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Outline
Last time: we worked a few examples of Bayesian 
analysis, and saw that Bayes' theorem provides a 
mathematical justification for the principle known as 
“Ockham's razor”.

Today:

1) Dependence of Bayesian analysis on prior                    
    parameterization
2) Advice on how to choose the right prior
3) “Objective priors”---quantifying our ignorance
4) Maximum entropy priors
5) What to do when you don't know how your data is         
     distributed?
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Bayes' Theorem

P H | D , I =
P H | I P D | H , I 

P D | I 

Today we want to examine the science and/or art of how you 
should choose a prior for a Bayesian analysis.

If this were always easy, everyone would probably be 
Bayesian.



Physics 509 4

Prior from a prior analysis
The best solution to any problem is to let someone else solve 
it for you.

If there exist prior measurements of the quantities you need to 
estimate, why not use them as your prior?  (Duh!)

Be careful, of course---if you have reason to believe that the 
previous measurement is actually a mistake (not just a 
statistical fluctuation) you wouldn't want to include it.

Even the most complicated statistical analysis does not 
eliminate the need to apply good scientific judgement and 
common sense.
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Dependence on parameterization
Two theorists set out to predict the mass of a new particle
Carla (writes down theory):

“There should be a new 
particle whose mass is 
greater than 0 but less than 1, 
in appropriate units.  I have 
absolutely no other 
knowledge about the mass, 
so I'll assume it has equal 
chances of having any value 
between zero and 1---i.e. 
P(m) = 1.”

Heidi (writes down the exact 
same theory):

“There is a new particle 
described by a single free 
parameter y=m2 in the Klein-
Gordon equation.  I'm sure 
that the true value of y must 
lie between 0 and 1.  Since y 
is the quantity that appears in 
my theory, and I know 
nothing else about it, I'll 
assume a uniform prior on 
y---i.e. P(y) = 1.”

These are two valid statements of ignorance about the same theory, but with 
different parameterizations.
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An experiment reports: m=0.3±0.1
The experimental apparatus 
naturally measures m, so the 
experiment reports that 
(rather than y).  Our two 
theorists incorporate this new 
knowledge into their theory.  
Carla calculates a new 
probability distribution 
P(m|D,I) for m.  Heidi 
converts the measurement 
into a statement about the 
quantity y, and calculates 
P(y|D,I).  They then get 
together to compare results.  
Heidi does a change of 
variables on her PDF so she 
can directly compare to 
Carla's result.
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The sad truth: choice of parameterization 
matters

It's quantitatively different to 
say that all values of m are 
equally likely versus all 
values of m2 are equally 
likely.  The latter will favour 
larger values of m (if it's 
50/50 that m2 is larger than 
0.5, then it's 50/50 than m is 
larger than 0.707).

Which is right?  Statistics 
alone cannot decide.  Only 
you can, based on physical 
insight, theoretical biases, 
etc.

If in doubt, try it both ways.
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Principle of Ignorance
In the absence of any reason to distinguish one outcome from 
another, assign them equal probabilities.

Example: you roll a 6-sided die.  You have no reason to believe 
that the die is loaded.  It's intuitive that you should assume that 
all 6 outcomes are equally likely (p=1/6) until you discover a 
reason to think otherwise.

Example: a primordial black hole passing through our galaxy 
hits Earth.  We have no reason to believe it's more likely to 
come from one direction than any other.  So we assume that the 
impact point is uniformly distributed over the Earth's surface.

Parameterization note: this is not the same as assuming that all 
latitudes are equally likely!
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Uniform Prior
Suppose an unknown parameter refers to the location of 
something (e.g. a peak in a histogram).  All positions seem 
equally likely.

Imagine shifting everything by x'=x+c.  We demand that
p(X|I) dX = P(X'|I) dX' = P(X'|I) dX.  This is only true for all c if 
P(X) is a constant.

Really obvious, perhaps ... if you are completely ignorant 
about the location of something, use a uniform prior for your 
initial guess of that location.

Note: although a properly normalized uniform prior has a finite 
range, you can often get away with using a uniform prior from 
-∞ to +∞ as long as the product of the prior and the likelihood 
is finite.
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Jeffreys Prior
Suppose an unknown parameter measures the size of 
something, and that we have no good idea how big the thing 
will be (1mm? 1m? 1km?).  We are ignorant about the scale.  
Put another way, our prior should have the same form no 
matter what units we use to measure the parameter with.  If 
T'=T, then

P T∣I dT=P T '∣I dT '= p T '∣I   dT

P T∣I = P T∣I  ,which is only true for all   if

P T∣I =
constant

T

Properly normalized from T
min

 to T
max 

this is:

P T∣I =
1

T ln T max /T min
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Modified Jeffreys Prior
What if your parameter could equal zero?  Jeffreys prior is not 
normalizable---it blows up for T

min
=0, with probability 1 that 

T<with  arbitrarily small.

P T∣I =
1

Ta ln [aT max/a ]

An alternate is the modified
Jeffreys prior --- becomes a
uniform prior for T < a.



Given enough data, priors don't matter

The more constraining 
your data becomes, the 
less the prior matters.

When posterior 
distribution is your much 
narrower than prior, the 
prior won't vary much 
over the region of 
interest.  Most priors 
approximate to flat in 
this case.

Consider the case of 
estimating p for a 
binomial distribution 
after observing 20 or 
100 coin flips.
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A prior gotcha

Maybe an obvious point ... if your prior ever 
equals zero at some value, then your posterior 
distribution must equal zero at that value as 
well, no matter what your data says.

Be cautious about choosing priors that are 
identically zero over any range of interest.
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“Objective” priors

Much criticism of Bayesian analysis concerns 
the fact that the result of the analysis depends 
on the choice of prior, and that the assignment 
of this prior seems rather subjective.

Is there some objective way of assigning a 
prior in the case that we know little about its 
possible distribution?
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Shannon's Entropy theorem

1948: remarkable paper by Charles Shannon generalizes the 
concept of entropy to a probability distribution:

S  p1, p2, ... , pn=−∑
i=1

n

pi ln  pi

Some remarkable properties:

1) The entropy has the same form as the thermodynamic equivalent 
(modulo Boltzmann's constant).
2) It is a measure of the information content of the distribution. If all 
the p

i
=0 except for one, then S=0---we have a perfect constraint.  As 

uncertainty increases, so does S.
3) The entropy is related to data compression---it is the smallest 
average number of bits needed to encode a message.  (Talk to 
Colin Gay if you want details.)
4) If S is really a measure of the “information content” of the 
distribution, and we want to assign a prior that reflects our 
ignorance of the true value for our parameter, we should assign a 
prior probability distribution that maximizes S.  
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Maximum Entropy Principle

The distributions at the 
left are various 
probability distributions 
for the outcomes from 
a 6-sided die, with the 
entropy superimposed.

Using the one with the 
largest entropy as your 
prior results in the 
weakest constraint 
(widest uncertainty) on 
the posterior PDF.
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Maximum Entropy Principle With A Constraint

Often we're not totally ignorant of the prior.  For example, perhaps 
you

 know the mean value of the distribution
 know its variance
 know the average value of some function of the parameter in        
   question

These all are examples of constraints.  The maximum entropy prior 
will then be the probability distribution P(x) that maximizes

subject to any constraints that may apply.

S=−∑ Pi ln P i
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Finding the probabilities by a variational 
method
The mathematical statement of the problem is to find a set of 
probabilities p

1
 ... p

n
 that maximizes the function

S  p1 ... pn=−∑
i=1

n

pi ln pi

The mathematical statement of the problem is to find a set of 
probabilities p

1
 ... p

n
 that maximizes the function

If all of the p
i
 were independent, this would simply imply: 

dS=
∂ S
∂ p1

dp1
∂ S
∂ p2

dp2...
∂ S
∂ pn

dpn=0

Treating the p
i
 as independent, all of the coefficients must 

equal zero, and in fact you will wind up concluding that all of 
the p

i
 are equal (a uniform prior).  This is a mathematical 

statement of the  ignorance principle.
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Incorporating constraints with Lagrangian 
multipliers

dS− dC=  ∂ S
∂ p1

−
∂C
∂ p1

dp1... ∂ S
∂ pn

−
∂C
∂ pn

 dpn=0

Suppose now we impose some constraint on the probability 
distribution, of the general form C(p

1
 ... p

n
)=0.  Then

dC=
∂C
∂ p1

dp1
∂C
∂ p2

dp2...
∂C
∂ pn

dpn=0

Therefore   dS− dC=0      and so

We now set the first coefficient equal to zero, giving us an 
equation for , and then we are left with a set of simultaneous 
equations that can be solved for p

i
.
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Max Ent prior with only normalization 
constraint

One constraint always applies: probabilities should sum to 1:

C=∑ p i=1

dS− dC=∑  ∂ S
∂ pi

−
∂C
∂ pi

dpi=∑ −ln pi−1− dpi=0

One constraint always applies: probabilities should sum to 1:

Allowing the p
i
 to vary independently and so setting coefficients 

equal to zero gives:

p i=e−1

We plug back into the constraint equation to determine .
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Max Ent prior when you know the mean

C=∑ p i=1

d [−∑
i=1

n

pi ln pi−0 ∑
i=1

n

pi−1 −1 ∑
i=1

n

y i pi−  ]=0

Suppose we have two constraints---normalization and mean.

We plug this back into the constraint equations to determine 
and .  The  factor is a boring normalization term.  But the 
other factor sets the mean value of the distribution.

∑ yi p i=

∑
i=1

n

−ln pi−1−0−1 y i =0

pi=e−10e−1 y i
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Max Ent prior: setting the mean

Solve numerically for 


1
.

∑
i=1

n

yi pi==
∑ y i e

−1 y i

∑ e−1 yi

pi=e−10e−1 y i
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Max Ent prior when you know the variance

What happens if you constrain the variance to equal 2?  (Let's 
assume here the mean  is also known.)

Let's suppose you have prior upper and lower limits on your 
parameter.

In the limit that the variance is small compared to the range of 
the parameter:

ymax−


≫1    and     

− ymin


≫1

then the Max Ent distribution with the specified variance is a 
Gaussian:

P  y =
1

2 
e− y− 

2
/2

2
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A Gaussian is the least constraining 
assumption for the error distribution

A very useful and surprising result follows from this maximum 
entropy argument.  Suppose your data is scattered around your 
model with an unknown error distribution:

In this example each point 
is scattered around the 
model by an error 
uniformly distributed 
between -1 and +1.

But suppose I don't know 
how the errors are 
distributed.  What's the 
most conservative thing I 
can assume?

A Gaussian error distrib.
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Consider three possible error models

I don't know how the errors are distributed, but I happen to know 
the RMS of the data around the model by some means.  (Maybe 
Zeus told me.)  I consider three possible models for the error: 
uniform, Gaussian, and parabolic.
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Posterior probability distributions for the three 
error models

These are 
marginalized PDFs.

Caveat: although in 
this case the true error 
distribution gave the 
tightest parameter 
constraints, it's 
perfectly possible for 
an incorrect 
assumption about the 
error distribution to 
give inappropriately 
tight constraints!
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What if you don't know the RMS?

Imagine that the data is so sparse that you don't already know 
the scatter of the data around the model.

One possibility is to assume a Gaussian distribution for the 
errors à la the maximum entropy principle, but to leave 2 as a 
free parameter.  Assign it a physically plausible prior (possibly a 
Jeffreys prior over physically plausible range) and just treat it as 
a nuisance parameter.

This is more or less like “fitting” for the size of the error.
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A very difficult cutting-edge problem ...

Maximum entropy has an important subtlety when dealing with 
continuous distributions.  The continuous case is:

The weird function m(x) is really the number density of points in 
parameter space as you go from the discrete case to the continuous 
limit.

It's really not obvious what m(x) should be.  If you know it already, 
you can use maximum entropy to calculate priors given additional 
constraints. But if you know absolutely nothing, you can't even define 
m(x).  If you like, m(x) is the prior given no constraints at all.

To get beyond this you must use other principles---for example, use 
transformation symmetries to generate m(x).  A common solution is 
the general Jeffreys prior---choose a prior that is invariant under a 
parameter transformation.

S=−∫ dx px  ln  px
mx 
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