
HW10, Phys505 for Lecture 19-22

1) Isovector E1 example
Consider the relative rates of the E1 decays of the E=5.69
MeV Jπ = 1−;T = 0 state that are shown in the figure.
Assume the spatial ψ(r) of the ground state and first
excited state is the same. a) Why is that OK?
These are likely deuteron-like states, with symmetric spatial wf’s, and S;T having the
antisymmetry.

Limitation: we saw an excited 1+; 0 3D1 L=2 configuration in 6Li (see L 13-14...v2.pdf p.21),

which could be part of the 3.95 MeV state here, just like the D-state configuration contained

in the deuteron g.s. All papers on isospin mixing in 14N use simple shell models in which

this is surely included.

b) To which final states are M2 decays allowed from the
E=5.69 MeV state?
M2 flips parity. M2 is allowed from 1− to the 1+; T = 0 states. You can’t vector-add 2 and 0

to get 1− , so M2 is not allowed from 1− to 0+.

Ignoring that M2 possibility:
c) Assuming the known dependence on Eγ of the E1 rate,
compute the E1 rate ratio from the 5.69 MeV state
ΓE=0/ΓE=2.31, ignoring the isospin selection rule. (By
summing over final and averaging over initial states, JB
concludes from C-G coefficient squares that this E1 rate
should also scale with 2Jf + 1.)
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scaling by E3
γ and 2J + 1, JB gets

ΓE=0/ΓE=2.31 = (5.69/(5.69 − 2.31))3
√

3 = 8.3

d) Compute the ratio of experimental to theoretical values of ΓE=0/ΓE=2.31.
Exp ratio is 36/64, so Exp/Theory(for good isospin) is X0.032X 0.068.

Noting this is small,
e) Still assuming identical ψ(r) (no longer a good assumption), what admixture of the
1−;T=1 state at 8.06 MeV would explain this E1 rate, to lowest order in perturbation
theory? (The published literature needs a theory estimate of the space matrix element.)
Assuming that good isospin would produce zero E1 rate (there are higher-order corrections to the E1 operator JB is ignoriing) there is no allowed

amplitude to interfere with, so the rate for same spatial wf will just go like an admixture α2 = X0.032X 0.068 .

[extra: If one wants to estimate a Coulomb mixing matrix element, first order perturbation theory would be α= (matrix element)/(delta E), so |α|= X

0.18X 0.26 ⇒ 2.37 MeV * 0.26 = 0.62 MeV. That’s unexpectedly large compared to all others. Likely the spatial wf of the 8.06 MeV state is different

from the 3.95 MeV state. (We did predict 1− ;0 and 1− ;1 configurations with s,p symmetric occupation for A=6 that might be part of the 14N

configurations, but there is not much futher we can say from that approach.)]

Using E1 transitions in N=Z nuclei has been a solid method historically to measure isospin breaking, but like many techniques it needs good nuclear

wavefunctions. In this case, if there were lifetime measurements ⇒ rate measurements, one could deduce reliable admixtures from how the rate was

altered.

JB was surprised to see an isospin-allowed and an isospin-forbidden E1 with similar branches, so is glad to see working out the simple scalings is

consistent with the E1 being isovector.
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2) G-T and 1st-forbidden competing: Reactor ν’s and 92Rb decay
92
37Rb55 ∼10% of reactor ν’s 5-7 MeV

Levels from 2012 NDS compilation:

• Remember t = ln(2)/(partial decay rate) =
(decay’s t1/2)/(branch fraction).

a) List one pair of possible orbitals for the odd proton
and neutron of the 92Rb Jπ = 0− ground state. Note
their relative π.
b) for 3 sets of states, comment on:
whether the β− decay is allowed or forbidden, and
on the size of the log10ft values:

i) the Jπ=0+ ground state (branch 95.2%);
ii) the highest Jπ = 1− state;
iii) the six other J=2 and J=0 states.

c) β− decay to the highest Jπ = 1− state (at 7.363
MeV excitation) has log(ft)=3.97, much faster than the
0+ ground state with log(ft)=5.75. Given the maximum
β kinetic energy, get ‘Fermi integral’ f (Wong Eq.
5-69) from Wong Fig. 5.7 for these two transitions
(assuming 0− → 0+ is ‘allowed’). Check these listed
branch fractions and log(ft)’s for consistency.
d) Re: the other six J=1 states clustered together,
state the compiler’s reasoning and threshold log(ft) for
determining allowed vs. forbidden and ∴ parity
Odd-odd 0− ground states are more common than
one might guess- all you need is shell model orbitals
of opposite parity for p and n, common enough in the
neutron-rich fission products. Many of the 0- to 0+
transitions seem to have log(ft) at 6 or faster, faster
than most 1st-forbidden transitions.
One doesn’t get opposite-parity states until fairly high
excitation. The g.s. to g.s. transition is often then the
largest branch, making more energy come out in
higher-energy ν’s instead of γ’s.
That highest 1− state is likely part of the low-Ex tail of
the giant dipole resonance, which has centroid energy
(phenomenological from Berman+Fultz RevModPhys
47 713 (1975)) EGDR=31.2A−1/3 + 20.6 A−1/6 = 16.6
MeV with full width half maximum ∼ 5 MeV.) This is
one reason for the “pandemonium effect: strong E1
transitions at 5 MeV produce a forest of narrow lines
with poor Germanium efficiency that makes them very
hard to detect. Total absorption spectrometers, 4 pi
arrays of high-Z scintillator (with inherently poorer
energy resolution )help by absorbing all the gamma
energy and measuring beta feeding patterns
averaged over many states.
[ We have not considered 0− to 2− decays: these
preserve parity and would be “2nd-forbidden,”
suppressed by ∼ (

RnucleusEβ

h̄c
)2 with ℏc=197MeV-fm]

3/7



HW10, Phys505 for Lecture 19-22

2a) Z=37, 3 short of closed Z=40 suggests f5/2 (parity minus)
N=55 closed N=50 + 5, suggests g7/2 (parity plus)
OK to add 5/2 and 7/2 and get 0. Parity is minus.
(Common in fission products to have ‘valence’ n and p in opposite-parity orbitals)

2b) i) 0- to 0+ changes nuclear parity so is ‘1st-forbidden.’ log(ft) of 5.75 is one of the faster forbidden ones in the histogram Fig. 5-8 from
Wong.
ii) log(ft) 3.97 suggests a fast Gamow-Teller. 0- to 1- keeps nuclear parity and changes J by 1, satisfies G-T selection rule.
iii) 0- to these 0+ and 2+ are all positive parity; all are 1st-forbidden. log(ft)’s are more than 10x slower than the strong 0- to 0+ g.s to g.s.

2c) Q=8.104 MeV is highest possible kinetic energy. Since Wong plots down to 0.1 MeV, less than mass of electron, he is clearly plotting
maximum kinetic energy on x-axis(despite somewhat nonstandard E0 notation). 0- to 0+ has two operators, though it’s commonly assumed
one dominates for these higher-energy transitions, so it’s ok to assume ‘allowed.’ Z=37 Q=8 MeV has log(f)=4.3 to 4.5 or so.
transition to the highest J=1- at 7.363 then has 8.104-7.363= 0.741 MeV, about f=-1.5. Branch should be lower by log(4.5-(-1.5)= log(6) = 106

from the momentum integral f alone. The log(ft) is 3.97 instead of 5.75, so that G-T (matrix element)2 is 10**(1.78) times bigger, and rate
scales with (matrix element)2. 6-1.78= 4.22 or 104 times smaller. The actual branch is 300x smaller, so something is not right here.
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2d) The compiler is saying a log(ft) of smaller than 6 is G-T, which is plausible but might not be perfect. One has to look very carefully at any
state where one needs the answer.

Some qualitative considerations I did not go through:

Many of the 0- to 0+ transitions seem to have log(ft) at 6 or faster, faster than most 1st-forbidden transitions.

One doesn’t get opposite-parity states, which are needed to get G-T transitions to bleed strength from the higher-energy nu’s, until fairly
high excitation. The g.s. to g.s. transition is often then the largest branch, making more energy come out in higher-energy ν’s instead of γ’s.

That highest 1− state is likely part of the low-Ex tail of the giant dipole resonance, which has centroid energy (phenomenological from
Berman+Fultz RevModPhys 47 713 (1975)) EGDR=31.2A−1/3 + 20.6 A−1/6 = 16.6 MeV with full width half maximum ∼ 5 MeV.) This is one
reason for the “pandemonium effect: strong E1 transitions at 5 MeV produce a forest of narrow lines with poor Germanium efficiency that
makes them very hard to detect. (If both parent and progeny have same parity, the “Giant Gamow-Teller” resonance produces states with a
similar role.) Total absorption spectrometers, 4 pi arrays of high-Z scintillator (with inherently poorer energy resolution )help by absorbing
all the gamma energy and measuring beta feeding patterns averaged over many states.

Pietro Spagnoletti from SFU presented details of 92Sr spectroscopy from 92Rb decay at WNPPC 2023, studying in detail this low-energy
GDR tail. JB remains curious about this, though more curious about the ν spectrum measured by one of you.
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3. Simple Fermi function:
One simplified expression for the Fermi function mentioned in lecture (p. 32 L19-22...)
produces a simple analytic form for the β energy spectrum.
a) Setting mβ=0, integrate that spectrum to find a quantity dN proportional to the phase
space integral f :
dN =

∫ E0
0 FPR(E ,Z )pE(E0 − E)2dE

where E and p are the relativistic energy and momentum of the β, E0 is the maximum
total energy possible for the beta, and
FPR(E ,Z ) is Primakoff and Rosen’s Fermi function:
FPR(E ,Z ) = a| 1

(1−e±a) |
E
p

where ± is for β± decay, and a = 2πZα is a constant that is often not small.
This is based on the ”nonrelativistic” version in the lecture notes, simplified without rigor to
make the integrations easily analytic.
(Hint: The answer is proportional to E0N where N is an integer.
If you just square the parentheses there are only 3 terms to integrate and then sum.
b) Considering this total decay rate proportional to E0N (and ignoring the dependence on
Z), how much does this β decay phase space change between E0 = 1 and 5 MeV? 55 = 3125

(Note how powerful the ft concept is, producing an intrinsic decay strength for β decay
constant to parts per thousand despite the enormous variation in f .)
E05 is often quoted as the scaling of the phase space factor f with E0. Note the ± sign change for β+ decay reflects probability increasing or

decreasing at low E . This Fermi function is only helpful for relatively large E0 compared to some energy involving Z: it is 3% off in fT at 38mK but

terrible for 10C.
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4) Low-mass unknown boson exchange (keep setting c=1 here)
An unknown boson with relatively low mass wrt the W± will have a lowest-order correction
from the propagator (p. 5 of lecture notes):
g2

x
M2

x
(1 + q2

M2
x
)

where gx is the vertex coupling constant of the boson (assumed same for quarks and
leptons), and q is some momentum transfer. Set q = pβ below.
Two neutron β decay experiments (Beck PRL 2024) indicate a correction of 0.01 of the
weak interaction. This could be explained by an interaction with
g2

x
M2

x
≈ 0.01 g2

W
M2

W

Suppose Mx ≈ 0.001MW ≈ 80 MeV
a) How big is g2

x
g2

W
?

b) Momentum spectra for the β decay of the neutron, which have average momentum
pβ ≈ 0.8MeV , are distorted by about how much?
(1 +

pbeta2

M2
x

) ≈ 1 + 0.0001

c) Similarly, spectra from the decay of 38mK, with average pβ ≈ 3.2MeV , are distorted by
how much?
(In present experiments, c) might be barely observable, while b) is not.)
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