
Ph. D. Comprehensive Exam 2005
Department of Physics and Astronomy

University of British Columbia

Part I

Date and time: 09/15/2005 01:00 PM-05:00 PM
Room: SCRF 100

This exam is closed book. No notes, no books, no calculators no computers.
Please attempt all problems. All problems have equal weight. All sub-problems of each problem
have equal contribution to the weight of the problem. Please label each problem clearly and write
clearly in the answer book that is provided. Show your work. Explain the steps.

1. Consider N distinguishable particles each of which occupies one of two levels i = 1, 2.
εi(i = 1, 2) is the energy of level i. The total energy for a given distribution (N1, N2) is

E(N1, N2) = N1ε1 +N2ε2 (1)

where Ni, i = 1, 2 are the numbers of particles at level i, N1 +N2 = N .

(a) Calculate Ω(N1, N2), the number of microscopic states with Ni particles at level i = 1, 2.

(b) Using the Boltzman statistics, calculate Z, the partition function for N particles. Your
results should be expressed as a function of ε1,2, kT and N . (There are a few different
ways to evaluate this quantity). Z is defined as

Z =
∑
s

exp(−βEs), β =
1

kT
(2)

and the sum is over all microstates for N particles and Es is the energy of state s.

(c) Calculate the average and fluctuations of N1: < N1 > and < (δN1)
2 >=< (N1− <

N1 >)2 >. Your results should be expressed as a function of ε1,2, kT and N .

2. Two homogeneous discs of masses m1 and m2, both of radius R, have centers connected
by a spring so that they can roll without slipping. At the initial moment the centers are
at x1(0) = 0, x2(0) = 2L0 and have initial speeds ẋ1(0) = −v0, ẋ2(0) = 2v0. The initial
conditions are such that the wheels never collide. Find their positions at all later times. The
spring has an unstretched length L0, and a spring constant

k =
9v2

0m1m2

2L2
0(m1 +m2)

1



3. Relativistic motion under a constant force:

Consider a relativistic particle of mass m and charge q in a constant electric field ~E.

(a) Write the Lagrangian for this system of a single charged relativistic particle moving in
a constant electric field.

(b) Obtain and solve the equation of motion. Assume that at time x0 = 0, the position is

~x(0) = 0 and the velocity vanishes, d~x(0)
dx0 = 0.

4. Particles of mass m are incident on the spherically symmetric Yukawa potential

V (r) = V0
e−µr

r

where V0 and µ are constants.

(a) To lowest order perturbation theory, show that the differential cross section for the
scattering vector k is given by

dσ

dΩ
=

[
2mV0

h̄2(k2 + µ2)

]2

(b) Use this result to derive the Rutherford formula for the scattering of α-particles of
energy E, incident on a nucleus with the atomic number Z, and being scattered at an
angle θ to the incident direction.

5. A harmonic oscillator is in the state |Ψ(0) >= 1√
2
(|0 > +|2 > +|4 >) at t = 0.

(a) Express |ψ(t) > for arbitrary time.

(b) Compute < x > and < x2 > for arbitrary t.

Hint: recall that a =
√

mω
2h̄

(x+ ip/mω).

6. Consider the degenerate electron gas in a metal as a mixture of two gases of spin-up and
spin-down electrons, respectively. when a small magnetic field B is applies, a few of the
electrons reverse their spins so as to maintain equality of the chemical potential in the two
mixed gases. For T = 0, find the magnetic susceptibility of the metal (∂M/∂B)N,V , where M
is the magnetization (magnetic moment per unit volume), N is the total number of electrons,
and V is the volume. The magnetic moment of the electron is µB.
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Part II

Date and time: 09/16/2005 01:00 PM 05:00 PM
Room: FNSC 60

This exam is closed book. No notes, no books, no calculators no computers. Please attempt
all problems. All problems have equal weight. All sub-problems of each problem have equal
contribution to the weight of the problem. Please label each problem clearly and write clearly in
the answer book that is provided. Show your work. Explain the steps.

1. Dipole radiation: Consider purely harmonic sources of electromagnetic radiation:

ρ(~r, t) = ρ(~r)e−iωt + ρ∗(~r)eiωt

~j(~r, t) = ~j(~r)e−iωt +~j∗(~r)eiωt

A similar decomposition of the ~r- and t-dependence will also hold for the potentials and the
field strengths. These sources are contained in a region of overall dimension a, centered at
the origin.

(a) Suppose that you go very far away from this localized current distribution in the direc-
tion given by the unit vector r̂. Using the Lorentz gauge, show that the field strengths
in this “far field”, or radiation zone are given by

~B(~r) = i~k × ~A(~r)

~E(~r) = − i

k
~k ×

(
~k × ~A(~r)

)
Here |~r| >> a, and the vector ~k has direction r̂ and magnitude |~k| = ω/c.

(b) Show that in this far zone the vector potential is given by

~A(~r, t) =
e−iω(t−|~r|/c)

c|~r|
~j(~k) + complex conjugate

where ~j(~k) is the Fourier transform of the current distribution

~j(~k) =
∫
d~r′~j(~r′)e−i~k·~r′

(c) From (a) and (b) above, obtain Poynting’s vector in the far zone,

~S =
c

4π
~E × ~B =

c

4π
~E2(~r, t)r̂

Putting ~E = ~e1E1 + ~e2E2, where ~e1 and ~e2 are certain polarization vectors, derive the
time-averaged power radiated in the direction r̂ into the solid angle dΩ,

dP

dΩ
=

ω2

2πc3
∑
λ

∣∣∣~e∗λ ·~j(~k)∣∣∣2
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Hint: The retarded potentials are given by

Φ(~r, t) =
∫ ρ(~r′, t− |~r − ~r′|/c)

|~r − ~r′|
~A(~r, t) =

1

c

∫ ~J(~r′, t− |~r − ~r′|/c)
|~r − ~r′|

2. The tension τ in a stretched wire of length L and radius r is increased reversibly from τ0
to τ1 at constant temperature T = T0. Assume a linear expansivity, α = 1

L

(
∂L
∂T

)
τ

and the

isothermal Young’s modulus Y ≡ L
πτ2

(
∂τ
∂L

)
T

are constant.

(a) Show

TdS = CTdT + T

(
∂L

∂T

)
τ

dτ

where S is the entropy and Cτ ≡ T
(

∂S
∂T

)
τ

is the heat capacity at constant tension.

(b) What is the change in internal energy? (Hint: A stretched wire can be described ther-
modynamically using τ , L and T as state variables. this description may be developed in
complete analogy to the description of a pure substance using T , the pressure P and the
volume V where P → −τ and V → L. For example, the first Law is dE = TdS + τdL
and the Gibbs free energy is G = E − τL− TS.)

3. The fractional energy fluctuation < ∆E >rms / < E > can be determined within two
common models:

(a) For an Einstein solid at temperature T with Einstein frequency ωE, find < ∆E >rms

/ < E >. At what temperature are fluctuations largest?

(b) For a Debye solid with Debye frequency ωD, derive expressions for the low-temperature
and high-temperature limits of the fractional energy fluctuation (integrals need not be
evaluated but should be reduced to dimensionless variables).

4. Show that in the LAB system the relativistic expression for the kinetic energy of a particle
scattered through an angle ψ by a target of equal mass is

T1

T0

=
2 cos2 ψ

(γ1 + 1)− (γ1 − 1) cos2 ψ

The subscripts 0 and 1 correspond to the initial and final states of the incident particle, γ
is the Lorentz factor. The expression reduces to the non-relativistic result when γ1 → 1.
Sketch T1(ψ) for neutron-proton scattering for incident neutron energies of 100MeV, 1GeV,
and 10GeV.

5. There exist oscillatory systems which are not closed but in which the external action amounts
to a time variation of parameters. For instance, consider the equation of motion for a one-
dimensional system

d2x

dt2
+ ω2(t)x = 0

where ω(t) is a function of time. Assuming

ω2(t) = ω2
0(1 + h cos γt)

with h << 1, find
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(a) the solution of the equation of motion to the first non-trivial order in h.

(b) the range of frequencies γ where parametric resonance occurs.

(c) for what frequency γ is the parametric resonance the strongest?

6. A particle of mass m is restricted to move in the vertical direction in the earth’s gravitational
field. Assume that the surface of the earth reflects this particle elastically (like a steel ball
falling on a surface of glass) and go through the following steps to quantize the energy of
the motion using the momentum representation instead of position representation:

(a) Set up the Hamiltonian, assuming that the gravitational potential is zero on the surface
of the earth.

(b) Set up the Schrödinger equation in the momentum representation.

(c) Solve this Schrödinger equation for the particle in the momentum representation. Do
not use any boundary conditions yet, but use the abbreviations

2m2g

h̄2 =
1

`3
2mE

h̄2 =
λ

`2

where it is convenient.

(d) From the momentum space eigenfunctions, obtain the position space eigenfunctions
ψ(x).

(e) The integral representation of the Airy function is

Ai(z) =
1

2π

∫ ∞

−∞
exp(iu3/3 + iuz)du

Express your ψ(x) in terms of this function – no need to normalize.

(f) Realizing that the elastic reflection means that ψ(x = 0) = 0, fund the transcendental
equation that quantizes the energy. How would you use it to obtain the energy levels?
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