PHYS216 Midterm

February 2016

1 Question 1

(10 pt) A small vehicle enters the top (point A) of a circular path with horizontal velocity V_{0} (and angular velocity $\omega_{0}=\frac{V_{0}}{R}$), and gathers speed as it moves down the track.

1. draw a free body diagram. write the balance of forces in the radial and angular directions (3 pt)
2. Recall that if $\ddot{\beta}=f(\beta), \omega=\dot{\beta}$ then $\omega d \omega=f(\beta) d \beta$. Derive this expression (2pts)
3. Using this equation, intergrate both sides of the angular force balance equations to find ω as a function of β (ie. find $\omega(\beta)$). (3pts)
4. Using $\omega(\beta)$ (leave it arbitrary if you have not obtained it), find the support force N acting in the radial direction. (2pt)

2 Question 2

(10pt) Consider an arbitrary number $(\mathrm{N}+2$) of equal masses (m) configured as in the figure. The $\mathrm{N}=3$ case is drawn. Clearly Define the coordinates for the location of each mass in your answer.

1. Write down the equations $\mathrm{F}=\mathrm{ma}$ for each of the masses. Use a free body diagram, neglect friction and express the force in terms of the cable's tension T (3pts)
2. Write down the constrain on the acceleration of each mass, resulting from the cable being in-extendible. (3 pts)
3. Use the equations above to find $\mathrm{T}(2 \mathrm{pts})$.
4. Use T to find the acceleration of each mass. (2 pts)
