Abstract

Targeted alpha therapies using actinium-225 (²²⁵Ac, $t_{1/2} = 9.9$ d) have shown an ability to treat advanced metastatic disease, despite the insufficient availability of this radionuclide that limits their development. Radiation dosimetry for ²²⁵Ac-radiopharmaceuticals is also complicated by multiple nuclides in the ²²⁵Ac decay chain. This work describes efforts to produce ²²⁵Ac and use multi-nuclide SPECT imaging to individually measure the biodistribution of ²²⁵Ac progeny, ²²¹Fr and ²¹³Bi. Initial ²²⁵Ac production used ^{Nat}U-spallation-produced and mass-separated ion beams to produce up to 8.6 MBq of ²²⁵Ra, an ²²⁵Ac parent, and up to 18 MBq of ²²⁵Ac. This material was used to characterize performance of ²²⁵Ac decay chain imaging on a microSPECT/PET/CT scanner in terms of contrast recovery, spatial resolution, and noise. Efforts to produce larger ²²⁵Ac quantities used the proton spallation of thorium with focus on using 225 Ra/ 225 Ac generators to provide an Ac product with reduced ²²⁷Ac ($t_{1/2} = 21.8$ y) content, a nuclide with economically prohibitive and low limits on waste disposal. Targets containing Th metal foils were irradiated for approximately 36 hours with a 72 μ A proton beam, producing (521 ± 18) MBq of ²²⁵Ac and (91 ± 14) MBq of 225 Ra. These irradiations enabled 232 Th(p,x) cross sections measurements at 438 MeV for 225 Ac, 225 Ra, and 227 Ac: (13.3 ± 1.2) mb, (4.2 ± 0.4) mb, and (17.7 ± 1.7) mb, respectively. 35 other cross sections have been measured and compared to FLUKA simulations; measured and calculated values generally agree within a factor of 2. Ac was separated from irradiated thorium and co-produced radioactive spallation and fission products using a thorium peroxide precipitation followed by cation exchange and extraction chromatography. Tracer studies demonstrated this method's ability to separate Ac from most other elements, providing a directly produced Ac product $(^{227,225}\text{Ac}^{\dagger})$ with measured ^{227}Ac content of $(0.15 \pm 0.04)\%$. The second, indirectly produced Ac product $(^{225}Ac^*)$ with ^{227}Ac content of $<7.5\times10^{-5}\%$ is obtained by repeating the final extraction chromatography step with the ²²⁵Ra-containing fraction. The ²²⁵Ra-derived ²²⁵Ac^{*} showed similar or improved quality compared to the initial, directly produced $^{227,225}Ac^{\dagger}$ product in terms of chemical purity and radiolabeling capability.