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Rev. 2 answers
p. 29 ‘is wf a Slater determinants?’
on p. 37 ‘wf is a linear combination of Slater determinants’
Obertelli and Sagawa page 100 give simple argument
for d binding with the tensor force
inputs:
permutation symmetry
and thus which variations of ~σ ·~r are favored
outputs:
the binding of the d
the sign of its quadrupole moment

p.s. there’s a caveat for 1/Nc expansion in updated notes for Lecture 6:
it fails badly for certain K decays to π’s, the ‘∆I = 1/2’ rule
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Independent particle picture; Structure A≤8 + Permutation symmetry; DFT

• Independent particle approximation
Motivation for single-particle motion in mean field
Harmonic oscillator wavefunctions
Deformation sans microscopic calculation: Nilsson model

Refs: Wong Ch. 7, Obertelli+Sagawa Ch. 7

• Structure of light nuclei A≤8:
Delineation and ordering of most states with
Simple rules (no detailed interactions...)+
Systematic accounting of permutation symmetry with Young diagrams

• Calculating mean field: Wong 7.3; Obertelli+Sagawa Ch. 3.5,3.6 remains a major challenge
Describe/sketch Hartree-Fock: based on a variational principle that gets g.s. energy
right for a given Hamiltonian
Describe/sketch Energy Density Functionals which are tuned substantially
Goal: some feel for inputs, outputs, successes and challenges of mean field
calculations
A.B. will give 2 lectures on from first-principles calculations after the midterm
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Independent particles moving in their average field: qualitative support
• Bohr and Mottleson p. 189:
Mean free path larger than nucleon spacing→≈ validity of Fermi gas model.
Mean free path larger than the nucleus leads to regularities of quantized orbits of
individual nucleons

O&S: zero-point energy fluctuation:
∆E = (δp)2

2m ∼
~2

m(∆x)2 ∼ ~2

mr2
c

For a molecule, V ∼ e2

a ∼ ~2mea2 with
aBohr = ~2

mee2

Molecule: ∆E/V ∼ 1/2000;
Deuteron: ∆E/Bn ∼ 100.

→ atoms in molecules are confined and
somewhat classical;
nucleons in nuclei are nearly unbound
and can be treated as moving in an
average potential
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Nuclear observable discontinuities
Like chemistry’s electron shell model,
near-degeneracy of the single-particle orbits
leads to discontinuities in nuclear properties:
Binding energies wrt liquid drop:

(O&S credit Möller)

Goeppert Mayer’s Nobel Lecture: “Failures of the shell model”/

µs.p.
µnm

= j(gl ± gs−gl
2l+1 ) for j = l ± 1

2 W4-53

(Simple expression for odd-N odd-Z couples 2 µ’s given J)
Wong: complications away from closed shells:
complex configurations; MEC’s; nucleon gs changing in medium /
Prediction even-Z odd-N: µ ≈ ±µneutron→ 4/37
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µs.p.
µnm

= j(gl ± gs−gl
2l+1 ) for j = l ± 1

2 W4-53

• π(d3/2) cancels spin, orbital→ µs.p.=0.1245
35,37,39,41,43,45K, Jπ = 3/2+: µ/µnm = 0.16 to 0.39
33,35,37Cl, Jπ = 3/2+: µ/µnm = 0.68 to 0.82
• Since n has no electric charge,
gl=0 for n, and single-particle model has a simple
prediction for odd-N, even Z: µs.p. ≈ ∓µneutron

|µoddNevenZ| falls with A, i.e. complexity?
Some restoration near closed shells?:
the N=126 values are from Pb closed shell Z=82.

• Rather than look at these for changes in gS in the
medium, people look at isoscalar combinations of
isobaric mirror nuclei.
We looked in detail at µ in A=3, and isoscalar
combination of isobaric mirror µ being free of
meson exchange currents.
This is related to G-T strength, see β decay later
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Harmonic oscillator wf’s
The simplest mean-field potentials include:
simple square well potential;
harmonic oscillator approximating this.
1-body hamiltonian:
Wong Eq. 7-11 h(r) = − ~2

2µ∇
2 + 1

2µω
2
or2

(r nucleon coordinate, µ its reduced mass)
States are degenerate with energy
εN = (N + 3

2 )~ω0 and allowed orbital angular
momenta l = N,N − 2, ...1 or 0, parity (−1)l

Harmonic oscillator wavefunctions provide for some operators analytic solutions
for computation. A useful basis for computation of many-body systems where 10N

integrals may be needed to diagonalize a Hamiltonian.
Woods-Saxon potential h(r) = −V0

1+e(r−R)/a with, e.g., R=1.25A1/3, a=0.524 fm has same
shells, with better numerical wf’s with longer tails
There is a smooth potential with analytic wf’s Ginocchio Ann Phys 159 467 (1985) which may
retain utility Pittel JPhysG 24 1461 (1998); W. Haxton, private conversation 1994
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Spin-orbit term critical to get shells right

h(r) = − ~2

2µ∇
2 + 1

2µω
2
or2 + a(A)~s ·~l

εN = (N + 3
2 )~ω0 + 1

2 al for j = l + 1
2 ,

- 1
2 a(l + 1) for j = l − 1

2 ,
Goeppert Mayer and Jensen (1955) Fig. IV.3→
The HO shells work up to N=Z=20 or so.

The f7/2

orbital is
needed for
closed-shell
behavior of
48
20Ca28 (and
56
28Ni28). Caurier

PLB 522 240 (2001)
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Deformation and symmetry
Jahn-Teller theorem: Jahn, Teller 1937

Symmetry-driven degenerate electron
states in (“nonlinear”) molecules are not
stable: small perturbations will cause an
instability toward states with lower
degeneracy and less symmetry.
The symmetry is said to be
spontaneously broken, by deformation
(among other things)
Reinhard, Otten NPA420 173 (1984)

An interaction linear in deformation q
removes degeneracy for q 6= 0, driving to
a less symmetric ground state.

Molecule with E ∝ q2,
invariant under 90◦

(Other ways to remove
the degeneracy
produce variations)

“we conclude from this parallelism in molecular and nuclear
physics that spontaneous symmetry breaking by the Jahn-Teller
effect is a general feature of many-body systems which provides
a linear coupling between their microscopic and collective
degrees of motion.” 8/37
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Nilsson model
Deformation is complex to calculate microscopically.
Nilsson model describes it:
3D harmonic oscillator with different-size axes, fixed
phenomenologically, so with axial symmetry:
h =
p2

2m + 1
2µ(ω2

z z2 +ω2
⊥(x2 +y2)+νll~ωo(~l2−〈~l2〉)+νls~ωo(~l ·~s)

For x,y,z coordinates remember
E = (nx + ny + nz + 3

2 )~ω
Here, E = (nz + 1

2 )~ωz + (n⊥ + 1)~ω⊥
so E changes with deformation→
States at large deformation labelled by [N, nz , Λ]Ω with
nz the number of quanta along the z-axis,
Λ the projection of the orbital angular momentum along
the z-axis, and
Ω the projection of the total angular momentum along
the z-axis
ψNilsson can be expanded in spherical ψHO

classical: Chandrasekhar “Ellipsoidal Figures of Equilibrium” O&S credit P. Möeller and T. Ichikawa
9/37



L12-13 Phys505 S,T JB 2023 Mean Field, s.p. Deformation descriptions Structure A≤ 8: permutations microscopic-based Mean Field

• Structure of light nuclei:
Systematic accounting of permutation symmetry with Young diagrams

Coupling one to four valence-shell nucleons describes many low-lying Jπ; T
states in light nuclei + dominant L configuration (decays, reactions...)

• Simple guidelines on configurations with lowest energy then reproduce lowest
level order

Strong interaction, because it’s short range and attractive, favors symmetric and
lowest L

For a given L, spin-orbit ~L · ~S favors largest J

Demonstrative examples, not proofs. Some naive states will be ruled out. Few
explicit (anti)symmeterized ψ′s: instead arguments for their existence.
A=6,5,4,7,8 ‘Conspiracy’ against (S; T ) = (3/2, 3/2)

Refs. Bohr and Mottleson Appendix 1C; (EGA UW Phys562); PDG;
de-Shalit and Talmi, Nuclear Shell Theory (Dover) Ch. 32 “The Group Theoretical...”;
Frank Close “Intro to Quarks and Partons” for more general Young techniques
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Young Tableaux: systematic delineation of permutation symmetry.
No formal proofs here: just rules
Example
1 2
3

Diagram of permutations of n objects
In each box is a label for the state: here just the 1st, 2nd, 3rd object; labels
are in arbitrary order, but must keep that order
Rows are symmetric under permutation: this example is symmetric for first 2
objects
Columns antisymmetric under permutation
Labels can’t decrease going→ in any row
Labels can’t decrease going ↓ in any column
Can’t have same labels in any 2 elements (boxes) in any column (but can
duplicate in rows)
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Young Tableaux example: A=3 system
ψspaceψspinψisospin must be antisymmetric

ψspace
Consider states
where all 3
nucleons have
L=0
No sublevels: must
be symmetric, i.e.
ψS(1)ψS(2)−
ψS(2)ψS(1) = 0
1 2 3

ψspin
We had mixed
symmetry
1 2
3

ψisospin
We had mixed
symmetry
1 3
2

We’ve laid these functions out
previously– we’re just using
these diagrams as tools to
account for possibilities of
number of states with various
total quantum numbers and
properties

or consider ψisospinψspin
together for one example (it’s
ok– we’re just changing our
labels without explicitly
writing it...) and writing the
antisymmetric diagram filled
with 3 out of 4 states:

1
2
3

Can we have S=3/2 T=1/2?
(Remember ∆(1232)
S=3/2 t=3/2 is symmetric)
Evaluate by considering
A=3 as a ‘hole’ in the A=4
system→
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A=3 allowed spin, isospin

1
2
3
S=? T=?

Consider A=4

1
2
3
4

4 is the maximum number
of particles to be put into
4 states. Closed shell.
Totally antisymmetric.
S=0, T=0.

Then

1
2
3

S=?,
T=?

=
1
2
3
4

S=0,
T=0

-

S = 1
2 ,

T = 1
2

(S, T ) = (1
2 ,

1
2) only, no (3

2 ,
3
2)

These are the only A=3 bound
states.
There are no experimentally
known unbound resonances.
There are theoretical
possibilities for unbound
resonances in the 3 proton
and 3 neutron systems.
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One antisymmetric wf in S, T i.e. spin, isospin for 4 nucleons
One reason we’re considering S, T together here: there is no simple product wf ψSψT
antisymmetric for 4 nucleons. They must be built from mixed symmetry in S and mixed
symmetry in T .
L. Cohen Nucl Phys 20 690 (1960) contructs three L = 0 functions with appropriate antisymmetry,
building the S, T i.e. spin,isospin parts from mixed permutation symmetry terms similar to H&M.
One is a Slater determinant for 4 particle wf’s a, b, c, d in slots numbered i=1,4, which is
completely antisymmetric under particle exchange:∣∣∣∣∣∣∣∣
φa(1) φa(2) φa(3) φa(4)
φb(1) φb(2) φb(3) φb(4)
φc(1) φc(2) φc(3) φc(4)
φd (1) φd (2) φd (3) φd (4)

∣∣∣∣∣∣∣∣
defining φa = |p ↑〉, φb = |p ↓〉, φa = |n ↑〉, φa = |n ↓〉
one gets 24 similar terms, e.g. 1st term symmetric in 3
and 4: φa(1)φb(2) ∗ (φc(3)φd (4)− φc(4)φd (3))=
p ↑ p ↓ (n ↑ n ↓ −n ↓ n ↑)

The next natural term in the determinant is symmetric in 2 and 4,
−φa(1)φb(3)(φc(2)φd (4)− φc(4)φd (2)) = −p ↑ n ↑ p ↓ n ↓ +p ↑ n ↓ p ↓ n ↑
This is likely the ugliest possible way to write it out, but I don’t think any two terms can be
combined.
To show this is actually S = 0 and T = 0 requires Cohen’s formalism.

JB can ’derive’ the 3He wf we’ve used from a Slater determinant, but has to fix n
pointing up, which presumes the answer that p is always paired
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Note tables of ∆ that include t have no S=3/2, t=1/2, π=+ resonance.
Wilson ‘The Excited States of the Proton’ Comments Nucl. Part. Phys 1
(1967) 128
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The goal of an M-scheme table is to assign permutation symmetry to each possible value
of L. Here is how to make one (easier with a blackboard or a pencil):
•Write all the possible combinations of m’s that add up to a given M , with all allowed
symmetries under permutation following the Young diagram rules.
(When I line them up in a nice table? I’m ignoring the actual work:)
• Grouping them by permutation symmetry, assign them to an L. (There is likely a formal
proof that all configurations for a given L must have the same permutation symmetry– it
seems plausible.) Handy tricks:
(Ignore negative M– these are obvious from nonnegative M and don’t add info.)
First consider “the stretched state is always symmetric” and assign the max ` symmetric
configuration to L = max M . Find the rest of the M ’s needed, with same symmetry, to
account for that max L. (Then I line them up in the nice table– traditionally one just
crosses them off on a blackboard).
Continue to gather all the M ’s one needs for each L, all with given permutation symmetry.
The rest usually shake down from there.
One gets an orphan single M=0 state that one assigns to L=0.
This is just a plausibility argument. There is likely a formal proof that this procedure gives
you the correct permutation symmetry for each L.
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Young Tableaux example: ‘m-scheme’ Consider 2 P-shell particles, each with `=1
(Answer is obvious for 2 particles (A=6, 5), but we’ll need this for A=7)
• Label state boxes with m = `3
(Our arbitrary ordinal box labels end up kinda backwards in the simplest way to do
it: m = ` is the ‘first’ label, m = `− 1 the ‘second’, m = `− 2 the ‘third’...)
• Consider all configurations possible for each M = L3 (nonnegative for brevity)
• Account completely for these configurations with values of L, all M from same
permutation symmetry configuration

M = 2

M = 1

M = 0

1 1

1 0

�0 �1

1 -1

��−1 �1

L=2

�1
�1

1
0

1
-1

L=1

0 0

�0
�0

L=0

Summary:
• L=2, L=0 with symmetric configurations
We’ll be assuming symmetric configurations have
lower energy
• L=1 has an antisymmetric configuration.
Note that π given by (−1)`1 × (−1)`2 so we don’t
get π = − states with 2 p-shell nucleons
We’ll need this ‘m-scheme’ for 3 particles for A=7
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Parity from orbitals. (Not total L)

π =
unpaired∏

i=1

(−1)`i

← example from atomic physics

• First 3P has total orbital angular
momentum L = 1 (odd),
while π is from four p orbitals
(−1)1(−1)1(−1)1(−1)1 = +1.

• Similarly, this 5So has L = 0 but
three p orbitals and one s, so π= -1
(thus the o label used in atomic
physics)

• while same L=0 1S has even
number of p orbitals so has π=+1
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A=6 from two 1p nucleons; assume 1s shell is filled, S = T = 0, passive
2 particles in the 1p shell. Identify quantum numbers of partitions, couple them:

ψspace p p L=0, 2, not 1
Yes, ~1 +~1 can be 1, but we just
showed this was
antisymmetric under exchange

So ψspinψisospin must be
antisymmetric. For 2
particles exactly as in d:
(S;T) = (1;0) or (0;1)

There are π = − (unbound) states at much higher
excitation ?→

With permutation
symmetry under control,
couple these possibilities
to ~J = ~L + ~S:

Jπ; T 2S+1SJ
From L=0 “d-like” :

1+; 0 3S1
0+; 1 1S1

From L=2 :
1+, 2+, 3+; 0 3D1,2,3

2+; 1 1D2
For given space symmetry,
lowest L tends to lie lowest
Highest J has lowest
energy (spin-orbit ~L · ~S)
All states accounted for ,
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π = − states?
We found

ψspace

p
p

ψspin−iso

(S;T)= (0;0)
or (1;1)

⇒ π = + for L=1.

From next shell?
p s

predicts Jπ; T
2−; 0 1−; 0 0−; 0 1−; 1
none seen

To get 4−, 3−, maybe?
s s s
p p p

Tilley et al. Nuclear Physics A 708 (2002) 3
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A=4: only 1 bound state
ψspace
s s s s

L=0

ψspinψisospin

S=0, T=0

4He: Jπ; T = 0+; 0

Excited states?
ψspace
Since we can symmeterize anything, consider
s s s p

The center of mass is moving, and this is spurious.
Abstractly:
in many bases rφs ∝ φp

i.e. ~r s s s s → s s s p
A serious technical issue in many shell-model and
other calculations

So instead we
consider
ψspace
s s s
p
→
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A=4 excited
states

ψspace

s s s
p

L=1
π = −

ψspin−isosp

(S,T)=
(?,?)

( 1
2 ,

1
2 )

(one
hole)

⊗

( 1
2 ,

1
2 )

=
(1,1)
(1,0)
(0,1)
(0,0)

=

(0, 0)

⊕

⇒ (S;T)
(1;1)
(1;0)
(0;1)

T = 1 3P0,1,2,
1P1 Jπ = 0−, 1−, 1−, 2−, exactly these are there

T = 0 3P0,1,2 Jπ = 0−, 1−, 2−, exactly these are there

The first 0+, T = 0 state does not fit /: similar states exist in 8Be, 12C, 16O, 40Ca,
considered ‘intruder’ α states from a higher (or lower, excited) shell.
Higher-lying π = + states are ... two p particles? 22/37
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A=5: no bound states Can’t have for space:
1 2 3 4 5

because would need for
spin × isospin:
yet we only have 2 spin × 2
isospin = 4 possibilities

1
2
3
4
5

Instead we have:
space:
s s s s
p

L=1
(finally, a
π = − state)

spin-isospin:

S,T=
1/2,1/2

=

S,T=
0,0

+

S,T=
1/2,1/2

With antisymmeterization known ok,
we can couple these possibilities:
~J = ~L + ~S so Jπ; T = 1/2−; 1/2 and
3/2−; 1/2 with 2S+1LJ= 2P3/2, 2P1/2,
and higher J lower E
Consistent with shell model, with
fewer assumptions. Excited states→
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A=5 excited states
ψspace

s s s
p p

L=0, 2 π = +
ψspin−isospin to ‘balance’

((((
(((

((
(S; T ) = (3/2; 3/2)
is fully stretched
and symmetric

(S;T)=(3/2;1/2),(1/2;3/2),(1/2;1/2)
Jπ = 3/2+, 1/2+, 5/2+, 7/2+

,
The 5/2−/ is maybe 3
p-shell particles?
The 16.8 MeV 4S3/2
Jπ = 3/2+ decays mostly to
d not α which needs final
state L=2
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low-lying A=7 will have
ψspace
symmetric
p p p
⇒

ψspin−isosp

(S; T ) = ( 1
2 ; 1

2 )

What L’s allowed? ‘m-scheme’
labels by m = L3
← rows don’t decrease m

M=3
M=2
M=1
M=0

1 1 1
1 1 0
1 0 0
0 0 0
↑
L=3

+ 1 1 -1
1 0 -1
↑
L=1

Lowest L lies lowest
For given L, highest J is lowest 2P3/2, 2P1/2, 2F7/2

2F5/2
L=1,3 fully account for m’s: No L = 0, 2, No T = 3/2. Need mixed symmetry
partitions for T = 3/2, or for π = + of which none are known.
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A=8 low-lying states
Assume inert 1s core of 4 nucleons

ψspace
symmetric
p p p p
⇒

ψspin−isosp
antisymmetric

S=0,T=0M = 4

M = 3

M = 2

M = 1

M = 0

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

0 0 0 0

L=4

1 1 1 -1

1 1 0 -1

1 0 0 -1

L=2

1 1 -1 -1

L=0
S = 0⇒ J = L: 1S0, 1D2, 1G4: 0+, 2+, 4+, all T = 0

All 8Be unbound to decay to α + α
26/37
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A=8 higher-lying states:
Assume inert core of four 1s nucleons

ψspace

p p p
p
⇒

Should be able to
make L = 1, 2, 3

ψspin−isosp

(S, T ) =
(1, 1), (1, 0), (0, 1)

(All π = +, 4 p-shell particles)
Lowest-energy expected states:
3P0,1,2 T = 1
3P0,1,2 T = 0
1P0 T = 1
with highest J lowest E
Then:
3D1,2,3 T = 1
3D1,2,3 T = 0
1D2 T = 1
20.1 MeV 0+; T = 0 has 2 possible mixed-symmetry configurations,
or is partly the g.s. 2α-like configuration 27/37
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Observations 8Be 2+ T=0,1
← These configurations
look like 7Be+n

and 7Li+p→

⊗
=

⊕

In terms of isospin, we can
decompose
|7Be + n〉 = |10〉+|00〉√

2

|7Li + p〉 = |10〉−|00〉√
2

They would decay into these
channels, except it’s (slightly) energy
forbidden
Can investigate by 7Li(d, n)8Be and
(nowadays) 7Be(d, p)8Be

p p n
n

← p′s are
symmetric so
closer together,
Coulomb energy
higher than→

p n n
p

So the 16.92 MeV state looks more
like 7Be + n
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Our A=3 configuration can be written
as a Slater determinant. JB surmises
we’re only entangling 2 degrees of
freedom, S, T .
Our premise was that almost all
ground states hadψspace symmetric,
and clearly then one can writeψS,T
as Slater determinant.
JB surmises that our mixed
symmetry space/spin/isospin terms
may not be Slater determinants. Such
configurations entangle three
degrees of freedom.

We claimed these matched up with

excited states, so to get the HF g.s.

they are less important, but L is not a

good quantum number so they can

be part of g.s. ψ, too.

See final page 37 for qualifications

See R. Santra and M. Obermeyer, “A 1st encounter with the H-F self-consistent-field method,” Amer Jour Phys 89 426 (2021)
Ring and Schuck “The Nuclear Many-Body Problem” works full examples, including Lipkin, Meshkov, and Glick NP 62 188 (1965) useful
exactly solvable nuclear model.
Zelevinsky and Volya “Physics of Atomic Nuclei” Wiley 2017 is $0 with UBC library. Full theory formalism and great insight.
Wong 7.3 shows details deriving HF equations
JB’s handwritten notes from S. Koonin’s lectures, Phys 98b has a little more detail→
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Moshinsky “How Good is the H-F Approximation?” Amer Jour Phys 36 52 (1968)
2 particles in common HO potential + interacting with HO force, is solvable exactly.
HF equations are also solvable analytically in 1 iteration.

The exact solution:

The single-particle wf’s:

φi (ri ) ∝ e−
1
2
√
κ+1r2

i

The HF solution:

The resulting ground state energy is

correct to∼ 3.5% at κ=1:
The overlap between g.s. wf and HF wf is
relatively poor:

Even though the wf ansatz isn’t perfect, g.s. energy is given well because it’s the
result of a variational method.
The wf ansatz is important for convergence, but the HF method says little about the
accuracy of the resulting wf, even in this simple toy system
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Skyrme 1956 and Gogny 1975 forces
Optimized for H-F calculation simplicity
O&S Eq. 3.38 Parameters fit to binding energies, radii, and nuclear matter saturation
properties

Contact S-wave

momentum-dependent S-wave

momentum-dependent P wave

spin-orbit
Skyrme adds a contact 3-body term (approximating the ∆ excitation one) that has
the same effect in HF as a 2-body ρ(r)-dependent contact term.

Gogny included finite-range forces
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Resulting H-F equations from O&S:

“Ṽ contains both the direct and exchange terms.”
These get solved iteratively:
Compute from the φi ’s the mean field νHF

i ,
solve the Schroedinger-like equation for φi ,
repeat until it converges.

Wong Fig. 7-4 has a similar
result.

Outcomes: binding energies, ground-state densities, self-consistent mean fields.
Outcomes do not necessarily include good wf’s.
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The total energy density of the Skyrme
Hamiltonian for N=Z

h(r) is our energy density functional, an
analytic function of the Skyrme
parameters ,
(motivating Skyrme interactions?)
For N 6= Z use ρτ = (ρn − ρp)

O&S version of related Kohn-Sham eqs.
vary ρ and Ueff, not φ

typical Energy Density Functional approach fits parameters in h(r) directly to Ebinding

and, since it’s natural to do, 〈r2〉 over many nuclei.
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some results of these mean field methods
Brückner-HF uses
modern N-N
interactions like the
ones we’ve used
before today. There are
issues integrating over
the hard-core
repulsion.
Skyrme, Gogny, RMF
are all fits to same
observables

Additional approaches to EDF’s include: getting some terms from microscopic derivation
of nuclear matter, then adding phenomenology including surface gradient term
(+Coulomb, spin-orbit, pairing) part of the Coulomb is fit to Nolen-Schiffer anomaly of
isobaric mirror masses which produces better fits than Skyrme or Gogny with fewer
parameters Fayans JETP Lett. 68, 169 (1998);

basing EDF’s on better NN interactions and many-body techniques Marino PRC 104 024315 (2021)
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• For excited states:
Tamm-Dankoff and Random Phase Approximation... consider excited states of one
or two particles above the HF g.s., with interactions between the particles.

Variations on Mean Field approaches:
• Relativistic mean field version (Walecka). Adds fields for nucleons and selected
mesons.
(A version with HF exchange term↔ includes π)
This gets spin-orbit coupling from relativistic effects, a major success.
Used for dense matter and neutron stars Yang, Piekarewicz AnnRevNuclPartSci 70 21 (2020)

• Covariant density functional theory approaches include relativistic Brückner HF
and a good NN interaction like Bonn
S. Shen, H. Liang, WH Long, J. Meng, P. Ring, Prog Part Nuc Phys 109 103713 (2019)

(with wf ansatz from Dirac-Woods-Saxon basis P. Ring EPJ Web of Conferences 178, 02001 (2018))

• Attempts to use more realistic forces from chiral EFT to derive Energy Density
Functionals Salvioni J. Phys. G. 47 085107 (2020)

There may be issues with whether chiral EFT should work at the energies needed.

• Attempts to derive Energy Density Functionals from 1st principles and EFT’s
Duguet EPJA 59 12 (2023), Furnstahl arXiv:1906.00833. 35/37
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Summary and unresolved questions
• Light nuclei: Jπ; T and energy order of levels for low-A can be accounted for by:

antisymmeterizing space-spin-isospin under exchange;
Spatially symmetric configurations have lower E (consequence of NN interaction);
Treating S; T together ψspin−isosp (“Wigner SU(4)”);
higher J for same L lower in energy.

This approach is broken by spin-orbit coupling– does not work well at high-A
(One could account for most states by jj coupling of single particles, but this won’t tell
you which spin-isospin combinations are allowed.)
• Hartree-Fock and Kohn-Sham generate self-consistent mean fields by iteration,
minimizing g.s. energy by varying ψ’s (HF) or the mean field directly (KS)
Variational principle→ naturally accurate g.s. energies, but not necessarily ψ’s

Energy density functionals through Kohn-Sham allow introduction of terms into the
mean field, which still needs self-consistency with ψ’s– though the parameters are fit to
global EB and 〈r2〉, this is much more than the semi-empirical mass guess
• Are nuclear ψ’s always given by the ansatz, by products of single-particle wf’s in a
Slater determinant? (E.g. one α g.s. is symmetric in space with all antisymmetry in S;T.)

Some approaches use “Hartree,” ignore “Fock” (RMF extension includes exchange.)
Is the hard-core NN repulsion still a difficulty for the HF integrals?
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Addendum concerning p. 29
C. Robin PRC 103 034325 (2020) “Entanglement rearrangement in self-consistent nuclear structure calculations”:
The eigenstates of nuclei can be written as linear combinations of Slater
determinants of nucleon wf’s
JB notes: the space-symmetric g.s.’s of A=3 and A=4 with antisymmetric ψS,T can
be written as a single Slater determinant. These would have the lowest possible
“entanglement entropy,” a metric defined in this paper.
To support these statements, it would be nice to write a mixed symmetry space with
mixed symmetry spin-isospin wf as an explicit linear combination of more than 1
Slater determinant, but this is beyond JB’s ken.
The question remains of what one can say about wf’s in self-consistent mean field
theories derived from variational principles that minimize the energy. One
operational difficulty to get good wf’s comes from solving the Schroedinger-like
equation with a mean field that is sensitive to interactions and things like sums of
squares and exchanges of the wf’s, but not all details.
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