	96225.049	MG93	
2s ² 2p ³ (⁴ S°)3d	⁵ D°	4	97420.630	MG93	
		3	97420.716	MG93	
		2	97420.839	MG93	

Parity from orbitals. (Not total *L*) $\pi = \prod_{i=1}^{\text{unpaired}} (-1)^{\ell_i}$ $\leftarrow \text{ example from atomic physics}$

• First ³*P* has total orbital angular momentum L = 1 (odd), while π is from four p orbitals $(-1)^{1}(-1)^{1}(-1)^{1}(-1)^{1} = +1.$

• Similarly, this ${}^5S^o$ has L = 0 but three *p* orbitals and one *s*, so $\pi = -1$ (thus the *o* label used in atomic physics)

• while same L=0 ¹*S* has even number of p orbitals so has $\pi=+1$

energy (spin-orbit $\vec{L} \cdot \vec{S}$)

All states accounted for 🙂

Young

Δ_3

There are $\pi = -$ (unbound) states at much higher excitation ? \rightarrow

11/19

A=4: only 1 bound state

Excited states?

 $\psi_{ ext{space}}$

Since we can symmeterize anything, consider

s s s p

The center of mass is moving, and this is spurious. Abstractly:

in many bases $\pmb{r}\phi_{\pmb{s}}\propto\phi_{\pmb{p}}$

i.e. \vec{r} s s s s \rightarrow s s s p

A serious technical issue in many shell-model and other calculations

⁴He:
$$J^{\pi}$$
; $T = 0^+$; 0

So instead we consider

13/19

Young

Δ_3

examples

15/19

low-lyiı	ng A=7 will have	$\psi_{ m spin-isosp}$	1	11.747		
$\psi_{ ext{space}}$			11.24	$\frac{3}{2} + \frac{3}{2} + \frac{3}$	11.0	
symme	etric		9.570 8.75	$\frac{7}{2}$, $\frac{1}{2}$ -9.9754	9.9 9.2	
⇒		$(S; T) = (\frac{1}{2}; \frac{1}{2})$	7.454 $\frac{1}{2};\frac{1}{2}$	$\frac{5}{2}$ 9.09		
Wh	at L's allowed? 'm-sc	heme'	6.604	$\frac{5}{2}$, $\frac{1}{2}$	1.2	
lab	els by $m = L_3$		1 (5)	7 1	6.73	
I →	rows don't decrease	m	4.652	2,2	4.57	
M=3 M=2	1 1 1					
WI=∠ M_1	1 1 0		-			
M=1 M=0	1 0 0	1 1 -1	0.47761	$\frac{1}{2};\frac{1}{2}$	0.42	
m=0	000	1 0 -1	$J^{\pi} = \frac{3}{2}; T$	$r = \frac{1}{2}$ ϵ	[-0.24]	
	\uparrow	\uparrow	7 1 :			
	L=3	L=1	LI			
Lowest Little lowest Expression $2P_{\text{cons}}^2 = 2P_{\text{cons}}^2 = 2P_{$						
I digitally execute for m'as $1/2$, $1/2$, $1/2$, $1/2$						
L=1,3 tully account for m s: No $L = 0, 2$, No $I = 3/2$. Need mixed symmetry						

partitions for T = 3/2, or for $\pi = +$ of which none are known.

examples

11.01

7.26.73 4.57

0.4291 [-0.24]

 $J^{\pi} = \frac{3}{2}; T = \frac{1}{2}$

⁷Be

A=3

Young

A=3

10.8222

 0^+

17/19

les 0+.2

10.619

0.7695

[16.36]

 $J^{\pi}=2^{+}:T=1$

 ^{8}B

8.589 6Be+d

21.380 ⁵He+³He

18.8997

2+.0+

Be+n

A=8 higher-lying states:

Assume inert core of four 1s nucleons

 $\psi_{ ext{space}}$
p p p p

Should be able to make L = 1, 2, 3

(All $\pi = +, 4$ p-shell particles) Lowest-energy expected states:

$${}^{3}P_{0,1,2} T = {}^{7}$$

$$^{\circ}P_{0,1,2} I =$$

 $P_0 I = 1$ with highest *J* lowest E

Then:

$${}^{3}D_{1,2,3} T = 1$$

 ${}^{3}D_{1,2,3} T = 0$
 ${}^{1}D_{2} T = 1$

Observations ⁸Be 2⁺ T=0,1

 \leftarrow These configurations look like $^7\text{Be+n}$ and $^7\text{Li+p} \rightarrow$

In terms of isospin, we can decompose

 $|^{7}Be + n\rangle = \frac{|10\rangle + |00\rangle}{\sqrt{2}}$ $|^{7}Li + p\rangle = \frac{|10\rangle - |00\rangle}{\sqrt{2}}$ They would decay into

They would decay into these channels, except it's (slightly) energy forbidden

Can investigate by ${}^{7}\text{Li}(d, n){}^{8}\text{Be}$ and (nowadays) ${}^{7}\text{Be}(d, p){}^{8}\text{Be}$

p p n ← p's are p n n n symmetric so p closer together, Coulomb energy higher than → So the 16.92 MeV state looks more like ⁷Be + n