
Autumn 2019 Physics & Astronomy Qualifying Exam
for Advancement to Candidacy

Day 1: August 29, 2019

Do not write your name on the exam. Instead, write your student number on each exam booklet. This will
allow us to grade the exams anonymously. We’ll match your name with your student number after we finish
grading. If you use extra exam booklets, write your student number on the extra exam books as well. Write all
answers in the blank exam booklet(s), not on this printout!

Today’s portion of the exam has 8 questions. Answer any five of the eight. Do not submit answers to more
than 5 questions—if you do, only the first 5 of the questions you attempt will be graded. If you attempt a
question and then decide you don’t want to it count, clearly cross it out and write “don’t grade”.

You have 4 hours to complete 5 questions.

You are allowed to use one 8.5′′ × 11′′ formula sheet (both sides), and a handheld, non-graphing calculator.

Here is a possibly useful table of physical constants and formulas:

absolute zero 0 K -273◦C
atomic mass unit 1 amu 1.66× 10−27 kg
Avogadro’s constant NA 6.02× 1023

Boltzmann’s constant kB 1.38× 10−23 J/K
charge of an electron e 1.6× 10−19 C
distance from earth to sun 1 AU 1.5× 1011 m

Laplacian in spherical coordinates ∇2f = 1
r
∂2

∂r2 (rf) + 1
r2 sin θ

∂
∂θ

(
sin θ ∂f∂θ

)
+ 1

r2 sin2 θ
∂2f
∂φ2

mass of an electron me 0.511 MeV/c2

mass of hydrogen atom mH 1.674× 10−27 kg
mass of a neutron mn 1.675×10−27 kg
mass of a proton mp 1.673×10−27 kg
mass of the sun Msun 2× 1030 kg
molecular weight of H2O 18
Newton’s gravitational constant G 6.7× 10−11 N m2 kg−2

nuclear magneton µN 5× 10−27 J/T
permittivity of free space ε0 8.9× 10−12 C2 N−1/m2

permeability of free space µ0 4π × 10−7 N/A2

Planck’s constant h 6.6× 10−34 J·s
radius of the Earth Rearth 6.4× 106 m
radius of a neutron Rneutron 3× 10−16 m
speed of light c 3.0× 108 m/s
Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Stirling’s approximation N ! e−NNN
√

2πN
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1. Neutron stars form when a solar mass is compressed to a radius R ∼ 10 km. Estimate the maximum spin
rate of a neutron star. Express your answer in revolutions per second. Estimate as well the linear velocity at the
equator of the star.
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2. This problem explores adding the spin angular momenta of three distinguishable spin-1/2 particles. Con-
sider the following five wavefunctions:

1√
3
(| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉)

1√
2
(| ↑↓↑〉 − | ↓↑↑〉)

1√
3
(| ↑↑↓〉+ e2iπ/3| ↑↓↑〉+ e−2iπ/3| ↓↑↑〉)

| ↓↑↑〉
| ↑↑↑〉

A. Which of these wavefunctions are eigenfunctions of the total spin angular momentum operator s2
total? Which

are not?

B. For those which are eigenfunctions of the total spin, state the eigenvalue of s2
total for each.

C. For three spin-1/2 particles there are of course 23 = 8 possible states. Write down eight mutually orthogonal
states that are each eigenstates of the total angular momentum. (Some of these are given above, but not
all.)
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3.

A parallel plate capacitor is formed from two thin square copper plates, 20cm on a side, each extend-
ing from +10cm to -10cm on the x and y axes.  The plates are located at z=+1cm and z= -1cm respec-
tively.  A +1C charge is added to the top plate, which is electrically isolated, while the bottom plate is 
grounded. 

A 1mm-diameter sphere of charge, 1μC, is brought in towards the origin along the x-axis (y=0, z=0).  
For each of the x,y, and z components of the force on the sphere, Fx, Fy, and Fz, choose the sketch 
that best represents the x-dependence of the force, and provide an estimate for the vertical axis tick 
mark shown, F0.  Note that F0 may be negative. (No need to be exact, but do as well as you can.)

Then, two 1mm-diameter spheres of charge,  one with +1μC and the other with -1μC, are fixed 
together in a vertical dumbell orientation, with the positively-charged sphere centred at z=+1mm 
(y=0) and the other at z=-1mm (y=0).  The vertical dumbell is brought in towards the origin along the 
x-axis, as above.    As above, choose the sketch that best represents the x-dependence of the force on 
the dumbell and estimate the tick mark value.

F

 x10 cm
F = 0

This line indicates F=0 everywhere
F

 x10 cm

F0

F

 x10 cm

F0

F

 x10 cm

F0

F

 x10 cm

F0

F

 x10 cm

F0

F = 0

F = 0

F = 0

F = 0

F = 0

(A) (B)

(C) (D)

(E)
(F)

Fx for single sphere: graph _______ ;  F0 ~ _______ N (Newtons)

Fy for single sphere: graph _______ ;  F0 ~ _______ N

Fz for single sphere: graph _______ ;  F0 ~ _______ N

Fx for double sphere: graph _______ ;  F0 ~ _______ N

Fy for double sphere: graph _______ ;  F0 ~ _______ N

Fz for double sphere: graph _______ ;  F0 ~ _______ N

Reminder: don’t write your answers on this page, but in your exam booklet
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4. Typical dust particles in the Solar System have mass density ρ. They experience both gravitational and
radiation pressure effects of the Sun (mass M = 2× 1030 kg, emitted light power P = 4× 1026 W).

A. For macroscopically sized dust particles (those having sizes large compared to the wavelength of light) are
the smaller or the larger particles more likely to be ejected from the Solar System?

B. Estimate (symbolically) the critical radius R of a particle that would not be ejected from the Solar System.

C. Provide a numerical estimate to part B.

D. Qualitatively speaking what happens in the limit that the dust particles are small compared to the wave-
length of light?
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5. What is the critical angle for total external reflection for photons of wavelength λ and frequency ω = 2πc/λ
in vacuum, falling on a metal plate with electron density ρ? Assume that the photons are above the plasma
frequency in the metal, so that the electrons can be approximated as free (i.e. not interacting with each other).
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6.

A. Consider a 1-dimensional delta function potential well V (x) = −aV0δ(x), where a and V0 are positive
constants. A point particle of mass m is bound in this potential. Show that there is only one bound state
in this potential, and find its binding energy and the wavefunction of the bound state.

B. Now consider two symmetric delta function potential wells, V (x) = −aV0 [δ(x+ a) + δ(x− a)]. Employing
only a symmetry argument without solving the Schroedinger equations for this potential, guess the ground
state wavefunction and first excited state wavefunction from the wavefunction obtains in Part A. It is not
required to normalize wavefunctions in this problem.

C. Let λ ≡ 2mV0

h̄2 a2. Assuming that λ� 1, find the energy of the ground state in Part B up to the correction
term to the answer you obtained in Part A.
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7.

The Hamiltonian H of a three-state system can be expressed as a matrix as:

H(V ) =

V 0 0
0 3− V 0
0 0 5− V


where energies are expressed in units of 10−25 J, using a basis where

|1〉 =

1
0
0

 ; |2〉 =

0
1
0

 ; |3〉 =

0
0
1

 .

The eigenstates of this Hamiltonian have energies, as a function of V , as shown in Fig. 1.
Then, a perturbation h is added to H, such that the eigenstates of the new Hamiltonian H + h have energies

as shown in Fig. 2.

A. Write down a possible matrix representing h.

B. Suppose V is a parameter that can be controlled in the laboratory over the range shown in the graphs.
Describe how you could ramp V smoothly and monotonically from 0 to 5 to (approximately) transform
an initial state with energy of 0 into a final state with an energy of 0, assuming the system evolves under
H + h. Make sure to specify any quantitative characteristics that your ramp must satisfy.
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8. Consider a thermally insulated box with volume 2V0 containing two distinct monatomic ideal gases,
separated by an impermeable barrier, as illustrated below.

On the left of the partition are N0 atoms of a circular atom type, stored in volume V0 at temperature T0. On
the right side of the partition are N0 atoms of a square atom type, which occupy volume V0 and are in thermal
equilibrium with the circular atoms on the left side of the barrier.

For this problem you may need the following equations of state dening the behavior of a mixture of two
monatomic ideal gases:

U =
3

2
NkBT

p =
NkBT

V

where N is the total number of atoms (squares plus circles) in a given volume.

A. The barrier between the two sides of the box is now made permeable to the circular atoms only, while
remaining impermeable to the square atoms on the right side.

When the box has reached equilibrium, what is the pressure in each side of the box?

B. During this process, did the entropy of the system increase, decrease or remain the same? Explain your
answer.

C. During this process, did the temperature of the system increase, decrease or remain the same? Explain
your answer.

D. Now we will slowly move the permeable partition to the left side of the box, until it reaches the left-hand
wall, at which point there will be only one enclosure with volume equal to 2V0.

Consider the change in entropy of the system (enclosed by the box) due to moving the permeable membrane
to its edge. Is this change positive, negative or zero? Explain your answer.

E. What is the final temperature of the system?
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Autumn 2019 Physics Qualifying Exam
for Advancement to Candidacy

Day 2: August 30, 2019

If you are in the Ph.D. in astronomy program, don’t write this exam! Ask a proctor for the astronomy version
of today’s exam!

Do not write your name on the exam. Instead, write your student number on each exam booklet. This will
allow us to grade the exams anonymously. We’ll match your name with your student number after we finish
grading. If you use extra exam booklets, write your student number on the extra exam books as well. Write all
answers in the blank exam booklet(s), not on this printout!

Today’s portion of the exam has 8 questions. Answer any five of the eight. Do not submit answers to more
than 5 questions—if you do, only the first 5 of the questions you attempt will be graded. If you attempt a
question and then decide you don’t want to it count, clearly cross it out and write “don’t grade”.

You have 4 hours to complete 5 questions.

You are allowed to use one 8.5′′ × 11′′ formula sheet (both sides), and a handheld, non-graphing calculator.

Here is a possibly useful table of physical constants and formulas:

absolute zero 0 K -273◦C
atomic mass unit 1 amu 1.66× 10−27 kg
Avogadro’s constant NA 6.02× 1023

Boltzmann’s constant kB 1.38× 10−23 J/K
charge of an electron e 1.6× 10−19 C
distance from earth to sun 1 AU 1.5× 1011 m

Laplacian in spherical coordinates ∇2f = 1
r
∂2

∂r2 (rf) + 1
r2 sin θ

∂
∂θ

(
sin θ ∂f∂θ

)
+ 1

r2 sin2 θ
∂2f
∂φ2

mass of an electron me 0.511 MeV/c2

mass of a neutron mn 939.6 MeV/c2

mass of a proton mp 938.3 MeV/c2

Newton’s gravitational constant G 6.7× 10−11 N m2 kg−2

nuclear magneton µN 5× 10−27 J/T
permittivity of free space ε0 8.9× 10−12 C2 N−1/m2

permeability of free space µ0 4π × 10−7 N/A2

Planck’s constant h 6.6× 10−34 J·s
radius of the Earth Rearth 6.4× 106 m
radius of a proton Rp 1×−15 m
speed of light c 3.0× 108 m/s
Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4
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9. Lithium niobate has an index of refraction that changes linearly with an applied electric field E according
to

n(E) = n0 −
1

2
rn3

0E

Here n0 = 2.29 is the index at zero field, and the coefficient r = 3× 10−11 V/m.
Suppose a 1 cm × 1 cm × 1 cm cube of lithium niobate is placed between the two plates of a parallel plate

capacitor. A sinusoidally varying voltage of amplitude 100 V and frequency 1 MHz is applied across the capacitor.
Laser light with wavelength λ = 1000 nm passes through the crystal, perpendicular to the applied field. As a

result of the time-varying index of refraction, the beam acquires sidebands at different frequencies. If the electric
field amplitude of the initial beam is represented by Aeiωt, calculate the amplitudes and frequencies of the two
most significant sidebands.
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10. Our friend the Sun:

A. Estimate the mass of the Sun from your knowledge of its distance and any other common facts.

B. Estimate the radius of the Sun from everyday observations.

C. Estimate the mean interior pressure of the Sun. (You may assume here that the Sun has constant density.)

D. Estimate the mean interior temperature of the Sun.

E. Estimate the mean energy of a proton in the Sun.

F. Estimate the proton-proton Coulomb barrier that must be exceeded if two protons are to initiate a fusion
reaction.

G. Considering the answers to (e) and (f), how is fusion able to proceed in the Sun?
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11. A wire with mass m and length L is held under tension F , and clamped at either end. The wire can
vibrate in the transverse directions.

A. Calculate the frequencies of the eigenmodes of vibration.

B. Calculate the total energy of the nth vibrational mode as a function of its amplitude An.

C. Assuming that the wire is in thermal equilibrium, calculate the RMS amplitude of the nth mode (
√
〈A2

n〉).
(You may ignore quantum effects, and treat this classically.)
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12. Two identical bosonic atoms are subject to an external harmonic confining potential of the form 1
2MΩ2X2,

where the M = 2m is the total mass of two atoms and X is the position of their centre of mass. Assume they
further interact with a simple harmonic interaction 1

2mω
2(∆x)2, where ∆x is the distance between the atoms.

Find out the excitation spectrum of these two particles in the external potential. (To make this problem easier,
solve it in one spatial dimension.)
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13. Water molecules in ice (molecular weight 18) are held in position in the ice’s crystalline structure, but
can oscillate about their nominal positions due to their thermal energy. As heat is added, the amplitude of
the molecules’ oscillation in position increases. In the simple but standard (Lindemann type) model of melting,
melting occurs at the point at which the amplitude of these fluctuations is of the order of the intermolecular
distance. Use this to do an order of magnitude estimate of the latent heat of the ice-water transition. (Hint: the
bulk of the latent heat goes into breaking the crystal bonds so that, in water, molecule positions are disordered,
unlike in ice.
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14. A Chinook is a phenomenon in the Rocky Mountains occurring when strong winds blow from the west
across the eastern slopes of the mountain range and rapidly descend into cities located at much lower elevation.
Although the mountains are cold, the cities can warm quickly within a few minutes after the Chinook wind
arrives. Sometimes the temperature can rise up by 20◦C. Assume the air pressure at the top of mountain
(4000 m elevation) is 0.6 atm and that the temperature is −15◦C. The temperature in the city of elevation
1500 m is 0◦C and the pressure is 0.8 atm. What will be the climb of temperature when the Chinook arrives?
(Hint: you may treat the air as a diatomic ideal gas, and you can ignore energy transfer into bulk motion of the
air.)
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15. A spaceship with rest-mass m is moving with speed v = 0.6c with respect to an inertial ‘lab’ frame.
No external forces act on the spaceship. In order to decelerate, at time t = 0 the spaceship switches on a laser
beam which is aimed in its direction of motion. The laser has power P0 and it has emission frequency ν0, both
measured in the rest frame of the spaceship. What is the laser emission frequency ν measured in the lab frame
at t = 0? What is the laser emission power P measured in the lab frame at t = 0? The laser continues to radiate
at constant power P0 (as measured in its rest frame), and recoil from the emitted photons decelerates the ship.
Find the mass of the ship when it stops in the lab frame. Find the proper time τ (measured by the clock on the
ship) after which the ship comes to a stop in the lab frame.
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16. A narrowly collimated laser beam with power Pin and wavelength λ is directed at a pair of identical
partly reflecting mirrors, each facing each other and having power reflectivity r. These mirrors are a distance L
apart. Calculate the power of the transmitted beam.
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