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What distribution was this data drawn from?

These ten points 
were drawn from 
some unknown 
distribution.  How do 
we estimate 
approximate the 
underlying 
distribution?
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Approximate it as a histogram?

The red histogram is not 
a great match to the true 
distribution (smooth 
black curve). 

Also, what bin size 
should you use, 
anyway?  Bigger bins 
poorly approximate 
shape, but narrow bins 
are limited by statistics.
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Non-parametric estimation of distributions

We would like a non-parametric way of describing the shape 
of distributions.  Histogramming is the simplest way to do 
this, but of course very few real distributions have “step” 
features in reality.  

Histograms also are sensitive to where you start the bin 
boundaries.

Discontinuous functions also have mathematical difficulties ... 
cannot take derivatives of them.  Most minimizers have 
trouble with them.  Imagine the nightmare of trying to do a ML 
fit to a PDF with discontinuities ---- likelihood function is likely 
to be discontinuous if fit parameters can move data events 
across bin boundaries..
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“Smart” parametrizations

Sometimes you might be able to empirically describe the 
distribution by a parametrized form.  One useful version 
is Pearson’s hybrid density estimator, which is the family 
of solutions to

(This parametrization actually has just 3 degrees of 
freedom ... the fourth parameter is determined by 
normalization.)  

This works for some distributions, but not all.
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Kernal Density Estimation

A kernel density estimator (in 1D) is defined by

Here x
i 
is the ith of N data points.  K(x) is called the kernel 

function, and is normalized to one (and so ĝ(x) is also 
normalized to 1).  The parameter h is called the “bandwidth”, 
and scales the width of the kernel.

Essentially this just means placing a smooth function at the 
location of each data point and then summing the result.
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Kernal Density Estimation

It’s intuitive (I hope) that in 
the limit that the number of 
data points goes to infinity 
and the bandwidth goes to 
zero, then the distribution 
should approach the true 
underlying distribution.  
Compare to:
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Choice of kernel

Some common choices of kernel function:
 the normal distribution: N(0,1)
 the uniform rectangle: =0.5 for |x|<1, else =0

 the Epanechnikov kernel: =¾(1-x
2
) for |x|<1, else =0

It can be shown that the Epanechnikov kernel is 
“optimal” in 1D in a particular sense, but on the other 
hand it turns out that it makes very little difference which 
kernel you use. Many people like to use normal 
(Gaussian) distributions for simplicity.
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Choice of bandwidth

Almost all of the art of KDE is in the choice of bandwidth.

Choosing an appropriate bandwidth is the key.  Of course to 
do this perfectly you’d need to know what the underlying 
distribution is.

The figure on left is undersmoothed.  On the right it’s 
oversmoothed.
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How to optimally choose bandwidth

The basic principles are similar to those behind 
choosing the best binning for a histogram.  

Narrow bandwidth: allows you to sample narrow 
features of the distribution, but leaves you 
susceptible to random scatter.  Generally the 
more points you have, the narrower you can 
make the bandwidth.

Wide bandwidth: smooths out statistical 
fluctuations, but may bias the result by smearing 
out narrower features.
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How to optimally choose bandwidth: pointwise

Pointwise error (Here the brackets denote averaging over 
datasets):

To minimize typical pointwise error, minimize B
h

2
+E

n

2 
as 

function of h

Bias term: average 
difference between 
estimated and true 
function 

Variance term: difference 
between estimate for this 
dataset and average 
estimate
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How to optimally choose bandwidth: MISE

Rather than focusing on one value of x, minimize the mean 
integrated square error.

This is minimized by

d=1 when estimating a 1D function.
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The chicken and egg problem

Optimal bandwidth depends on true g(x), which you don’t 
know.  As a crude approximation, can use Silverman’s rule of 
thumb, which works great for approximately Gaussian 
distributions:

Here     is the standard deviation estimated from the data.

This rule of thumb may be reasonable for distributions that 
look Gaussian, but will have issues when the distribution is 
double-peaked.  For example, for the plots given earlier this 
formula gives h=2.09, which is definitely oversmoothed. 
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Least-squared cross-validated bandwidth

Pick the h that minimizes this function.  Here X
j
 is the jth data 

point and ĝ
j,h

 is the kernel estimator derived from the data 

with X
j
 deleted.  Also, R(g) = ∫g2(x) dx .

Least-squares CV 
bandwidth
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Other bandwidth approaches

There are a wide number of alternate approaches for data-
driven bandwidth selection, which often work better than 
least-squares cross validation but which are harder to 
explain.  See for example “ Comparison of Data-Driven 
Bandwidth Selections”  by Byeong U. Park and J.S. Marron 
(Journal of the American Statistical Association, Vol. 85, No. 
409 (March 1990), pp. 66-72.

Common ones are “Park and Marron’s plug-in selector” and 
the “Sheather and Jones plug-in”, which attempt to do KDE 
estimates for the g”(x) which appears in the optimal 
bandwidth formula.
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Pointwise error on KDE

At any given value of x, we’ve already seen an 
estimate for the statistical scatter in the estimate.

In the plug-in approach, just replace g(x) with 
ĝ(x). 

 Alternatively use bootstrap method to get error.
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Funtionwise error on KDE

The previous formulas are confidence intervals at 
a given value of x.  If you want a confidence band 
that includes the entire function (over its region of 
domain) at some confidence interval, the best 
approach is probably to bootstrap it.  See for 
example “A Tutorial on Kernel Density Estimation 
and Recent Advances”, by Yen-Chi Chen.  
(arXiv:1704.03924v2)
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Adaptive bandwidth

A more sophisticated approach is to adjust the bandwidth for each 
data point.  This is called “adaptive kernel density”.  In the 
“pointwise estimator” implementation each point gets its own 
bandwidth:

The idea is that in areas where the data samples have lower 
density you want to have a wider bandwidth, while you want 
narrower bandwidths in regions where the points are closer 
together.

 

ĝ ( x )=
1
N
∑
i=1

N
1
hi

K (
x−x i

h i
)
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Adaptive bandwidth: implementation

First do your favourite fixed bandwidth KDE, to get an initial guess 
for g(x).  Call this g

h
(x), where h is the fixed bandwidth.  Then:

G≡(∏
i= 1

N

gh (x i ))
1/N

hi=h√
G

gh (xi )

ĝ ( x )=
1
N
∑
i=1

N
1
hi

K (
x−x i

h i
)
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Adaptive bandwidth: results
Data Point Best fixed  

bandwidth (least 
squared CV)

Adaptive 
bandwidth

-1.67 0.70 1.09

-0.35 0.70 0.77

-0.34 0.70 0.77

0.37 0.70 0.86

2.56 0.70 0.72

3.16 0.70 0.58

3.23 0.70 0.57

3.52 0.70 0.59

3.74 0.70 0.59

3.96 0.70 0.64

Is adaptive bandwidth actually better in this case?  
Clearly better on the tails, but a little worse in the 
meat of the distribution.  MISE is actually worse.
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Multi-dimensional KDE

Figure illustrating

Figure by Drleft (talk) 00:04, 16 September 2010 (UTC) - Own work, CC BY-
SA 4.0, https://commons.wikimedia.org/w/index.php?curid=11500097
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Kernel choice for multi-dimensional KDE

Figure credit: Drleft [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) or GFDL 
(http://www.gnu.org/copyleft/fdl.html)], from Wikimedia Commons

H=hI H ij=hiδ ij H=            symmetric 
positive definite matrix
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Kernel choice for multi-dimensional KDE

K ( x⃗ )=
1

(2 π )
d /2

√det H
e
−

1
2

x⃗T⋅H−1
⋅⃗x

The bandwidth matrix H defines this multi-dimensional Gaussian kernel.  It is a 
positive definite symmetric matrix.  Analogous matrices exist for other kernel 
choices, but as usual the bandwidth is much more important than the 
functional form of the kernel.

As before we can try to optimize the choice of H by minimizing the MISE.  
Many of the same issue arise.

Silverman’s rule of thumb (in this case a diagonal matrix):

H ij=δ ijσ i
2( 4

n ( d+2 ) )
2

d+4
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Smoothed cross validation for multi-dim. KDE

SCV ( H ) =n−1 (det H )
−1/2 R ( K )+n−2∑

i=1

n

∑
j=1

n

(K 2 H+2 G−2 K H+2 G+K 2G ) ( x⃗ i− x⃗ j )

Start with a pilot bandwidth matrix G (an initial guess).  Then defined the 
smoothed cross validation statistic SCV as follows:

Here

Minimize this expression as a function of the matrix H to get the best 
bandwidth matrix estimate.

This sounds like a nightmare---anyone have a ready-built function for 
minimizing as a function of a matrix?  I guess parametrize it in terms of d 
standard deviations 

i
 and ½d(d-1) correlation coefficients 

ij
, and minimize 

with respect to all of these ½d(d+1) parameters.

R ( K )=∫K ( x⃗ )2 d x⃗=( 4 π )−d/2 for the normal kernel
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Closing Thoughts

Multivariate KDE with variable bandwidth exists, but is 
beyond the scope of these notes.

Well-developed software packages exist.  Don’t re-invent 
the wheel.  The Wikipedia articles on KDE and 
multivariate KDE give links to good resources.

A promising new approach is the “fastKDE” that is based 
on defining the kernel and bandwidth in Fourier space:  

       https://bitbucket.org/lbl-cascade/fastkde
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