Phys505 7 Isospin, Nuclei JB; NN isospin g With 3D1 [Lg: NO 7v exchange currents IAS IMME Isospin mixing A=3

Isospin in Nuclei: examples
e Isospin and two-nucleon states (Deuteron and np, pp, nn resonances)

e Some implications of isospin, spin, permutation symmetry
(Wong; EGA Phys 562 UW):
n contribution from deuteron’s D-state admixture: calculation
No 7w exchange currents contributing to pigeuteron
(and isospin of ~)

e Isobaric analog states: Wong’s example of relative energies of A=16
e Isospin Multiplet Mass Equation for hadrons and for nuclei
e Isospin breaking demonstrative example

e A=3 structure; isoscalar and isovector n
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Reminder: Properties of the deuteron and np system
n—p bound system: the ‘hydrogen atom’ of nuclear physics
there is only 1 bound state !

\/< r3 > =~ 2.1 fm (electron scattering)
V< rﬁ > =0.890 £+ 0.014 fm

(Garching hydrogen lamb shift 1997; CJP 77 241 (1999)) (4% smaller now ©)
Not close-packed like A>2, cartoon looks like:

OO

Force between nucleons is in some sense not all that strong
JT =11

©=0.857437640.0000004 L

Q=2.88 + 0.002 barn

B.E. = 2.22463 + 0.00004 MeV
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2-Nucleon states and isospin: n,p ‘identical’

e np has a scattering resonance Ig ot Ig g T=1
70 keV above zero energy, M![}la/ 2Ly 0 Mlg

e pp has scattering enhancement at low E nn PP
(if subtract Coulomb, ap, close to ap)

e nn and pp have T3 = +1 and -1, 1t °S, 5 T=0
so they have total isospin T = 1, symmetric

e Best guess: low L (not J!) has lower energy, np

e wf must satisfy antisymmetry under fermion e Isobaric analog states have
exchange: ¥(—) = ¥7(+)Yspace(+)Pspin(—) almost same nuclear
so L=0 (parity even = tspace(+)) wavefunctions

e Useful in nuclear 3 decay,
because the nuclear matrix
elements needed are very simple
to calculate

e Odd-Odd N=Z have these
deuteron-like states poll

Leaving possibilities:

e Isospin triplet of unbound resonances:
Pr=1(+)¥s=0(—)

e ground state bound by 2.25 MeV
Yr-0(—)ths=1(+)

/99



Phys505 7 Isospin, Nuclei JB; NN isospin g With 3D1 [Lg: NO 7v exchange currents IAS IMME Isospin mixing A=3

deuteron magnetic moment with D-state Wong §3-2

let the deuteron wavefunction have an I=2 component.

We still need the intrinsic spin S=1 so that it is symmetric (because L is still even
and therefore space is symmetric, and T=0 is antisymmetric). So:

[$a) = V1 — €2°Sy) + € Dy)
p only has effect on § and L, so there at no Sx D cross-terms involving S times D,
because the spatial wavefunctions are Y y’s and they are orthogonal.
So we just need to evaluate u separately in the S and D pieces.
For L, for a charged particle, orbital angular momentum creates a current loop,
ehc -

ﬁorbital = Wpc

or in terms of gyromagnetic ratio
ﬁorbital = gIT
for proton, g;=pn, “1” in these units; for neutron, g; = 0 because it has no charge

or we could say we're calculating fiq/un .
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then [l:d = gpgp + gngn + I;;
Since masses of p, n are =~ equal, I, = 1/2 L (total deuteron angular momentum)
Rewrite

- L1 S o - o
9pSp + GnSn = 2 ((gp + gn)(Sp + Sn) + (gp — gn)(Sp — Sn))

Sp — Sp acts on proton and neutron spins with opposite sign, so will vanish for
states with same S=0 or S=1 (and ours is S=1).

So finally can write the operator in terms of total angular momenta:

Ha =3 ((gp +9n)S + L);

If we use some advanced vector operator concepts, we avoid writing down explicit
wavefunctions and angular integrals. (Consult Wong on Wigner-Eckhart theorem)

The magnetic moment is given by the z-projection of w, which in spherical tensor
notation means

® = <J5M = J|N0|J’M = J>

pz and Jz are both z-projections of vector operators, so they are proportional to

each other. The proportion is given by Landé formula, which we now take from

Wona’s annendix A: £10n
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A-6 Landé Formula

Consider a vector operator V. Since it is an operator with spherical tensor rank unity,
its matrix element behaves, under a rotation of the coordinate system, in the same
way as any other spherical tensor of the same rank, including the angular momentum
operator J. Using the Wigner-Eckart theorem, the matrix element of component g of
V may be expressed in terms of its reduced matrix element as

J 1J
' J-
M = (1 () iy (A-16)
where ¢ has possible values +1 and 0. Similarly, the matrix element of J has the form
J 1J
N o (1M -
UM = (1 (Y ) (A1)

Since both reduced matrix elements (J||V||J} and (J||J||J) are quantities independent
of the coordinate system, they must be multiples of each other, with the ratio

_ (v
M)

indenendent of M a/o9

R (A-18)
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We can check that this is the same as scalar products defined in terms of Cartesian
components of the vectors by noting that

1 .

T = F(kid,) Jo=1J,
1 .

Vi = :Fﬁ(vxilvu) Vo=V,

This is slightly different from the definition of angular momentum raising and lowering
operators Ly = L, % iL, as the usual convention does not attempt to make them
spherical tensor operators.

We can now make an intermediate state expansion of the matrix element of J -V,

(IM|(JT- VM) = T (=1 (IMITJI MY IM|V._ | I M)
M q

Since the operator J can change at most the M-value, but not the J-value, of a function
on which it acts, a sum over intermediate states of different J-values is not needed.
Using the ratio R defined in Eq. (A-18) and the relations given by Eq. (A-16) and
Eq. (A-17), we have the relation

[Lg: NO 7v exchange currents IAS IMME

Isospin mixing A=3

(IM|V_,|I M)

SIS BT

I SR LI

R(IM'|T_ | TM)

It

With this, we obtain the result

(JM|(J - V)|IM) R S (=1)HIM|T|IM' Y IM|J_g| I M)
M q
R{JM|J?|J M)

RI(J +1)

In other words, R = (JM|(J- V)|JM)/J(J +1) and
(IMV,|IM') = j(JITI)(JMKJ- V)IMY(IMIT,|IM)

generally known as the Landé formula.
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(Ja M|N0|J9 M> =

Jg ) MG D1 )

which then gives

<Ja M|N0|Ja M> =
M 1 = o oo
—(J, M| - S-J+L-J)|J,M
Ja 1) M (G + gn)S- T+ L-J) lu,m)
Then using the standard trick to get the dot products in terms of numbers that we

know for each state:
/2993
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—_ —_— — - b=q -, 1 —, 4 —
s-J:s-(L+S):s2+§(J2—L2—s2)
and similarly

-

— 1—» 4 =
L-J:E(J2+L2—Sz)

we get

((gp +9n)(J(J+1) —L(L+ 1)+ S(S+1))
+(J(J+1)+L(L+1)—S(S+1)))

Hd = 30+

So for 3S4 pure s-state, i.e. L=0, S=1, J=1, we recover the simple sum

Id=pp+pn as before, i.e. the nucleon spins are just fully aligned to total spin 1.
q/29
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For 3Dy, i.e. L=2, we get

1
pa(3Dy) = g ((9p + gn)(—2) +6) = 0.310uy
and
pa = V1 —euy(®St) + pqg(®Dy) = 0.857uy

which gives €2~0.04, the number mentioned previously for the D-state admixture.
Or one could also say €=0.16, which is not so small, for operators/observables that
can mix the terms:

[¥a) = V1 — €2[3Sy) + €°Dy)

The atomic ‘hyperfine anomaly,” which involves the next-order nuclear magnetic
moment beyond dipole, is actually one such observable... the relative hyperfine
splittings of hydrogen, deuterium, and tritium depend on the nuclear structure, and
is consistently understood to 3% (Friar and Payne, Phys Lett B 618 (2005) 68).
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7 exchange currents do not contribute to 1y (EGA UW PH562)

“meson exchange currents”: Although the «’s are virtual, the virtual presence of
that charge can still in principle contribute to electroweak observables.
(One main operator in 3 decay ends up proportional to only electric charge, the
‘conserved vector current’ hypothesis, but a second operator does not...)
A diagram looks 1st we show the photon ~ has isovector and isoscalar parts:
like: Photon couples to electromagnetic charge q
b For anything in first generation of particles (anything made of u, d
________ quarks):
q= T3 + B/2 where B is baryon number.
n P (for u, T3=+1/2, B=1/3, q=2/3 Q.E.D.
for d, T3 =-1/2, B=1/3, q=-1/3)
T3 is an isospin vector.

B doesn’t care about isospin, so it’s an isoscalar
Since the deuteron g.s. has T=0, (d|v|d) =0 for the AT=1 isovector piece,

so only AT=0 piece of photon contributes —
11/23



Phys505 7 Isospin, Nuclei JB; NN isospin g with 3D1 g no 7 exchange currents IAS IMME Isospin mixing A=3

y]l J™ of photon is 1~ (ignoring orbital angular momentum)
________ So the J™ of the two pions at the vertex must also together be 1~
T 1 Because = is a boson,

the two-m state must have symmetric wf under exchange

7 g.s. has S=0, so thg two 7’s need to together have J=1.
That must be orbital L=1, which is always antisymmetric.
So to get a symmetric total wf, the isospin wf is also antisymmetric.

Tr=1, so two pions can have T=2, 1, or 0; of these, only T=1 is antisymmetric

Therefore the ~ for this case must also have isospin =1

But we saw above that piece does not contribute

So 7 exchange currents don’t contribute to pg

The D-state probability of 0.04 seems accepted as the reason for pug # pin+pp

Wong 3.3 works out Quadrupole moment for the D-state contribution. Since the S-state

fraction does not contribute to Q, | was hoping this would define the D-state probability.

However, a radial integral depends on detailed (r), so Wong concludes 0.04 to 0.07 from

Q- 192/273
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A=4
isobaric analog
states poll

Note: the only
bound states for
A=3 are g.s. of H
and 3He; all
excited states
unbound to
particle emission
as well

Is the
‘tetraneutron’
bound?

All energies w.r.t.
“He g.s.

NN isospin
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Fig. 5. Isobar diaggram, 4 = 16, The diagrams for individual isobars have been shified vertically to eliminate the
neutron-proton mass difference and the Coulomb energy, taken as Ec = 0.60Z(Z — 1)/A!/3 MeV. Energies in 4o
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Energy of isobaric analog of '®N in 10 (Wong p.138)

If all forces were charge independent, the state in '°0 would have same
mass, with excitation energy Eg(0)-Ep('®N)=127.62-117.98=9.64 MeV

Two corrections:

e Coulomb energy E for a uniform charged sphere: 3/5 o 7ic Z(Z-1)/R
so difference is 6/5(Z-1)ahc/R
R~1.2 A'/2 fm = 3.02 fm, aic= 1.44 MeV-fm
AEc=4.00 MeV (This is pretty big)

e p-n mass difference=.78 MeV

e Predicted Result: 12.86 MeV
There is a 2—, T=1 state at 12.97 MeV in 0.
Off by 0.11 MeV. Not bad, 2% off in the shift in some sense.
Why the difference? —

15/273
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Note: the four states near the g.s. of '®N all have analogs in 60, and they are not in
the same energy order. Our Coulomb energy estimate is too simple (should use real
wavefunctions) and the wavefunctions in ®N and 6O are not exactly the same.

E.g., the proton and neutron wavefunctions are not the same, because the proton
wavefunction sticks out: this is the ‘Thomas-Ehrman shift’.

Even so, the energy differences of isobaric analogs are not fully understood. This is
known as the ‘Nolen-Schiffer anomaly’. AE¢ after real corrections is found to be 7%
smaller than experimental values. After several small traditional corrections,
modern approaches (chiral symmetry restoration in finite nuclei Henley 62 2586
(1989); QCD sum rules T. Hatsuda PRL 66, 2851 (1991); density-dependent charge
symmetry Horowitz PRC 63, 011303 (2001); N. Kaiser PRCC 69, 034337 (2004)
relativistic mean-field theory Agrawal PRC 64 024306 (2001); neutron skin (J. Duflo
PRC 66 051304 (2002)) could contribute. Enough free parameters to fit, but
explanations redundant and so not differentiated. We understand the Coulomb
interaction, so we can constrain models or strong ISB

Detailed density functionals tuned to fix the N-S anomaly need more isospin
breaking in the strong interaction than expected. This approach leads to different
isospin mixing in cases important to standard model tests in nuclear beta decay
(Koniezcka Baczyk Satula 1909.09350, PRC 105 065505 (2022)).

Sagawa et al PRC PRC 109 L011302 2024 calculates N-S from QCD 16/93
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Isobaric multiplet mass equation: particles
Again, from electric charge q = T; + B/2, Weinberg and Treiman Phys Rev 116 465

can see isovector and isoscalar (1959)

contributions to Coulomb interaction form,b=0,c=46MeV=m.L — m_

A wf’s perturbation in 1st-order They also applied to nucleon, K, ¥,
perturbation theory is linear with the but complained were limited to T3 < 3/2

interaction |i><i£l’c:_oulli>, while the energy SO could not test the relation

shift is quadratic ~ W They also suggested isobaric analogs in
= from g2, there’s an isotensor added. ~ nuclei —

So for isobaric analog states, treating
Coulomb interaction in 1st-order
perturbation theory gives their relative
masses (binding energies):

M(T;) = a+ bTs + cT2

Idea: test such relations, independent of

tough calculations for a, b, ¢
17/23
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Isobaric multiplet mass equation: nuclei
Janecke Nucl Phys A128 632 (1969) MacCormick+Audi, EPJWed 66 02065 (2014)
taking again Coulomb only, but to 2nd 60
order in perturbation theory,

M(T;) = a+ bTs + ¢TZ + dT} + eT§
where the coefficients are functions of A
(i.e. Z) and, generally, T.

Thus the Coulomb interaction can
produce a nonzero d, e. Nonzero d, e do
not necessarily indicate more isospin
breaking in the strong interaction— one A D T T
needs to calculate a Coulomb correction. A
The Coulomb interaction is exactly

known; wf’s less so ®
Precise A=9 example Brodeur et al PRL 108 212501 (2012)

d =6.3+ 1.7 might be from mixing with a nearby state of unknown J™, i.e.
likely no hon-Coulomb isospin breaking needed -

IMME d coefficients
v T=3 multiplet

o
o

T=2 multiplet
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Simple model for isospin mixing in 8Be

[16.6) = cosO|T = 0) +sinO|T = 1)
[16.9) = —sinO|T = 0) + cosO|T = 1)

AKkin to 1st-order perturbation theory,
(T=1|Hcou| T=0)

tan 0 X (15.626—16.922) Mev
M(16.9) _ 20
Fa(166) — tan“0 = 0.69 = 6 ~ 40°

isospin is broken badly in these states

Wong eq. 4-54 agrees at small 6 but | don’t think it’s right at large 6

It turns out the wavefunctions need to be
done well... because Hcou ~ r?, in the
end the isospin mixing physics weights
the high-r tails of the wavefunctions.

But one can schematically write the main
effect (McDonald and Adelberger PRL 40
1692 (1978)):

[Lg: NO 7v exchange currents IAS

IMME Isospin mixing A=3

Consider the analog states (‘=” means
proton, ‘©’ means neutron):

PLi T = 1) = |7(1p1/2)v(1P3/2))

B T = 1) = |7x(1p32)v(1p1/2))

The T=1 configuration has to be
symmetric in isospin
IT=1)=]BLiT=1)+ BT =1)

The T=0 configuration is called the
‘anti-analog’ and is antisymmetric in
isospin
IT=0)=BLiT=1)—-®BT =1)

The minus sign leads to cancellation: the
matrix element is an order of magnitude
smaller than the Coulomb energy of a
charged sphere.

20/23
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The isospin mixing of such analog/‘antianalog’ states was carefully studied
experimentally in 8Be, 12C, 160, 2*Mg, etc.

At one time it was thought experimental matrix elements were more than a
factor of two larger than could be accounted for theoretically from just the
Coulomb interaction (Adelberger PhysRevC 15 484 (1977)),

so maybe were evidence for extra isospin violation in strong interaction.
More careful wavefunctions could account for it (Shlomo ZPhysA 285 283
(1978)),

though since then more accurate experiments have been done to test these
(von Neumann-Cosel Nucl Phys A 669 3 (2000)).

Important to understand these effects, because they make small corrections
to precision 3 decay tests of the standard model.

21/273
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A=3 i < ‘asymmetric nucleon’ calculation

Recall we worked out one ‘wrong’ constituent quark > for the nucleon,
antisymmetric in spin and isospin together (i.e., ignoring color).
Assuming vspace iS symmetric (more on that later) and also L = 0,

we can use that wf for spin-up *He by replacing u — p and d — n:

Yane = v/1/6[PPA(TIT — 411) +pAP(IT — T14) —App(Tit — 1))

We see that all the like fermions for A=3 are always paired to spin zero in all
configurations satisfying permutation symmetry (and L=0).

This, of course, is what we expect if we ‘pair’ up the identical nucleons, but we can
see the explicit physics needed in this simple system.

p(3He) = pn and p(3H) = pp in this lowest-order approximation
1(3He) = —2.12749772(3)nm, i, =-1.9130427(5)
p(PH) = +2.97896244(4)  11p=+2.79284734(3)

Note that spin-polarized 3He is used as a polarized neutron target, for experiments
at high enough momentum tranfer to be sensitive to the spin dependence of
nucleon substructure.

29/91
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Corrections: Isoscalar and Isovector Magnetic moments

Taking the sum (isoscalar) and difference (isovector) for A=3,
People take the “isoscalar” i of isobaric analog nuclei and compare to experiment:
Difference (nm)

n(*H) = +2.97896244(4) pp=  +2.79284734(3) 0.19
wn(3He) = -2.12749772(3) nm  u, = -1.9130427(5) -0.20
Isoscalar (sum) 0.852 0.880 -0.028
Isovector (diff) 5.106 4.706 0.401

Isoscalar i agrees better.
So far, I’'ve been ignoring interactions.

We sketched that the = exchange current is isovector- it doesn’t contribute to p of
the T = 0 deuteron, nor to this isoscalar sum of u’s.

The isoscalar 1 commutes with the central component of the residual interaction,
so is sensitive to noncentral components, in particular the tensor interaction
(Towner and Khanna Nucl Phys A399 334 (1983); Arima, “A short history of
magnetic moments...” Science China 54 188 (2011) doi:10.1007/s11433-010-4224-6)
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