
Astronomy Comprehensive Exam, Spring 2025

Session 1

May 09 2025

Note: if you are in the PhD in physics program, stop! This is the astronomy version of
the exam. Please ask the proctor for the version appropriate for your program instead.

Do not write your name on your exam papers. Instead, write your student number on each page.
This will allow us to grade the exams anonymously. We’ll match your name with your student
number after we finish grading.

This portion of the exam has 4 questions. Answer any three of the four. Do not submit answers
to more than 3 questions—if you do, only the first 3 of the questions you attempt will be graded.
If you attempt a question and then decide you don’t want to it count, clearly cross it out and write
“don’t grade”.

You have 2 hours 15 minutes to complete 3 questions.

You are allowed to use two 8.5′′ × 11′′ formula sheets (both sides), and a handheld, non-graphing
calculator.

Here is a possibly useful table of physical constants and formulas:

atomic mass unit 1 amu 1.661× 10−27 kg
Avogadro’s constant NA 6.02× 1023

Bohr radius of hydrogen atom a0 5.3× 10−11 m
Boltzmann’s constant kB 1.38× 10−23 J/K
charge of an electron e 1.6× 10−19 C
astronomical unit 1 au 1.5× 1011 m
electron volt 1 eV 1.6× 10−19 J
mass of an electron me 0.5110 MeV/c2

mass of hydrogen atom mH 1.674× 10−27 kg
mass of a neutron mn 1.675×10−27 kg = 939.5654 MeV/c2

mass of a proton mp 1.673×10−27 kg = 938.2721 MeV/c2

mass of the moon Mmoon 7× 1022 kg
mass of the sun Msun 2× 1030 kg
Newton’s gravitational constant G 6.7× 10−11 N m2 kg−2

permittivity of free space ε0 8.9× 10−12 C2 N−1/m2

permeability of free space µ0 4π × 10−7 N/A2

Planck’s constant h 6.6× 10−34 J·s
radius of the earth R⊕ 6.4× 106 m
radius of the sun R� 7× 108 m
speed of light c 3.0× 108 m/s
Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4
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1. A small planet orbits a star of mass M . A cloud of dust with a uniform mass density ρ
surrounds the star and extends past the planet’s orbit.

(a) Calculate the orbital period of the planet as a function of the planet’s distance from the
star, assuming a circular orbit.

(b) Now consider an orbit that is slightly non-circular, but has the same angular momentum,
for which the planet’s distance from the star varies as R(t) = R0[1+ ζ(t)]. Show that the
orbit precesses. (Hint: calculate the effective potential V (r) of this system and consider
small oscillations around its minimum.)

2. Radiation by a white dwarf derives its energy from the thermal energy of its ions, since the
electrons form a degenerate Fermi gas and cannot lose energy easily. The luminosity of a white
dwarf can be shown to relate to its mass and core temperature according to L = AMT 3.5,
where M is in units of solar masses and A = 0.2 W/K3.5.

(a) Estimate the total heat capacity of a one solar mass white dwarf composed primarily of
carbon.

(b) How long would it take this white dwarf to cool from a core temperature of 107 K degrees
to a temperature of 106 K degrees?

(c) What would the surface temperature of the white dwarf be when its core temperature is
106 K? Assume that the radius of the white dwarf is R = 1.0R⊕.

3. As a simple model of a supernova, consider a sphere of initial radius 5×108 cm and mass 1.4M�, 
initially heated to 1010 K. Assuming constant density, total ionization, Z/A = 0.5, homologous 
expansion ( v ∝ r), and opacity due to electron scattering, calculate the radius the expanding 
sphere would have when it first became optically thin. (use κe = 0.2 cm2g−1 throughout) If the 
expansion were adiabatic as well as homologous what would be the temperature of the radiation 
at this point (assume that radiation entropy is separately conserved)?

4. Assuming that dark energy consists of a simple cosmological constant, estimate Ωm, ΩΛ, and 

the energy density in the CMB

(a) today

(b) at z = 2

(c) right after the time of recombination
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5. Suppose that a differentiated Solar System body of radius R has a density distribution that
can be approximated as a linear function of the distance from the centre r. Let ρ1 be the
central density and ρ0 the density at the surface. In other words,

ρ(r) = ρ1 + (ρ0 − ρ1)
r

R
.

Determine the internal pressure profile P (r) within the body. Assume there is no substantial
atmosphere around the body.

6. The NFW profile is commonly used to represent the spherically symmetric dark matter dis-
tribution of a galaxy and has density distribution

ρ(r) =
ρ0Rs

r(1 + r/RS)2

where ρ0 and Rs are normalization and scale parameters. Note that ρ0 is not the density at
r = 0.

(a) Show that the corresponding potential is

Φ(r) = −4πGρ0R
3
s

r
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r
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)

Note: The following integral may be helpful:∫
x

(1 + x)2
= ln(1 + x)− x

1 + x
+ C

(b) Compute the mass in dark matter from r = Rmin to r = Rmax, and diagnose whether it
diverges in the limits Rmin → 0 and/or Rmax → ∞. In any limits in which it diverges,
explaining a reasonable astronomically-motivated cut-off for the radius in question.

(c) A recent study based on the rotation-curve data derived from the Gaia spacecraft mission
suggests that Rs ' 12 kpc. Accept this value and use the common estimate for the local
dark-matter density in the solar neighbourhood of 0.01 M� pc−3 to estimate ρ0. If you
are unable to estimate ρ0, then use ρ0 = 0.002M� pc−3 in part (d).

(d) Using your cut-offs from (b), compute an estimated mass of the Milky Way’s dark matter
halo and comare it to estimated mass in stars of 6×1010M� (Licquia and Newman 2015).

7. Suppose that you have two tiny pieces of metal. They are so small, in fact, that the internal
energy in each piece is contained within five harmonic oscillators. The two pieces of metal
are brought into thermal contact and reach equilibrium with ten units of energy (~ω of the
oscillators) in total. You can measure how much energy is in each piece of metal, but not
which oscillators contain the energy.

(a) How many macrostates are there?

(b) How many total microstates are there?

(c) Assuming that the system is ergodic, what would the chance be of seeing all of the energy
in one piece of metal (either one)?
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8. A planet transits a star of known mass M and radius R. You measure the transit depth δ,
the duration of the onset of the transit τ , and the duration of the transit itself T measured
from the midpoint of the onset to the midpoint of the ending as shown below.

Derive expressions for the orbital speed v of the planet, the period P and inclination i of the
orbit. You should assume that the orbit is circular, the mass of the planet is much less than
that of the star, the star and planet are spherical, and that there is no limb darkening.
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