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Abstract: Based on Lectures given by Per Kraus at “Particles, Fields and Strings 2008”,

University of British Columbia, Vancouver, Canada.

Keywords: Black Hole Thermodynamics, Quantum Gravity, Microstate Counting,

AdS/CFT correspondence.



Contents

1. Lecture 1: General Aspects of Black Holes 1

2. Lecture 2: Black Hole Solutions to Five-Dimensional Supergravity 7

3. Lecture 3: Microscopic Counting of Black String Entropy in Five Di-

mensional Supergravity 17

In this set of lectures we will give an overview about the current knowledge concerning the

origin of black hole entropy in string theory. For some general references, see [1–4].

1. Lecture 1: General Aspects of Black Holes

Motivation

Studying black holes in string theory is important as a fundamental probe of string theory.

In the context of string theory the information paradox problem arising from Hawking’s

semiclassical calculation of the radiation spectrum of black holes is supposed to be solved

because string theory is a unified quantum theory of all interactions including gravity. In

this framework, a statistical mechanical explanation of black hole entropy may be possible.

The AdS/CFT correspondence is a conjecture in which we have an explicit realization in

principle of the information retention scenario.

The study of black holes is also important in applications of string theory, in particular

in the application of the AdS/CFT correspondence to strongly coupled thermal gauge

theories. These investigations already have led to many new recent developments, and we

can expect more.

General Aspects of Black Holes

We start with the Schwarzschild black hole metric in four dimensions,

ds2 = −
(

1 − 2M

r

)

dt2 +
dr2

(

1 − 2M

r

) + r2dΩ2
2 . (1.1)
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In this metric the timelike Killing vector is ∂
∂t . This metric is the metric of a static black

hole. If we consider stationary black holes whose metric is time independent, but generically

has cross terms dφdt corresponding to rotation stationary black, the timelike Killing vector

is generalised to

ε =
∂

∂t
+ ΩH

∂

∂φ
, (1.2)

where ΩH is the angular velocity of the horizon. Rotating stationary black holes have axial

symmetry, i.e. another spacelike Killing vector associated with an angular coordinate, and

furthermore, in four dimensions all known stationary black holes are at least axisymmetric.

A horizon is defined by null hypersurface, i.e. a hypersurface defined for example by an

implicit equation f(xµ) = 0, with a normal vector nµ = ∇µf which is light-like, nµnµ = 0.

In this case nµ is also tangent to the surface. If choosing lightcone coordinates u, v around

the horizon (put at u = 0, see figure 1), the unit normal vector would be nu = 1 , ni =

0 , i 6= u. The vector tangential to the horizon would be tv = 1 , ti = 0 , i 6= v. Locally

around the horizon the metric would contain a piece dudv, which implies nµtµ = 0.

For all known stationary black holes the horizon is a Killing

u=0

v

horizon

u

Figure 1: Null Surface and

Light Cone Coordinates

horizon, i.e. the normal vector coincides with the timelike

Killing vector, evaluated at horizon. Let εµ be the timelike

Killing vector, then the horizon is at

εµεµ = 0 . (1.3)

ε can be used to define a quantity measuring the strength

of gravity at the horizon, called surface gravity. The surface

gravity κ is defined as the covariant derivative of the norm

of ε, evaluated at the horizon,

∇µ(ενεν) = −2κεµ . (1.4)

As εµεµ is constant along the horizon, its gradient (the covariant derivative), must point

along the unit normal vector to it, which is εµ itself. The factor of −2 is for mere conve-

nience. The surface gravity is in turn related to the Hawking temperature of the horizon

by

TH =
κ

2π
. (1.5)

For the Schwarzschild black hole (1.1) one finds κ = (4MG)−1 and TH = (8πMG)−1. We

need to choose smooth coordinates at horizon to evaluate κ. Once TH and ΩH are known,
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the entropy is required to satisfy the first law of (black hole) thermodynamics,

δM = THδS + ΩHδJ ⇔ δS =
1

TH
δM − ΩH

TH
δJ . (1.6)

For the nonrotating Schwarzschild black hole (1.1), ΩH = 0, so the entropy S = 4πM2

G = AH

4G

actually fulfills (1.6).

Also, note that in stringy microscopic entropy computations it is not at all manifest why

entropy S should have anything to do with the horizon area. One way to show that the

entropy localizes to a term on the horizon is to use the Euclidean action. Let’s just consider

the Schwarzschild solution (1.1) for simplicity. We thus take

t → iτ , τ ∼= τ + β , β =
1

TH
(1.7)

to avoid conical singularity at the horizon. These identifications come about as follows:

After the Wick rotation, the r − τ -part of the euclidean metric is

f(r)dτ2 +
dr2

f(r)
.

Expanding the Killing norm near the horizon

f(r) = f ′(rH)(r − rH) ,

and introducing a new coordinate

R2 =
4

f ′(rH)
(r − rH) ,

the r − τ -part of the metric becomes

(

f ′(rH)

2

)2

R2dτ2 + dR2 .

This is the standard metric on R
2, provided we identify the (angular) variable τ periodically,

τ ∼ τ + β , β =
1

TH
=

4π

f ′(rH)
.

In the semiclassical approximation, the euclidean path integral (the black hole partition

function) is dominated by

Z = Tre−βH = e−IE=eS−βM , (1.8)

i.e. S = −IE + βM , where IE is the Euclidean action. To see why S is related to the

horizon, we consider the ρ− τ plane, which has topology R
2 (see fig. 2), with ρ = r − 2M ,

going to zero at the horizon.
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We need to compute the euclidean on-shell action. For this

ρ

τ

Figure 2: Near-Horizon

Topology of Euclidean

Schwarzschild BH

purpose, we introduce an artificial boundary of space-time,

as otherwise on-shell actions might diverge when integrated

over infinite space. The Einstein-Hilbert action with bound-

ary terms has the form

I =
1

16πG

∫

M

dDx
√

g R− 1

8πG

∫

∂M

dD−1x
√

h TrK+ S∂M(h) .

(1.9)

The second term is the York-Gibbons-Hawking term needed

for a well-defined variational principle such that the metric

on the boundary ∂M fulfills Dirichlet boundary conditions. The extrinsic curvature of the

boundary is the covariant derivative of an outward pointing unit normal on ∂M,

Kµν = ∇µ\ν + ∇ν\µ , TrK = Kµ
µ . (1.10)

The last term includes counterterms to cancel possible (large volume) divergences. It only

depends on the induced metric h at the boundary1, and thus does not contribute to the

equations of motion. Suppose we only integrate over a wedge of ∆τ , see fig. 3. The solution

is static, i.e. time independent. Imposing Dirichlet boundary conditions for the boundary

metric is equivalent to choosing the metric as canonical coordinate q, and thus staticity

implies that q̇ = 0, as well as the on-shell Hamiltonian H being time-independent (equal

to the mass), and thus

Iwedge =

∫

dτ(pq̇ + H) = M∆τ . (1.11)

Also note that we have to remember to include boundary terms, including one at tip of

wedge. If taking ∆τ = β, i.e. integrating once around the τ -circle, there is the no boundary

at tip since the full space is smooth. So we should subtract the Gibbons-Hawking term at

the tip

IBH = Mβ − IGH |hor . (1.12)

Comparing with (1.8) we find a connection between entropy and on-shell boundary action,

S = IGH |hor . (1.13)

For the Schwarzschild black hole we can easily calculate the extrinsic curvature K. The

Gibbons-Hawking term is then given by

IGH =
1

8πM
(4π)(β)

√

1 − 2M

r
∂r

(

r2

√

1 − 2M

r

)

∣

∣

∣

∣

r=2M

=
βM

2G
=

A

4G
. (1.14)

1In general it will depend on the boundary value of fields which satisfy Dirichlet boundary conditions
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All that was said above holds for two-derivative gravity. In general, there will be a more

complicated version of IGH , which however still clearly leads to S as an integral over

horizon. The general result for a difeomorphism invariant theory is given by Wald’s formula

[5] (see also the review [6]),

S = 2π

∫

Horizon

δL
δRµνρσ

ǫµνǫρσ
√

h dΩ , (1.15)

where ǫµν is the binormal to the horizon, i.e. ǫ = du ∧ dv in the near horizon limit.

This formula obeys the first law of thermodynamics (1.6) by construction. One can also

show that it agrees with the Euclidean path integral approach. Fir extremal black holes,

i.e. with a near horizon geometry containing an AdS2 factor, it can be shown to be

equivalent to Sen’s entropy function [7]. Note, however, that this formula is not valid for

theories with gravitational Chern-Simons terms, where the Lagrangian density itself is not

diffeomeorphism invariant, but only the action is.

Attractor Mechanism

∆τ

Figure 3: Integrating over a

Wedge

A central tool for studying entropy of extremal black holes is

the attractor mechanism. In general, an extremal black hole

is specified by its charges, as well as the values of massless

scalar fields at infinity. Generically, these scalar fields have

nontrivial dependence as one flows towards the horizon. For

extremal black holes two things can happen: Some of the

scalar fields in the theory might flow to values specified by

the charges only. Thus the black hole entropy will not de-

pend on asymptotic values of these scalars, which is a very nontrivial statement and is

tightly connected to the extremality of the solutions under consideration. For other scalars

which are not fields like this (e.g. a massless non-coupled scalar) one can show that the

entropy is independent of their values at the horizon, and hence at infinity. So in general,

SBH = SBH(QI , φ
I) , (1.16)

where QI are charges, and φI are scalar fields. Intuitively, if the φ dependence at infinity

would enter one could use this to violate the second law of thermodynamics, by imagining

physical processes like a pulse of the scalar fields under consideration falling into the black

hole which changes the scalar value at infinity while decreasing the entropy. The statement

of the Attractor Mechanism is that the entropy of a black hole does only depend on the

charges of the black hole, and not on the value of the scalar fields at all points in space-time.
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Intuitively, this can be seen as a consequence of “no-hair” theorems: A classical black hole

without hair is only specified by it’s charges, and thus the entropy (being a semiclassical

quantity), should also be so.

In more detail these results are establishes as follows: Extremal black holes have near

horizon geometries, obtained by scaling r → ǫr. In a wide variety of cases one can show

this geometry has an AdS2 factor (i.e. has SO(2, 1) symmetry). In four dimensions, for

example, the near-horizon geometry is always AdS2 × S2. In favorable cases there a local

AdS3 factor. On the AdS2 scalars are constant by symmetry, 2-form field strengths take

the form

FI = φIǫAdS (electric potential) , (1.17)

and given some compact space Mp, which is generically present in the near-horizon ge-

ometries, a p-form field strength can gave

F I = P IǫMp
(magnetic charges) . (1.18)

Here ǫAdS and ǫMp
denote the volume forms on the AdS factor and on the compact space,

respectively. One then evaluates the Lagrangian density with fixed φI , P I on the near-

horizon solution, with other data unspecified except through symmetry constraints. This

defines a function f via

I|
onshell

=

∫

d2xf .

Sen’s entropy function is then the Legendre transform of f w.r.t. the electric charges

φI ,

S = φI
∂f

∂φI
− f .

From this function, equations of motion for the electric and magnetic charges, the scalars

and the relative radii of the AdS part and the compact part of the near-horizon geometry

can be derived by the usual Euler-Lagrange method. Upon solving them, it can be shown

that the extremum of S just yields Wald’s entropy (where this is applicable),

Sextremum = SWald .

The equations of motion either fix the other data in terms of φI , P I , or leave them un-

specified. Unfixed ones do not appear in the action density and so will not affect entropy.

Electric charges are related to φI by

QI ∼ ∂f

∂φI
,
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so solutions are fixed by QI , P I . Then we have SBH(QI , P I) by Wald’s formula, which

proves the Attractor mechanism.

Due to this result, one can determine SBH in region where the two-derivative approximation

is valid, in terms of the electric and magnetic charges. One can then adjust the asymptotic

moduli to a weak string coupling region, corresponding to microscopic black holes (in

general strong couplings imply large moduli and thus macroscopic black holes). But as

we know now, the entropy does not depend on the moduli (scalar fields), but only on the

charges, and thus the macroscopic black hole entropy can be interpolated to microscopic

regimes, at least for extremal black holes. In the microscopic regime the full geometry gets

highly curved, but unless there is some sort of a phase transition, the entropy formula will

continue to hold. In week coupling region it can be directly compared with a microscopic

counting, if available. Note that this line of argument does not use supersymmetry, so holds

for non-BPS extremal black holes. In this case, other quantities like the mass do change

as one adjusts the moduli, but entropy doesn’t. For the extremal black holes encountered

in string theory this formula simplified a lot, as we will see. For the nonextremal case,

however, nothing prevents the entropy to depend on the asymptotic moduli. However, for

the special case of the enlarged near-horizon isometry AdS3, it was possible to extend Sen’s

argumentation to near-extremal black holes.

2. Lecture 2: Black Hole Solutions to Five-Dimensional Supergravity

Overview of Relevant Black Hole Solutions

Black hole entropy is understood in string theory for asymptotically flat black holes preserv-

ing some supersymmetry (BPS black holes), as well as for some non-BPS and nonextremal

black holes related to the BPS ones. BPS black hole solutions are known in four and five

dimensions. In general, not much is known about the solution space of black holes in more

than five dimensions. For D ≤ 5 there are various tricks for finding BPS solutions available

which do not extend to D ≥ 6. In D = 5, one can have BPS black holes, black strings

and black rings. In D = 4 the situation is less rich: there are only non-rotating BPS

black holes, as well as multi-centered versions of those. Thus five dimensions are the most

fruitful arena to work, since it turns out that all four-dimensional BPS solutions can then

just be found by dimensional reduction (possibly on Taub-NUT). In this lecture we will

thus discuss the relevant D = 5 supergravity and its solutions.

A nice way to think about D = 5 supergravity is as M-theory compactified on a six-
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dimensional manifold M6. Different manifolds will preserve different amounts of super-

symmetry, see table 1. In eleven dimensions, there are M5-branes and M2-branes, which

can be wrapped on M6 to get charged objects in D = 5. The supersymmetry-preserving

possibilities are

• M2-branes wrapped on two-cycles, yielding a particle in five dimensions and

• M5-branes wrapped on four-cycles, yielding strings in five dimensions.

We will thus be able to construct charged black holeM6 T6 K3 × T2 CY3

N = 8 4 2

Table 1: Compactifications of M-

theory and Preserved Supersymme-

tries

and black string solutions. The black rings can then

be obtained by bending the string int o a circle and

stabilizing it by giving it some angular momentum,

see fig. 4.

Five-dimensional Supergravity from Eleven Dimensions

To obtain the five-dimensional supergravity action, we first have to do a Kaluza-Klein

reduction of eleven-dimensional supergravity, which is straightforward. We start with the

eleven-dimensional supergravity action,

S11 = − 1

2κ2
11

∫

d11x
√−g

(

R(11) +
1

2
|F4|2

)

+
1

12κ2
11

∫

A3 ∧ F4 ∧ F4 , (2.1)

which is completely fixed by N = 1 supersymmetry in D = 11. F4 = dA3 is the field

strength of the three-form gauge field, and |F4|2 = FµνρσFµνρσ. R(11) is the eleven-

dimensional Ricci scalar. Recall that electric and magnetic charges are defined by inte-

grating over spheres of appropriate dimensionality,

Qel = QM2 ∝
∫

S7

∗11F4 , (2.2)

Qmag = QM5 ∝
∫

S4

F4 , (2.3)

with ∗11 being the eleven-dimensional Hodge star. To reduce on the compact manifold

M6, we split the metric naturally into

ds2
11 = ds2

5 + dM6
s2 . (2.4)

Besides the five-dimensional metric, we will find a number of gauge fields and scalar fields

from the reduction. For the generic N = 2 case, the gauge fields come from reduction of

A3, and the scalars come from the CY3 moduli, of which there are two types,
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• Kähler moduli, which combine into D = 5 N = 2 vector multiplets and

• complex structure moduli, which yield D = 5 N = 2 hypermultiplets.

The hypermultiplet scalars are normally neglected in black hole physics. At least in two-

derivative gravity they are just constants by no-hair theorems, and thus decouple effectively,

a fact which is also eludicated by the attractor mechanism. We will thus neglect them in

the following. One example is the overall size of M6, which we will just set to be a fixed

constant, which we choose to be Vol(M6) = 1 in units of κ2
11 = 2π2.

To carry on, we expand the Kähler form J on M6 in

J

Figure 4: Black Ring Stabilised by

Rotation

a complete basis of (1, 1)-forms {JI},

J =
∑

I

M IJI , I = 1, . . . , h(1,1) . (2.5)

M I are then the real Kähler moduli. The three-form

gauge field can be expanded as

A3 =
∑

I

AI ∧ JI , (2.6)

with AI being five-dimensional gauge fields. The four-form field strength decomposes as

F4 =
∑

I

F i ∧ JI , (2.7)

yielding a collection of U(1) gauge fields in five dimensions. The eleven-dimensional Chern-

Simons term then reduces as

∫

A3 ∧ F4 ∧ F4 =

∫

M6

JI ∧ JJ ∧ JK

∫

M5

AI ∧ F J ∧ FK = CIJK

∫

M5

AI ∧ F J ∧ FK ,

with CIJK being the “triple intersection numbers”. Three two-cycles in a six-dimensional

manifold generically intersect in a finite number of distinct points, which are counted by

CIJK . Also, since we set the volume of the internal manifold to one and the volume form

is given by J ∧ J ∧ J , we enforced the “real special geometry constraint” on the Kähler

moduli,

Vol(M6) =
1

3!

∫

M6

J ∧ J ∧ J =
1

3!
CIJKM IMJMK = 1 . (2.8)

It is straigtforward to show that the kinetic term for the five-dimensional gauge fields is

generated by |F4|2, and the kinetic terms for the Kähler moduli comes from R(11). Putting
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all the pieces together, one arrives at the D = 5 N = 2 action (κ11 = 2π2)

S5 = − 1

4π2

∫

d5x
√

|g|
(

R + GIJ∂aM
I∂aMJ +

1

2
GIJF I

abF
Jab

)

+
CIJK

24π2

∫

M6

AI ∧ F J ∧ FK , (2.9)

GIJ =
1

2

∫

M6

JI ∧ ∗6JJ =
1

2
(MIMJ − MIJ) ,

MI =
1

2
CIJKMJMK , MIJ = CIJKMK .

Eq. (2.9) is the action of D = 5 N = 2 supergravity coupled to an arbitrary number of

abelian vector multiplets. Note that the fact that the metric on the scalar manifold, GIJ ,

is the same metric contracting the kinetic terms for the gauge fields, is forced upon us by

supersymmetry. It is also interesting to note that the whole action (2.9) can be derived

as the supersymmetric completion of the Chern-Simons term. As stated earlier, all known

asymptotically flat BPS black hole solutions can be embedded in this theory. Standard

examples like the D1-D5-P black hole can be obtained from these black holes by U-duality.

Note also that for the N = 4, 8 cases, one sets extra gravitino multiplets flat that need to

be taken into account.

BPS Black Hole Solutions

We now start searching for BPS black hole solutions. In D = 5 there are electric charges

qI =
1

2π2

∫

S3

GIJ ∗5 F J , (2.10)

and magnetic charges

pI =
1

2π2

∫

S2

F I . (2.11)

Note that without the GIJ , qI would not be a conserved charge. As we will see later, the

electric charges will be carried by electrically charged black holes, and the magnetic charges

by black strings. BPS solutions carrying these charges can be constructed in an elegant

fashion, following Gauntlett et. al. [8], which will be sketched now.

A general N = 2 BPS solution preserves half of the supersymmetries, i.e. N = 1, and

thus must possess a globally defined, nowhere vanishing Killing spinor ε, from which we

can form a vector ε̄γaε. This vector can be shown to be a Killing vector, either timelike or

null. The analysis of solutions is different depending on the timelike or null condition. We

– 10 –



will for now restrict ourselfes to the timelike case, which yields black hole and black ring

solutions. The null case leads to magnetically charged black string solutions.

A general metric with a timelike Killing vector can always be written in the form

ds2
5 = e4U1(x) (dt + ω)2 − e−2U2(x)ds2

B(x) , (2.12)

where we have chosen the time coordinate such that the timelike Killing vector is ∂
∂t . We

thus splitted the five-dimensional space into time and a four-dimensional base space B

with coordinates x and metric ds2
B. U1,2 are functions on the base, and ω is a one-form on

B. Supersymmetry restricts the base B to be a Hyper-Kähler manifold, and enforces the

condition

U1 = U2 = U .

Because of the Killing symmetry, the moduli can only depend on the base coordinates,

M I(x), and the field strengths can be written as

F I = d
[

M Ie2U (dt + ω)
]

+ ΘI . (2.13)

For the field strength to fulfill the Bianchi identity dF I = 0, the ΘI have to be closed two-

forms on the base B. With these definitions, the BPS equations reduce to the following

three conditions:

ΘI = − ∗4 ΘI , (2.14)

∇2
(

MIe
−2U

)

=
1

2
CIJK ∗4

(

ΘJ ∧ ΘK
)

, (2.15)

dω − ∗4dω = −e−2UMIΘ
I . (2.16)

These equations have to be supplemented by the real special geometry condition (2.8).

After a choice of a Hyper-Kähler base manifold B, Eqs. (2.14)-(2.16) define a system of

linear equations with sources: Finding an anti-selfdual closed two-form on B is a linear

problem, as well as solving the Laplace equation (2.15) on B with fixed right-hand side

(∇ is the covariant derivative on the base). One can then use the solutions of (2.14) and

(2.15) to fix the right-hand side of (2.16) and solve for ω, which is again a linear equation

(in ω). This is of course to be expected, as BPS equations generally are first-order linear

partial differential equations which imply the equations of motion of a system.

Given the structure of the BPS equations, it is not surprising that they can be solved in

terms of harmonic functions. The simplest example directly yields an electrical charged

nonrotating black hole: We require an electric field strength component to be switched

on, but ΘI are two-forms on the base and thus can only give magnetic components to F I ,
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so we can simply set ΘI = 0. Furthermore, if ω would be present, it would induce angular

momentum in the black hole metric through dt ⊗ ω terms, so we also set ω = 0. Setting

both forms to zero is possible for example for the choice B = R
4. In that case, we simply

set

ds2
R4 = dr2 + r2dΩ2

3 .

What remains to be solved is the Laplace equation (2.15), whose right-hand side vanishes

now. It thus can be solved in terms of harmonic functions on R
4,

MIe
−2U = HI = hI +

qI

r2
. (2.17)

To write down the black hole metric, one must invoke the real special geometry constraint

(2.8), which makes it possible to solve for U and M I separately. However, one first needs

to find the M I in terms of the MI by inverting the definition MI = 1
2CIJKMJMK . Gener-

ically, this can not be done explicitly. An exception is T6, where the only non-vanishing

triple intersection numbers are C123 = 1 and permutations thereof. In this case, the solution

is simply

M I =
1

MI
,

and the special geometry constraint becomes

M1M2M3 = 1 .

In this case one finds the moduli in terms of the harmonic functions to be

e−6U = H1H2H3 , M I =
e−2U

HI
=

(H1H2H3)
1
3

HI
.

The metric turns out to be like that of a five-dimensional Reissner-Nordstrom black holoe,

ds2 = e4u(r)dt2 − e−2u(r)
(

dr2 + r2dΩ2
3

)

. (2.18)

The horizon is located at r = 0, and e2u(r) ∼ r2

l2
. The value of l is given as follows. Given

qI , we define qI via
1

2
CIJKqJqK = qI . (2.19)

Then we have

l3 =
1

3!
CIJKqJqJqK . (2.20)

The black hole entropy is given by

S =
l3Ω3

4G5
= 2πl3 . (2.21)
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The moduli asymptotic value of MI goes between MI = hI at infinity and MI = qI

l2
at

the horizon. This is an example of the attractor mechanism: The near horizon values are

independent of asymptotic values. Also, the entropy only depends on qI , not the asymptotic

moduli.

Note that to preserve asymptotic flatness, the boundary conditions for the Laplace problem

have to be chosen such that MIe
−2U approaches a constant as r → ∞. Also, even in this

simply example, one finds the attractor mechanism at work: At infinity, the moduli M I

approach some constant values, which can be chosen freely, but they all flow to a fixed value

M I = (q1q2q3)
1
3 /qI at the origin r = 0, where the horizon is situated. The near-horizon

values of the scalar fields are thus fixed by the charges of the black hole, not by its values

at infinity. The near horizon (r → 0) geometry of this black hole is

ds2 =
r4

(q1q2q3)
2
3

dt2 − (q1q2q3)
1
3

r2
dr2 + (q1q2q3)

1
3 dΩ2

3 ,

which becomes AdS2 × S3 after a redefinition r2 = ρ. The AdS radius is related to the

three-sphere radius as lAdS2
= lS3/2, and the whole geometry is independent of the moduli

at infinity, again confirming the attractor mechanism.

By turning on the one-form ω while keeping ΘI = 0, one can readily add angular momentum

and thus find rotating charged black holes. In general, by (2.16), one has to solve dω =

∗4dω on the chosen Hyper-Kähler base B. In the above case B = R
4, the straightforward

solution is

dω = J(dx1 ∧ dx2 + dx3 ∧ dx4) ,

with J being the amount of angular momentum. In this case, the rest of the above anal-

ysis, in particular the spherical symmetry and the values for the moduli and U(x), stay

unchanged.

From the area of their event horizons, the entropy of both the nonrotating and the rotating

black hole are found to be (G5 = π/4)

S = 2π
√

q1q2q3 − J2 .

Albeit of both solutions being supersymmetric and thus extremal, there is a maximal value

Jmax =
√

q1q2q3 for the angular momentum, above which the solution develops closed

timelike curves. For a general CY3 fold without rotation, one finds a generalised formula

SCY3
= 2π

√

1

3!
CIJKqIqJqK .
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Albeit of the rather straightforward construction of these solutions, the microscopic under-

standing for the general CY3-fold case in terms of string theory is still not known, except

of tractable examples with a high amount of supersymmetry such as T6 (see later).

Another, more general class of base manifolds which can be treated this way are Gibbons-

Hawking type bases, defined by

ds2
B =

1

H0(~x)

(

dx5 + χ
)2

+ H0(~x)d~x2 , (2.22)

~∇× ~χ = ~∇H0 ⇒ 0 = ~∇(~∇× ~χ) = ~∇2H0(~x) . (2.23)

Here x5 ∼ x5+4π is the fourth coordinate of the base B, ~x ∈ R
3, and χ is a one-form on the

base. By the condition (2.23), which follows from Ricci-flatness of B, the function H0 has

to be harmonic (with isolated singularities). In fact, requiring U(1) × U(1) symmetry, the

base must be Gibbons-Hawking. If one thinks about x5 as the Kaluza-Klein circle, χ can be

viewed as the gauge field after KK reduction, and eq. (2.23) then shows that the singularities

of H0 correspond to magnetic monopoles, so-called “Kaluza-Klein monopoles”. There

are several special cases:

1. H0 = 1, χ = 0 yielding R
3 × S1,

2. H0 = 1
|~x| , χ = 0, blowing up at ~x = 0, which can be compensated by sending Rx5 → 0,

yielding R
4,

3. H0 = p
|~x| gives R

4/Zp.

4. H0 = 1 + p
|~x| yields “Taub-NUT” spaces, which interpolate between R

3 × S1 at

|~x| → ∞ and R
4/Zp at small |~x|. They have a cigar-shaped geometry (see fig. 5),

with a Zp singularity at the origin.

More general H0 correspond to multi-center black holes, with the general rule that a

singularity of the harmonic function H0 corresponds to a center of a particular black

hole. In general, if H0 is non-zero at infinity, the asymptotic x5 circle is of finite size and

thus the geometry is (including time) asymptotic to R
3,1 × S1, yielding four-dimensional

asymptotically flat black holes after reduction on the S1. For five-dimensional asymptotics,

H0 should tend to zero as |~x| → ∞.

Note that the microscopic understandings of these black holes is quite poor, i.e. there

is no well-defined computation giving the entropy in general. There is an AdS2 factor

in the near-horizon geometry, leading to a possible conformal quantum mechanics on the
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R
4/Zp (smooth for p = 1)

R
3 × S1

Figure 5: Taub-NUT as an interpolating cigar.

boundary, but this has never been made precise. Or perhaps one should interpret the

SL(2, R) isometry group as matching that of a purely chiral CFT (see work of Sen and

Strominger during the past few months).

Suppose we consider the T 6 or K3 × T 2 cases with N = 8, 4 SUSY. In this case we are in

both shape. We can reduce M-theory on a circle S1 ⊂ T 2 to get type IIA string theory, and

then further dualize to IIB, living on T 4×S1 or K3×S1 with the charges of a D1−D5−P

system. This is the classic Strominger-Vafa setup [13]. The solution in this frame has a

near horizon geometry AdS3 × S3 × (T 4or K3). The AdS2 combines with some of the T 2

circles to give AdS3 These black holes can be well understood microscopically via D1−D5

CFT. The AdS3 factor is the main helping factor, but for 5D N = 2 black hole no such

help is available.

Other solutions

5D spinning BMPV black hole

We can easily make the black hole rotating by changing H0 = 0 → J
8|~x| . This gives the

BMPV black hole [14]. Note that the spatial rotation group in 5D is SO(4) = SU(2)L ×
SU(2)R, and the BMPV solution has J3

L = J, J3
R = 0. The entropy is S = 2π

√
l6 − J2 with

l the same as in the static case. Again we have a near horizon AdS2 × S2 geometry.

BMPV black hole on Taub-NUT

We can add a Taub − NUT term to BMPV black hole by taking

H0 = h0 +
p0

| ~x | , H0 = h0 +
J

8|~x| (2.24)

This gives a rotating black hole on top of a Taub-NUT space. Reducing along the fifth-

dimensional S1 S1 gives a 4D black hole with electric charges qI . Also, the angular mo-
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Figure 6: Black Hole in a small Taub-NUT space.

mentum is given by q0 = 2J units of KK electric charge. p0 becomes KK magnetic charge.

The entropy is given by

S = 2π

√

p0l6 − 1

4
(p0q0)2 . (2.25)

Note that this solution is a nice illustration of the 4D-5D connection. By varying h0 we

can adjust size of S1. When h0 is small, i.e. the circle small, the black hole looks effectively

four-dimensional with electric charges qI (cf. fig. 6). When h0 is large, we have a 5D black

hole (cf. fig. 7). h0 is a modulus at infinity, and we find the entropy of an extremal black

hole to be moduli independent,

S4D(q0, qI) = S5D(J =
q0

2
, qI) , (2.26)

as expected. Both sides can be understood microscopically, but this statement does not

survive stringy and quantum corrections.

Five-Dimensional Black Rings

If one consider the harmonic function

H0 =
1

| ~x | , HI =
pI

| ~x + Rn̂ | , H0 =
q0

16

(

1

~x + Rn̂
− 1

R

)

, HI = hI +
q̄I

4 | ~x + Rn̂ | ,

(2.27)

one finds black ring solutions in five dimensions. Here n̂ is an arbitrary unit vector in R3.

The ring warps around the x5 direction, which is topologically trivial. R is the ring radius.

The ring carries both electric charge and magnetic dipole charges. The latter are analogous

to a F1−string wrapped on a circle. The near horizon geometry is AdS3 × S2, and the

entropy reads

S = 2π
√

l6 − J2, J =
1

2
+ l3 + P I q̄I/2 . (2.28)

– 16 –



Figure 7: Black Hole in a large Taub-NUT space.

3. Lecture 3: Microscopic Counting of Black String Entropy in Five Di-

mensional Supergravity

Black String Solutions from Wrapped M5 Branes

Using the construction discussed above we are also able to construct black string solutions

by wrapping M5 branes on a four cycle of the compactified M6. Since the M5 branes are

magnetically charged under the background A4 field, these solutions in the dimensionally

reduced theory are magnetically charged black strings. The metric of these backgrounds

takes the form

ds2 =
4

(H3)1/3

(

dtdx5
)

− 1

4

(

H3
)2/3 (

dr2 + r2dΩ2
2

)

F I =
1

2
pIǫS2 H3 =

1

3!
CIJKHIHJHK , HI = hI +

pI

r
(3.1)

The magnetic charge of the solution is given the integral of the U(1) gauge field over the

two sphere. However, the above solution has zero horizon area and hence zero entropy.
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The near horizon limit of the metric can be obtained by putting HI = pI

r , H3 = p3

r , where

p3 = 1
3!CIJKpIpJpK . The metric will become

ds2 =
4r

(p3)1/3

(

dtdx5
)

− 1

4r2

(

p3
)2/3

(dr2 + r2dΩ2
2) ,

which is a form AdS3 × S2. In order to obtain a solution with finite horizon size we have

to add momentum q0 along the black string. This procedure gives

ds2 =
4

(H3)1/3

(

dtdx5 + H0(dx5)2
)

− 1

4

(

H3
)2/3 (

dr2 + r2dΩ2
2

)

.

F I =
1

2
pIǫS2 , H3 =

1

3!
CIJKHIHJHK , HI = hI +

pI

r
, H0 = h0 +

q0

16r
(3.2)

These solutions are supersymmetric and they have near horizon geometries

ds2 =
4r

(p3)1/3

(

dtdx5 +
q0

16r
(dx5)2

)

− 1

4r2

(

p3
)2/3

(dr2 + r2dΩ2
2) .

which can be factorized into BTZ × S2. The entropy now can be computed using the

Bekenstein Hawking formula (here we use G5 = π/4),

S =
A

4G5
= 2π

√

1

3!
CIJKpIpJpKq0 . (3.3)

Microscopic Counting of Black String Entropy

The entropy of these black strings can be understood microscopically. The authors of

[10] studied M5 branes wrapped on generic four cycle and pointed out that these states

corresponds to a 1 + 1 dimensional CFT with (0, 4) supersymmetry. The central charges

for the left and right moving sectors of the theory are

cL = CIJKpIpJpK + C2,Ip
I , , (3.4)

cR = CIJKpIpJpK +
1

2
C2,Ip

I , (3.5)

label:central where C2,I are the coefficients of the second Chern class of the M6. From the

gravity point of view, the terms linear in pI are higher derivative corrections and we will

ignore them for the time being. The entropy in a conformal field theory can be related to

the central charge through Cardy’s formula [9]

S = 2π

√

cL

6
(L0 −

cL

24
) + 2π

√

cR

6
(L̃0 −

cR

24
) (3.6)

The formula is valid at asymptotically high temperatures. The black string solutions dis-

cussed in the previous section are supersymmetric and thus correspond to having momenta
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excited in the left moving sector which is the non-supersymmetric side of the CFT. With the

identification of q0 = L0 − cL

24 , we can see an agreement between the microscopic counting

of entropy on the CFT side and the Bekenstein Hawking formula.

Suppose we instead excite momenta on the right moving sector of the conformal field theory,

we will break all supersymmetry. This corresponds on the gravity side to flipping the sign of

the momentum q0. The black string solutions obtained this way will be non-BPS. However,

we can still get agreement between the two ways of accounting of the entropy:

Sgrav = Smicro = 2π

√

cL

6
|q0| .

More generally, we can excite both the left and the right movers and still get agreement

sufficiently near extremality and the entropy formula is

S = 2π

√

cL

6
hL + 2π

√

cR

6
hR (3.7)

q0 = hL − hR

In fact, agreement persists even when higher derivative corrections are present in the super-

gravity action ( the entropy is not given by the area formula anymore) and the appropriate

terms with c2,I are included in expressions for the central charges. The five dimensional

black string solutions obtained through dimensional reduction from M theory provide us

with a nice example of how entropy associated with black objects can be accounted for mi-

croscopically using CFT. It is sometimes argued that black hole entropy counting amounts

to counting BPS states and that agreement is achieved because BPS states are protected by

supersymmetry in going from weak to strong coupling. The fact that the entropy formulas

still match when higher derivative corrections are included even though the solutions are

not BPS suggests other mechanisms are at work to ensure the agreement.

One especially interesting special case is when we take M6 = K3 × T 2 and wrap the M5

entirely on the K3. At weak coupling, this can be thought of as IIA string theory on

K3 ×S1, which is S-dual to the heterotic string on the T 4 ×S1 . The K3 wrapped M5 can

be thought of as a fundamental heterotic string on S1 . With this setup, only one of the pI

is non-vanishing and since CIJK is totally antisymmetric, the leading contribution to the

central charges vanish identically leaving only the correction turns terms:

cL = C2,Ip
I = 24N , (3.8)

cR =
1

2
C2,Ip

I = 12N , (3.9)
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where N is the number of M5 branes. This agrees with the world sheet content of heterotic

strings. Specifically, in the left moving sector we have 24 physical bosonic degrees of

freedom and each of them will contribute an amount of one to the central charge cL. The

right moving sector contains eight bosons and eight fermions. The bosons again carry one

unit of central charge each, while the fermions carry one half unit. This makes in total

cR = 12 = 8 + 4 .

In the supergravity limit the solutions corresponding to the wrapped heterotic strings are

singular at the two derivative level, but higher derivative corrections resolve the singularity

and yield some geometry.

Near Horizon Physics As we reviewed, the black holes/black strings in question have a

near horizon factor AdS2 or AdS3, and this fact is essential to our understanding of their

microscopic descriptions. For example, it is the basis of the attractor mechanism, as we

will see.

Gravity in AdS3

Here we have excellent control. In fact, if we look at the cases where we have successfully

matched the entropy there is always as AdS3 factor present. This includes the 5D black

string discussed above. At a basic level, AdS3 is a solution of

I =
1

16πG

∫

d3x
√

g(R − 2

ℓ2
) + Ibndy ,

reading

ds2 = (1 +
r2

ℓ2
)dt2 +

1

1 + r2

ℓ2

dr2 + r2dφ2. (3.10)

AdS3 is a homogeneous space with maximal symmetry, and the isometry group is SL(2, C) ≃
SL(2, R)L×SL(2, R)R. The BTZ black hole is a particular quotient of AdS3 by an element

of the isometry group. To see this, consider the AdS3 metric written as

ds2 = dX2
0 + dX2

1 − dX2
2 − dX2

3 , (3.11)

embedded as an hyperboloid described by the equation

X2
0 + X2

1 − X2
2 − X2

3 = −ℓ2 . (3.12)

If there is a group element g ∈ SL(2, R) with det g = 1, we write it as

g =
1

ℓ

(

X1 + X2 X3 − X0

X3 + X0 X1 − X2

)

. (3.13)
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We can use g to generate the AdS3 metric by

ds2
AdS3 = −ℓ2Tr(g−1dgg−1dg). (3.14)

SL(2, R)L × SL(2, R)R acts by conjugation on itself,

g 7→ ρLgρR ,

which leaves ds2
AdS3 invariant. However, because of the left (and also right) action of

the group on itself g 7→ gLg, both matrices ρL,R are only defined up to conjugation,

ρL ∼ g−1
L ρLgL. The BTZ black hole is then obtained as a quotient of AdS3 by some of its

isometries, i.e. by identifying

g ∼ ρLgρR , (3.15)

where both ρL and ρR are only defined up to conjugation. SL(2, R) has three conjugacy

classes labeled by the trace of the matrix g,

• |Trg| > 2, called hyperbolic,

• |Trg| = 2, called elliptic, and

• |Trg| < 2, called parabolic.

These three isometries correspond to, respectively, Lorentz boosts, rotations, and null

rotations of Minkowski space. The BTZ black hole is obtained by an identification of AdS3

under Lorentz boosts, i.e. we choose the hyperbolic conjugacy class. In that class, ρL,R

can be written in simple diagonal form,

ρL =

(

e2π2T+ 0

0 e−2π2T+

)

, ρR =

(

e2π2T
− 0

0 e−2π2T
−

)

. (3.16)

T± are the left- and right-moving temperatures, corresponding to the left- and right-moving

sectors of the dual CFT. We now show that the identification (3.15) can be implemented

onto a solution of (3.12), if choosing coordinates as

X1±X2 = ℓ

√

r2 − r2
+

r2
+ − r2

−

e±π(T+u++T
−

u
−

) , X3±X0 = ℓ

√

r2 − r2
−

r2
+ − r2

−

e±π(T+u+−T
−

u
−

) . (3.17)

Here r± = πℓ(T+±T−), u± = φ±t. The identification (3.15) then corresponds to identifying

φ ∼ φ + 2π. In terms of the locations of the inner and outer horizons r±, the Euclidean

solution is

ds2 = f(r)dt2 +
1

f(r)
dr2 + r2(dφ + i

r+r−
ℓr2

dt)2 (3.18)
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f(r) =
(r2 − r2

+)(r2 − r2
−)

ℓ2r2
(3.19)

The general rotating BTZ black hole has two horizons, the event horizon r+ and the inner

horizon r−. Its mass and angular momentum are found to be

M =
r2
+ + r2

−

8Gℓ2
, J =

r+r−
2Gℓ

.

The event horizon has Bekenstein-Hawking area law,

S =
A+

4G
= 2π

√

c

2
(Mℓ + J) + 2π

√

c

2
(Mℓ − J) . (3.20)

The central charge is found according to Brown and Henneaux [11],

c =
3ℓ

2G
. (3.21)

Now in string theory we expect various higher derivative corrections to the action. However,

we expect that AdS3 will still be a solution since it is naturally symmetric. Only the formula

for the scale size ℓ will change. Similarly, the BTZ solution will then be a solution since

it’s just a quotient of AdS3. On the other hand, the mass, angular momentum and entropy

of the black hole will be modified.

The way to handle this is to make use of the full symmetry of the problem. One central

point is that quantum gravity on AdS3 necessarily has the symmetries of a 2D CFT, i.e.

the left- and right-moving Virasoro algebras [11]. The best way to show this is to define the

stress tensor and show that it has the properties expected. For obtaining the stress tensor

of asymptotic AdS3 on the boundary, we can use the Fefferman-Graham expansion [12]

(every order of the expansion is decreased by a factor eη/ℓ )

gij = e2η/ℓg
(0)
ij + g

(2)
ij + · · · (3.22)

to rewrite the AdS3 metric, which looks like (for η → ∞)

ds2 = dη2 + e2η/ℓg
(0)
ij dxidxj + g

(2)
ij dxidxj + · · · . (3.23)

Here g0
ij is the conformal boundary metric. The stress tensor is defined in terms of the

action as the variation with respect to the conformal boundary metric,

δI =
1

2

∫

d2x
√

g(0)T ijδg
(0)
ij . (3.24)

In fact, the two-dimensional conformal group describes asymptotic symmetries which are

diffeomorphisms leaving g
(0)
ij invariant. Up to the two derivative level, the relevant action

is the Einstein-Hilbert action in three dimensions with cosmological constant,

I =
1

16πG

∫

d3x
√

g

(

R − 2

ℓ2

)

− 1

8πG

∫

∂M
d2x

√
gTrK − 1

8πGℓ

∫

∂M
d2x

√
g . (3.25)
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The last two term are needed for a well-defined variational principle (the York-Gibbons-

Hawking term) and to make action finite (a boundary counterterm). At the boundary

(η → ∞) one obtain the AdS3 boundary stress tensor

Tij =
1

8πGℓ
(g

(2)
ij − (Trg(2))g

(0)
ij ) (3.26)

by varying the above action and plugging in the Fefferman-Graham expansion. It is also

possible to compute the central charge (here cL = cR automatically).

The easiest way to obtain central charge is to extract it from the trace anomaly,

T i
i = − c

24π
R(g(0)) . (3.27)

According to this formula, the action transforms under a Weyl transformation of g(0),

δg
(0)
ij = 2g

(0)
ij δω, as

δI =
1

2

∫

d2x
√

g(0)T ijδg
(0)
ij =

1

2

∫

d2x
√

g(0)T ij(2g
(0)
ij δω) = − c

24π

∫

d2x
√

g(0)R(0)δω(3.28)

If δω is a constant, and the boundary is S2, we have

δI = − c

3
δω . (3.29)

Now, to compare against the gravity computation, AdS3 can be written as

ds2 = ℓ2(dη2 + sinh2 ηdΩ2
2), (3.30)

thus

g
(0)
ij dxidxj =

ℓ2

4
dΩ2

2. (3.31)

The gravitational action on this background is divergent due to the 1
16πG

∫

d3x
√

g(R− 2
ℓ2

)

term, as R = 6
ℓ2

on-shell. Putting in a large η cuttoff we find

Idiv = − ℓ

2G
ηmax . (3.32)

We would need to add another counter term to cancel this, but this counterterm would then

depend explicitly on ηmax, and thus break diffeomorphism invariance. This contribution

is thus the sought-for conformal anomaly. The on-shell action will transform under a

diffeomorphism η → η + δη, as δI = − ℓ
2Gδη. Thus, from the form of the conformal

anomaly (3.29), we see that this is equivalent to a conformal transformation δω = δη, and

thus we can read off the central charge

c =
3ℓ

2G
. (3.33)
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This is the Brown-Henneaux central charge formula [11], which they obtained by a different

route, namely by identifying asymptotic symmetries in the Hamiltonian formulation of

2+1-dimensional gravity. The advantage of the present derivation is that it generalizes to

arbitrary theories including higher derivatives, where the constraint analysis needed for the

Brown-Henneaux analysis might not be straight-forward.
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