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Abstract

In this paper we are going to briefly review the Fermi liquid theory, which was firstly introduced as a
generalization of Fermi gas theory and to explain the behaviour of 3He. Afterward, we are going through its
application for a weakly-interacting metal. At the end we briefly increase the horizon by discussing breakdowns
of the theory, and introducing non-Fermi liquid theories, as theories for strange metals.

Introduction

Historically speaking, The Fermi liquid theory was
developed by Landau to explain the properties of liq-
uid 3He [1], but soon it was expanded to a theory ex-
plaining the behaviour of normal metals with a weak
electron-electron interaction. The theory is a natural
expansion of a non-interacting system of fermions,
usually called a Fermi-gas, to a system in which we
gradually introduce an interaction, namely, a Fermi
liquid.

The study of 3He has become popular, mostly be-
cause of its large fusion energy, making it a possibility
for a future energy source [2], its strange behaviour at
low temperatures, such as superfluidity [3], and the
fact that this substance stays as a liquid, even at the
lowest temperature, under standard pressure. The
last mentioned characteristic of 3He makes this sub-
stance very special since, at its condensation temper-
ature which is about 3K [3], where we have already
entered the quantum regime, we are dealing with a
liquid, unlike the more common case of a solid. This
will give rise to the phenomena of a quantum liquid.

3He contains two neutrons, one proton, and two
electrons, making the whole atom a fermion. At
high enough temperatures in the gas state of 3He, we
would expect a negligible interaction between these
fermionic atoms, hence making the whole system a
Fermi gas. We can slowly introduce the interaction
between the fermions, and following the adiabatic
theorem, the ground state of the Fermi gas would
transform into the ground state of the interacting
system. In this process, the spin, charge and momen-
tum of the fermions, remain unchanged, while their
dynamical properties, such as their mass, magnetic
moment etc. are renormalized to a new set of values
[4].

This was the basic idea of Landau behind the the-
ory of Fermi liquids. Landau introduced a quasipar-
ticle excitations in the new interacting theory, corre-
sponding to the Fermi particles of the Fermi gas. This
idea makes the liquid theory qualitatively similar to

the Fermi gas theory, which was something that was
observed experimentally for the liquid state of 3He.

This theory, even though it was initially aimed to
explain the similarities and differences seen between
the liquid phase of 3He and the non-interacting gas, it
was soon after realized that it could be a good model
for conduction electrons inside a normal metal, since
they can also be seen as weakly interacting fermions.
This theory is usually preferred over some of the basic
and famous single-electron theories such as Hartree-
Fock approximation, since it is not trying to explain
the interaction using Slater determinants.

In the following section we will go through this the-
ory more profoundly. Evidently there are cases in
which this Fermi liquid description of electrons break-
down1, due to strongly-interacting electrons. Some of
these materials can be explained by non-Fermi liquid
theories, which are usually called a “strange metals,”
as opposed to a normal metals. This is an ongoing
area of research in many body physics.

Free electron Fermi gas

We start with the foundation on which the Fermi liq-
uid theory of Landau builds up, a gas of N free elec-
trons which are confined in a cubic box with volume
V = L3. Free means that the electrons do neither
interact with an external potential V nor with each
other. The finite box allows us to use periodic bound-
ary conditions, but of course one could make the box
infinitely large in the end by applying the thermody-
namic limit. This allows us to write the wave function
of the whole system as a Slater determinant

Ψ(~r1, σ1; . . . ; ~rN , σN ) =

1√
N !

∣∣∣∣∣∣∣
φ1(~r1, σ1) . . . φN (~r1, σ1)

...
. . .

...
φ1(~rN , σN ) . . . φN (~rN , σN )

∣∣∣∣∣∣∣
,

(1)

1Materials like Y1−xUxPd3
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where σi denotes the spin of the i’th particle, ~ri
the position of the i’th particle and φi(~rj , σj) the
plane wave of the i’th electron at ~rj with spin σj
(i, j = 1, . . . , N). This wave function contains the
Pauli principle, since it vanishes identically if two par-
ticles are at the same position and have equal spin.
Each one particle wave function is a plane wave of
the form

φ~p(~r, σ) =
1√
V
e
i
~ ~p~r (2)

with momentum ~p. By imposing the periodic bound-
ary conditions in x, y, z-direction we find the ground
state, which is called ”Fermi sea”. This means that
all single particle states are filled up to the Fermi
momentum pF . In momentum space one can imag-
ine this as a sphere with radius pF , where all states
within the sphere are occupied and all the others are
empty. The energy is then given by

E(ñ~pσ) =
∑
~p,σ

p2

2m
ñ~pσ, (3)

in which we introduced the distribution function ñ~pσ,
which is equal to 1 for p ≤ pF and 0 otherwise. The

energy at the Fermi surface is thus εF =
p2F
2m =

~2k2F
2m .

Furthermore, we can compute the number of particles
by summing over all p ≤ pF , i.e.

N = 2
∑
p≤pF

1 = 2
4πp3F /3

(2π~/L)3
=

V

3π2

(2mεF
~2

) 3
2

, (4)

where the factor of 2 accounts for the two possible
spin states. This allows us to calculate the density of
states

D(ε) =
dN

dε
=

V

2π2

(2m

~2
) 3

2√
ε =

mp

π2~3
. (5)

We obtain the specific heat (per volume) at low tem-
peratures by first calculating the energy and then us-
ing

C =
∂E

∂T

∣∣∣∣
V

(6)

which eventually yields

C =
π2

3
D(εF )k2BT =

mpF
3~3

k2BT, (7)

where kB is Boltzmann’s constant. For a more de-
tailed calculation please refer to [5].

Normal Fermi liquid

In the following we want to make the transition from
the ideal Fermi gas to the real Fermi liquid.

Introduction of quasiparticles

Now we want to make the transition from the ideal
free electron gas to the real Fermi liquid. The idea
is to make a one-to-one correspondence between the
eigenstates of the ideal free electron gas and the real
Fermi liquid2. We assume that the interaction is
turned on in an adiabatic way, i.e. infinitely slow.
The eigenstates of the ideal system will progressively
transform into certain eigenstates of the real system.
The eigenstates of the real system can be written as

|Ψ〉 = |Ψ0〉+ λ |Ψ1〉 , (8)

where |Ψ0〉 is an eigenstate of the ideal gas, |Ψ1〉 is a
correction to the ideal eigenstate and λ is a parameter
characterizing interactions, i.e. λ = 0 when we have
no interactions and λ� 1 when we turned on a small
interaction. In order to generate all real eigenstates,
we must assume that the real ground state is gener-
ated by some eigenstate of the ideal system, which
is described by the distribution ñ~pσ. This statement
defines a normal fermion system [7]. We imagine that
once the interaction is fully turned on each 3He atom
has collected a cloud of other atoms around itself,
through this interaction. We define the atom sur-
rounded by its cloud as a quasiparticle [7, 3].
Actually, the adiabatic switching method is some-
what questionable, because when quasiparticle colli-
sions excite the real system, the state describing this
situation will decay exponentially over time, accord-
ing to Fermi’s golden rule. In that case, the time over
which the interaction is turned on is greater than the
lifetime of the excited state, this state has decayed
before we reach it. Hence, the switching procedure is
no longer reversible. Conversely, if the interaction is
turned on too quickly, the process is no longer adia-
batic and we would perturb the system. This problem
does obviously not arise, if the state under consider-
ation is the ground state, because it is stable and can
therefore be precisely defined. The only region where
this approach is valid is near the Fermi surface, be-
cause quasiparticle lifetimes become sufficiently large
there. This can be seen by the ∝

√
ε behaviour of

the density of states in Fermi’s golden rule. That re-
gion can be imagined as a transitional zone, where
quasiparticles get excited above the Fermi level, due
to collisions. At very low temperatures, the excited
states are very close to the Fermi momentum, which
means that damping is negligible. Thus, we conclude
that our approach is physically meaningful.

Energy of the quasiparticles

The total energy of the system is not the sum of the
single particle energies anymore, since we have inter-
actions. In this case the energy is a functional of the

2For a more sophisticated approach with Green’s functions
c.f. [6]
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particle distribution E[n~pσ], what is a direct conclu-
sion of the Hohenberg-Kohn theorem [8]. Remember
a functional is an object which takes a function as an
input and returns a number. Therefore, in order to
get the total energy of the system, we need to know
the particle distribution. If n~pσ is sufficiently close
to the ground state distribution n0~pσ, we can Taylor
expand the energy functional

E[n~pσ] = E[n0~pσ] +
∑
~pσ

ε(~p)δn~pσ +O(δn2). (9)

In the first order ε(~p) =
δE[n~pσ]
δn~pσ

denotes the func-

tional derivative of the total energy with respect to
the distribution function and δn~pσ = n~pσ−n0~pσ is the
deviation of n~pσ from the ground state distribution
function n0~pσ. We can imagine ε(~p) as the change of
energy of the system when we add a single quasipar-
ticle with momentum ~p to the system. Note that we
actually should expand the expression to second or-
der, in order to account for interactions between the
particles, but for simplicity we neglect it for now and
will include it in the next section.
If our distribution is close to a step function θ(x), i.e.
close to a Fermi-Dirac distribution at T = 0, we can
replace n~pσ in ε(~p) by θ(pF − |~p|). We can therefore
approximate ε(~p) in the vicinity of the Fermi surface
in powers of p− pF [6]. This procedure yields

ε(~p)− ε( ~pF ) ≈ vF (p− pF ) =
pF
m∗

(p− pF ), (10)

whereby vF is the velocity of the quasiparticle on the
Fermi surface. Furthermore, in analogy to the ideal
gas we defined the effective mass m∗ = pF

vF
of the

quasiparticle. The effective mass thus determines the
density of state and the specific heat of the real Fermi
liquid. The expressions look the same as in the free
Fermi gas, the only thing we have to change is replac-
ing the mass m by the effective mass m∗, which gives
us

D(εF ) =
m∗pF
π2~3

(11)

and

C =
m∗pF
3~3

k2BT. (12)

Thus, we also see the the linear behaviour of the heat
capacity at very low temperatures, but with a differ-
ent slope than free electron gas.

Quasiparticle interaction

Another important part of the theory is an effective
interaction between the quasiparticles. For simplicity
we will only consider spin independent interactions in
the following. A generalization to the spin dependent
case can be found in [6] or [7]. In the previous sec-
tion we neglected the interaction, but in order for
the theory to be physically meaningful, i.e. satisfy-
ing Galilean invariance, we must include interactions

[5]. Including the interaction part in the expansion,
yields

E[n~pσ] = E[n0~pσ] +
∑
~pσ

ε(~p)δn~pσ

+
1

2

∑
~p~p′;σσ′

f(~p, ~p′)δn~pσδn~p′σ′ +O(δn3),
(13)

where f(~p, ~p′) is called the interaction function of the
quasiparticles and describes the interaction of two
particles with momentum ~p and ~p′. In the case of
a Fermi gas we have f(~p, ~p′) = 0. By differentiating
(13) with respect to n~pσ we find

ε̃(~p) = ε(~p) +
∑
~p′;σ′

f(~p, ~p′)δn~p′,σ′ (14)

what is called the ”true” quasiparticle energy [3].
This allows us to rewrite (13), such that

E[n~pσ] = E[n0~pσ] +
∑
~p′;σ′

ε̃(~p)δn~p,σ (15)

and expanding this in the vicinity of the Fermi surface
gives us

ε(~p)−ε( ~pF ) =
pF
m∗

(p−pF )+
∑
~p;σ

f(~p, ~p′)δn~p′,σ′ . (16)

It is conventional to define the dimensionless quantity

F (~p, ~p′) ≡ dn

dε
f(~p, ~p′) =

∑
l

FlPl(cos θ), (17)

where n = N
V , Pl(cos θ) are the Legendre polynomi-

als and θ is the angle between the momenta ~p and
~p′. This procedure is justified, because ~p and ~p′ are
momenta close to the Fermi surface. Hence, the sys-
tem is invariant under rotations in momentum space
and we may expand F (~p, ~p′) in Legendre polynomials.
Thus, the two particle interaction is completely deter-
mined by the Fl, which are sometimes called Landau
parameters. Now we want to find a relation between
the real and the effective mass. For that we make a
Galileo boost to a system I ′, which moves with re-
spect to the original system I with velocity ~u. There-
fore, the distribution function becomes

n~pσ → n~p−m~u,σ = θ(pF − |~p−m~u|). (18)

By using (18) while equating ε(~p) − ε( ~pF ) = pF
m (p −

pF ) and (16), we get

pF
m
m~uê~p =

pF
m∗

m~uê~p +
∑
~pσ

f(~p, ~p′)(n~p−m~u,σ − n0~pσ),

(19)
where ê~p is the unit vector in ~p direction. Combining
this result with (17) finally yields

m∗

m
= 1 +

F1

3
. (20)
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The first two coefficients F0 and F1 can be determined
in experiments and we are able to calculate the effec-
tive mass. Another quantity which can be determined
with these coefficients is the sound velocity

c = vF

√
1

3
(1 + F0)(1 + F1). (21)

In order to determine other quantities, such as the
magnetic susceptibility, one has to take spin into ac-
count. This will introduce another set of coefficients,
which can also be determined experimentally [5, 3].

For 3He, the effective mass ratio and the Landau
parameters are [9]:

m∗/m F0 F1

melting pressure3 6.2 94.0 15.7
zero pressure 3.0 10.1 6.0

Specific Heat

It is worth noting that even with quasiparticle inter-
action turned on, the specific heat would still vary
linearly at low temperatures. Furthermore, the slope
will not change from the first order calculations.

Since there is one-to-one mapping between non-
interacting quasiparticle and interacting quasiparti-
cle situations, equilibrium distribution still remains
the Fermi distribution

δn~pσ(T ) =
1

eβ(ε̃(~p)−µ) + 1

Thus, interaction term is O(T 4) in energy and that
will not affect heat capacity at second order [9]. See
(6).

Predicted scaling of heat capacity was observed ex-
perimentally, see Figure 1.

Conclusion

We have extended the Fermi gas theory by adding
weak interactions. By the virtue of adiabatic theo-
rem, these can be though to lift the ground state of
the Fermi gas to Fermi liquid, where we have a one-
to-one mapping between the particles in both mod-
els. Due to the interactions, energy now depends on
the relative position of the particles. To the first or-
der, with no interactions between quasiparticles, this
simply changes mass of the particles by the effective
mass m∗ = pF

vF
. We then added interactions (spin in-

dependent) by considering second order terms in the
energy functional. This allowed us to express the en-
ergy of the system in terms of Legendre polynomials
with some free parameters which can be determined
experimentally.

329 atm at 0.3 K

Figure 1: Specific heat of 3He at two different densi-
ties [10]. At low temperatures heat capacity
grows linearly.
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