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Abstract
This summarizes the material covered in class on approximately

the first two weeks, covering some of chapter 1 and section 2.1 in the
textbook.

Learning (zoals

e Description of motion (kinematics) along a line.
e Velocity and acceleration.

e Integrating to convert information about velocity and acceleration into
the full description of motion.

Basics

The basic structure of the course is divided to kinematics — to do with efficient
description of motion— and kinetics, which describes the forces causing the
motion and how they determine the motion (through Newton’s laws, for
example).

We will be using the SI (metric) units, where time is measured in seconds,
mass in kilograms and length in meters. It is a good habit to keep tracks of
the units used through the calculation, to protect against mistakes. Every
quantity should come out in appropriate units, if no errors are made.

Another general advice is to visualize the problem and determine solution
strategy, before starting the problem. In the course we will use various
graphical representations for that purpose.



Kinematics of Particles

Basics

e Definition of a particle: when spatial extent of moving body does not
matter much.

e Types of motion: Constrained versus unconstrained motion. Motion
on a plane or on a line.

e Description of motion: Assigning coordinates.

In this chapter we’ll look at how motion is described, in preparation
for the next chapter where we’ll make predictions for motion of various
bodies based on the external forces acting on them.

Motion on a line

We start with the simplest situation of particle moving on a line. An example
is a sprinter. If we have a particle moving on a line, subject to some forces,
our goal is to describe its motion in time.

To get the math going, we need to measure the position at any given time.
Assume we are stationary and we measure the time t and the position along a
line (away from the starting point) and call it z. This is the simplest example
of a coordinate system: a complete description of the runners trajectory
would be a function z(t). Our goal in this course is to calculate the trajectory
x(t) for various types of motion, using the laws of physics.

Velocity
In a small time increment At, the runner covered a distance Az. Their
average velocity over that time period is then v = %. In the limit of At — 0
we get the instantaneous velocity. This limit defines the derivative:
dx
V= — 1
p (1)

The derivative is one of the most useful tools we will use, and one of the
deepest ideas in physics: break up the problem to small parts. If we know
how fast a body moves at all times, we can ntegrate to find out the re-
sulting accumulative motion. We gain knowledge of something potentially
complicated by adding up many simpler effects.



Acceleration

Now that we are familiar with derivatives, we can discuss the rate of change
of the velocity, that is the acceleration:

dv  d’z
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The acceleration also has a direction which can be the same as the velocity
or opposite: for example the runner can move forward but decelerate, its
forward speed decreasing with time.

Notation for derivatives: dot above the quantity differentiated.

Example: Differentiation

Sample problem 2/1 page 27.

Inverting Derivatives: Integration

We are usually given the expression for the derivatives, which are related to
the forces acting on the particle, and need to find the displacement from that.
The trick is to use the definitions in the way which reduced the problem to
integration.

Simplest case: we are given the velocity as function of time v(t), and we
need to find the displacement for all times s(t). For that use the definition
v(t) = % to get

ds = v(t)dt (3)

Since the right hand side now depends only on t, we can integrate:

s(ts) — s(tr) = /tz ot dt ()

t1
if we know the acceleration a(t) we can do things in stages: first find v(t)
by integrating once, and then find s(t) by integrating again. Examples to
follow.
More tricky: suppose we know the velocity not as function of time, but as
function of displacement v = v(s). Doing as above does not help us. Instead
we use the definition to get

dt = ds/v(s) (5)
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which can again be integrated, giving

ty— 11 = / * ds/u(s) (6)
S1
We get instead of s(t) which is familiar, t(s) which can be inverted.
Similarly, if we are given the acceleration as function of velocity, we can
use the definition to get
dt = dv/a(v) (7)

Finally, the most tricky situation is when we get the acceleration as
function of displacement a(s). We now need to use both definitions to get
vdv = ads, which gives a relation which can be integrated on both sides

S8 =) = [T a(s)ds (8)
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This gives us v(s), a situation we already know how to deal with.

Examples: Integration

Sample problems 2.2, 2.3, problem 2.1 in the text.



