Set 2 Prob 1: Classical scaling of μ with \hbar /mass

Work Wong Problem 2-6 for the classical nonrelativistic magnetic moment of a particle in terms of angular momentum. Go ahead and use Jackson's treatment (see next page). The goal is just to understand the simple scaling with (angular momentum)/mass. Given the same quantized angular momentum for anything, magnetic phenomena have vastly different scales for leptons and baryons, except in systems where their spin is coupled ("hyperfine interactions").

2-6. An electron is moving in a circular orbit. Show that the magnetic dipole moment generated by the orbital motion is given by the relation

$$\mu = -\frac{e\hbar[c]}{2m_ec}\ell$$

where ℓ is the angular momentum in units of \hbar and the factor [c] converts the formula from cgs to SI units. Assume that the charge and mass of the electron are distributed uniformly along the orbit and ignore the contributions from the intrinsic magnetic dipole moment.

$$\mathbf{A}(\mathbf{x}) = \frac{\mathbf{m} \times \mathbf{x}}{1 - 13} \tag{5.55}$$

This is the lowest nonvanishing term in the expansion of **A** for a localized steady-state current distribution. The magnetic induction **B** outside the localized source can be calculated directly by evaluating the curl of (5.55):

$$\mathbf{B}(\mathbf{x}) = \frac{3\mathbf{n}(\mathbf{n} \cdot \mathbf{m}) - \mathbf{m}}{|\mathbf{x}|^3} \tag{5.56}$$

Here n is a unit vector in the direction x. The magnetic induction (5.56) has exactly the form (4.13) of the field of a dipole. This is the generalization of the result found for the circular loop in the last section. Far away from any localized current distribution the magnetic induction is that of a magnetic dipole of dipole moment given by (5.54).

If the current is confined to a plane, but otherwise arbitrary, loop, the magnetic moment can be expressed in a simple form. If the current I flows in a closed circuit whose line element is dl. (5.54) becomes

$$\mathbf{m} = \frac{I}{2c} \oint \mathbf{x} \times d\mathbf{l}$$

For a plane loop such as that in Fig. 5.7, the magnetic moment is perpendicular to the plane of the loop. Since $\frac{1}{2} |\mathbf{x} \cdot \mathbf{A}|| = (da, \text{where } da \text{ is the triangular element})$ of the area defined by the two ends of dl and the origin, the loop integral gives the total area of the loop. Hence the magnetic moment has magnitude,

$$|\mathbf{m}| = \frac{I}{2} \times (\text{Area}) \tag{5.57}$$

regardless of the shape of the circuit

If the current distribution is provided by a number of charged particles with charges q_i and masses M_i in motion with velocities \mathbf{v}_i , the magnetic moment can

Sect. 5.6

Magnetostatics 183

be expressed in terms of the orbital angular momentum of the particles. The current density is

$$\mathbf{J} = \sum q_i \mathbf{v}_i \delta(\mathbf{x} - \mathbf{x}_i)$$

where x_i is the position of the *i*th particle. Then the magnetic moment (5.54) becomes

$$\mathbf{m} = \frac{1}{2c} \sum_{i} q_i(\mathbf{x}_i \times \mathbf{v}_i)$$

The vector product $(\mathbf{x}_i \times \mathbf{v}_i)$ is proportional to the *i*th particle's orbital angular momentum, $\mathbf{L}_i = M_i(\mathbf{x}_i \times \mathbf{v}_i)$. Thus the moment becomes

$$\mathbf{m} = \sum_{i} \frac{q_i}{2M_{ic}} \mathbf{L}_i \tag{5.58}$$

If all the particles in motion have the same charge to mass ratio $(q_i/M_i = e/M)$, the magnetic moment can be written in terms of the *total* orbital angular momentum L:

$$\mathbf{m} = \frac{e}{2Mc} \sum_{i} \mathbf{L}_{i} = \frac{e}{2Mc} \mathbf{L}$$
 (5.59)

This is the well-known classical connection between angular momentum and magnetic moment which holds for orbital motion even on the atomic scale. But this classical connection fails for the intrinsic moment of electrons and other elementary particles. For electrons, the intrinsic moment is slightly more than twice as large as implied by (5.59), with the spin angular momentum S replacing L. Thus we speak of the electron having a g factor of 2(1.00116). The departure of the magnetic moment from its classical value has its origins in relativistic and quantum-mechanical effects which we cannot consider here.

Before leaving the topic of the fields of a localized current distribution, we consider the spherical volume integral of the magnetic induction ${\bf B}$. Just as in the electrostatic case discussed at the end of Section 4.1, there are two limits of interest, one in which the sphere of radius ${\bf R}$ contains all of the current and the other where the current is completely external to the spherical volume. The volume integral of ${\bf B}$ is

$$\mathbf{B}(\mathbf{x}) d^3 x = \int \nabla \times \mathbf{A} d^3 x \qquad (5.60)$$

The volume integral of the curl of **A** can be integrated to give a surface integral. Thus

Set 2 Probs 2 and 3: Isospin in reactions, decays

Problem 2, from Halzen and Martin:

EXERCISE 2.3 Use isospin invariance to show that the reaction cross sections σ must satisfy

$$\frac{\sigma(pp \to \pi^+ d)}{\sigma(np \to \pi^0 d)} = 2,$$

given that the deuteron d has isospin I = 0 and the π has isospin I = 1.

Hint You may assume that the reaction rate is

$$\sigma \sim |\text{amplitude}|^2 \sim \sum_{I} |\langle I', I_3'|A|I, I_3\rangle|^2$$

where I and I' are the total isospin quantum numbers of the initial and final states, respectively, and $I_1 = I'$ and $I_3 = I_3'$.

Problem 3:

Similarly compute the ratio of the decay rates for:

$$egin{array}{l} \Delta_{f 0}
ightarrow {m p} + \pi^- \ \Delta_{f 0}
ightarrow {m n} + \pi^{f 0} \end{array}$$

Mention briefly what you are assuming. Accelerator-based ν oscillation students need to know how accurate such branch calculations are, since those two decay channels look very different in a detector.

There are two tables of C-G's on the next 2 pages, from Wong Appendix A-1 and from a Particle Data Group classic table

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

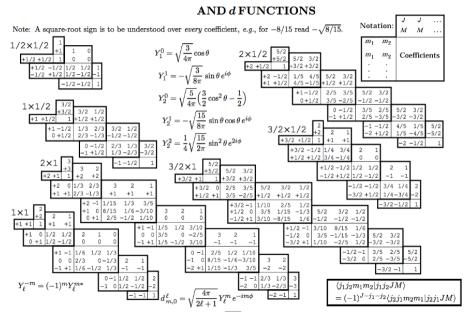


Table A-1: Some useful Clebsch-Gordan coefficients.

$$(\frac{1}{2}m_{\epsilon} t m_{\ell} j m)$$

$$j \qquad m_{\epsilon} = +\frac{1}{2} \qquad m_{\epsilon} = -\frac{1}{2}$$

$$\ell + \frac{1}{2} \qquad \sqrt{\frac{\ell + \frac{1}{2} + m}{2\ell + 1}} \qquad \sqrt{\frac{\ell + \frac{1}{2} - m}{2\ell + 1}}$$

$$\ell - \frac{1}{2} \qquad \sqrt{\frac{\ell + \frac{1}{2} - m}{2\ell + 1}} \qquad - \sqrt{\frac{\ell + \frac{1}{2} + m}{2\ell + 1}}$$

 $\langle 1m_s \ell m_t | jm \rangle$

$$\begin{pmatrix} j & 0 & j' \\ -m & 0 & m' \end{pmatrix} = (jmj' - m'|00) = \frac{(-1)^{1-m}}{\sqrt{2j+1}} \delta_{jj}\delta mm' \qquad (jm00|j'm') = \delta_{jj} \delta_{mm'}$$

$$\begin{pmatrix} j & 1 & j \\ j & 1 & j \\ m & 0 & m \end{pmatrix} = (-1)^{j-m} \frac{m}{\sqrt{j(j+1)(2j+1)}}$$

$$\begin{pmatrix} j & 2 & j \\ -m & 0 & m \end{pmatrix} = (-1)^{j-m} \frac{m}{\sqrt{(2j-1)j(2j+1)}}$$

$$\begin{pmatrix} j & 2 & j \\ -m & 0 & m \end{pmatrix} = \begin{pmatrix} (-1)^{j} \sqrt{\frac{(2g-2j_j)!(2g-2j_j)!(2g-2j_j)!}{(2g+1)!}}$$

$$\begin{pmatrix} j & j \\ 0 & 0 & 0 \end{pmatrix} = \begin{cases} (-1)^{j} \sqrt{\frac{(2g-2j_j)!(2g-2j_j)!(2g-2j_j)!}{(2g-2j_j)!(2g-2j_j)!}}$$

$$\begin{pmatrix} j & j \\ 0 & 0 & 0 \end{pmatrix} = \begin{cases} (-1)^{j} \sqrt{\frac{(2g-2j_j)!(2g-2j_j)!(2g-2j_j)!}{(2g-2j_j)!(2g-2j_j)!}}$$

$$\begin{pmatrix} j & j \\ 0 & 0 & 0 \end{pmatrix} = \begin{cases} (-1)^{j} \sqrt{\frac{(2g-2j_j)!(2g-2j_j)!(2g-2j_j)!}{(2g-2j_j)!(2g-2j_j)!}} \end{cases}$$

$$if 2g = \text{ odd}$$
where $2g = j_1 + j_2 + j_3$

Prob 4: Halzen+Martin: An antisymmeterized **p** wf without color

EXERCISE 2.18 The spin-flavor wavefunctions of the ground-state baryons are symmetric, and color was invoked to recover the required antisymmetric character. You should notice, however, and some people did, that we can construct a totally antisymmetric proton wavefunction, for example.

$$|\mathbf{p}\uparrow\rangle = \sqrt{\frac{1}{2}} \left[\mathbf{p}_{A} \chi(M_{S}) - \mathbf{p}_{S} \chi(M_{A}) \right],$$

and forget about color! Write this function in an explicit form, comparable to (2.71). Obtain $|n\uparrow\rangle$, and hence show that

$$\frac{\mu_n}{\mu_n} = -2.$$

So this option is ruled out by experiment. In fact, glancing at your derivation, you will notice that μ_p is negative. It is measured to be positive. Long live color.

Halzen and Martin go through the finite group theory needed to justify these functions. Here I just assume and check them:

Eq 2.71 is symmetric in spin, ud

$$|p\uparrow\rangle = \sqrt{\frac{1}{2}} \left(p_S \chi(M_S) + p_A \chi(M_A) \right)$$

$$|p\uparrow\rangle = \sqrt{\frac{1}{16}} \left[\left[uud(\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\downarrow\uparrow\downarrow) \right] + udu(\uparrow\uparrow\downarrow + \downarrow\uparrow\uparrow - 2\uparrow\downarrow\uparrow) \right]$$

$$+ duu(\uparrow\downarrow\uparrow + \uparrow\uparrow\downarrow - 2\downarrow\uparrow\uparrow)$$

 M_S and M_A spin 'up' functions symmetric, antisymmetric in 1st 2 pair of spins:

$$\chi(M_S) = \sqrt{\frac{1}{6}} \left(\uparrow \downarrow \uparrow + \downarrow \uparrow \uparrow - 2 \uparrow \uparrow \downarrow \right)$$

$$\chi(M_A) = \sqrt{\frac{1}{6}} \left(\uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow \right).$$

 p_S , p_A are handily symmetric, antisymmetric in the 1st 2 quarks:

$$p_S = \sqrt{\frac{1}{6}} \left[(ud + du)u - 2uud \right]$$

$$p_A = \sqrt{\frac{1}{2}} (ud - du)u$$

5) Compute the Magnetic moment μ of the Δ^0 (1232) resonance:

A wavefunction for the Δ^0 with isospin t = 3/2, $t_0 = t_3 = -1/2$, and intrinsic spin pointed fully up $S_z = S = 3/2$ is (Wong page 45):

$$\ket{\psi_{
m spin}}\ket{\psi_{
m isospin}}=\ket{\uparrow\uparrow\uparrow}\ket{ extbf{ddu}+ extbf{dud}+ extbf{udd}}/\sqrt{3}$$

(no proofs nor calculation needed).

- a) This part is symmetric under permutation. State the permutation symmetry assumed of the spatial and color parts for this to be true (no proofs nor calculation needed).
- b) Calculate the magnetic moment in terms of quark magnetic moments $\mu_{
 m up}$ and $\mu_{
 m down}$
- c) Given known electric charges, and assuming mass $m_{\rm up}=m_{\rm down}$, eliminate $\mu_{\rm up}$. (The simplicity of this answer for μ of the Δ^0 is preserved by a published lattice gauge QCD calculation.) Compare to the neutron.
- gauge QCD calculation.) Compare to the neutron.

 d) List 2 examples of extra physics that could alter this μ computation for the Δ^0

Phys505 Lectures 2-3 Problems. Due Friday Jan 27 9:30 JB

Solutions follow

Prob 2, 3 solution, assuming isospin is a good quantum number

Prob. 2

Assuming beam energy is high enough so Coulomb barrier does not matter, the energies are much higher than the few MeV differences in particle masses, and the excited unbound resonance of the *d* is not excited (a big assumption),

then the cross-section ratio is given by isospin Clebsch-Gordan coefficients:

$$\frac{|\langle t(p) \, t_3(p) \, t(p) \, t_3(p) \, | \, t(\pi) \, t_3(\pi^+) \rangle|^2}{|\langle t(n) \, t_3(n) \, t(p) \, t_3(p) \, | \, t(\pi) \, t_3(\pi^0) \rangle|^2} = \frac{|\langle \frac{1}{2} \, \frac{1}{2} \, \frac{1}{2} \, | \, 11 \rangle|^2}{|\langle \frac{1}{2} \, - \frac{1}{2} \, \frac{1}{2} \, | \, 10 \rangle|^2} = \frac{1}{(\frac{1}{2})} = 2$$

Prob. 3

Assuming decay energy is high enough so electromagnetic interactions don't matter.

and the energy released in the decay is much higher than the few MeV differences in particle masses,

then the decay ratio is given by isospin Clebsch-Gordan coefficients:

$$\frac{|\langle t(p) \, t_3(p) \, t(\pi) \, t_3(\pi^-) \, | \, t(\Delta) \, t_3(\Delta^0) \rangle|^2}{|\langle t(n) \, t_3(n) \, t(\pi) \, t_3(\pi^0) \, | \, t(\Delta) \, t_3(\Delta^0) \rangle|^2} = \frac{|\langle \frac{1}{2} \, \frac{1}{2} \, 1 - 1 \, | \, \frac{3}{2} \, - \frac{1}{2} \rangle|^2}{|\langle \frac{1}{2} \, - \frac{1}{2} \, 1 \, 0 \, | \, \frac{3}{2} \, - \frac{1}{2} \rangle|^2} = \frac{(\frac{1}{3})}{(\frac{3}{3})}$$

$$= 1/2$$

Solution to Prob 4: antisymmetric $|p\uparrow\rangle$ in isospin, spin contradicts exp. μ using for mag moment

 $|oldsymbol{p}\uparrow
angle=\sqrt{rac{1}{2}}(oldsymbol{p_A}\,\chi(oldsymbol{M_S})-oldsymbol{p_S}\,\chi(oldsymbol{M_A}))=$ $|\boldsymbol{p}\uparrow\rangle = \sqrt{1/24}(\boldsymbol{u}d\boldsymbol{u} - \boldsymbol{d}\boldsymbol{u}\boldsymbol{u})(\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow -2\uparrow\uparrow\downarrow)$

$$-\sqrt{1/24}(udu + duu - 2uud)(\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow)$$
 rearrange terms
$$\sqrt{1/24}(udu(\uparrow\downarrow\uparrow - \uparrow\downarrow\uparrow\uparrow + \downarrow\uparrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow) +$$

$$duu(-\uparrow\downarrow\uparrow-\uparrow\downarrow\uparrow-\downarrow\uparrow\uparrow+\downarrow\uparrow\uparrow\uparrow+2\uparrow\uparrow\downarrow)$$

$$+2uud(\uparrow\downarrow\uparrow-\downarrow\uparrow\uparrow))$$

$$= \sqrt{1/6}(uud(\uparrow\downarrow\uparrow-\downarrow\uparrow\uparrow) \quad \text{I count 2 } \mu_d \\ + udu(\downarrow\uparrow\uparrow-\uparrow\uparrow\downarrow) \quad \text{I count 2 } \mu_d$$

 $-duu(\uparrow\downarrow\uparrow-\uparrow\uparrow\downarrow))$ I count 2 μ_d cancelling. so $\mu_p = \mu_d$; switching u and d gives $\mu_n = \mu_u$; $\mu_{\rm D}/\mu_{\rm D} = \mu_{\rm U}/\mu_{\rm d}$ =-2 (ratio of q's, assuming same constituent mass), but experimental

also disagrees with experiment (or μ_d would have wrong sign for a Dirac particle...)_{10/12}

 $\mu_{
m p} = \sum_{i=1} \mu_i$

notice the \pm spin projections.

value \approx -1.91/2.79 = -0.64, a large disagreement. Since d charge is <0, $\mu_{\rm p}$ < 0 which

square each coefficient.

 $\mu \stackrel{\mathsf{def}}{=} \langle \mathsf{J}, \mathsf{M} = \mathsf{J} | \vec{\mu} | \mathsf{J}, \mathsf{M} = \mathsf{J} \rangle$

 $\equiv \langle JJ|\mu_z|JJ\rangle$

5. Compute the Magnetic moment μ of the $\Delta^{0}(1232)$ resonance:

A wavefunction for the Δ^0 with isospin t = 3/2, $t_0 = -1/2$, and intrinsic spin pointed fully up $S_z = S = 3/2$ is (Wong page 45):

$$\ket{\psi_{
m spin}}\ket{\psi_{
m isospin}}=\ket{\uparrow\uparrow\uparrow}\ket{ extbf{ddu}+ extbf{dud}+ extbf{udd}}/\sqrt{3}$$

a) This part is symmetric under permutation. The $\Delta(1232)$ parity is +, and the spatial part is symmetric. State the permutation symmetry of the color part (no proofs nor calculation needed).

Color wf antisymmetric. (Wong used manifest symmetry of Δ^{++} to show color was necessary for overall antisymmetric wf)

b) Assume L=0 so $\vec{\pmb{J}}=\vec{\pmb{S}}$. Calculate the magnetic moment in terms of quark magnetic moments $\mu_{\bf up}$ and $\mu_{\bf down}$

All quark spins are up, so μ operator projects out fully each term. Result by counting terms, including normalization, is $2\mu_{down} + \mu_{up}$

continued \rightarrow

This follows naturally from the completely symmetric wf in both spin and isospin, a result of the 'fully stretched' Δ^{++} wf in both spin Sz = S = 3/2 and isospin $t_0 = t = 3/2$, permutation symmetries preserved for the $t_0 = -1/2$ partner. The t = 1/2 neutron has a more complex wavefunction and nonzero prediction in this constituent quark model in decent agreement with experiment, because the wf is not 'fully stretched.'

Addendum: That lattice gauge QCD calculation (Cloet et al.

but also inverts whether Δ^+ or the proton has a larger magnetic moment. Particle Data Group 2019 has recent measurements of μ of Δ^{++} and Δ^+ in agreement with constituent quark model, but with 50% uncertainties that do not test the wavefunctions significantly. It's very challenging to measure μ of a wide resonance decaying by strong interaction.

arXiv:hep-lat/0302008, Phys.Lett.B563:157-164,2003) preserves the vanishing μ .

Problem P(+) = P (2(1+(A1B)) (1A7+1B>) (AIA) (A1B) + (BIA) Eg. 13 - (\$13) (L+1+) - L-1-> + 471+)+/1/3 LLIR) = QED