

Spectroscopy of Ag-Bi-O Phases Synthesized Under High Pressure

Mohamed Oudah,^{a, b} M. Kim,^a G. McNally,^a K. Rabinovich,^a B. Kilic,^a A. Schnyder,^a S. Borris,^a D. Bonn,^b B. Keimer,^a and H. Takagi,^{a, c} ^a Max Planck Institute for Solid State Research, Stuttgart, Germany ^b Stewart Blusson Quantum Matter Institute, University of British Columbia, Canada ^c Department of Physics, University of Tokyo, Japan

Mohamed.Oudah@UBC.ca

Introduction

The stoichiometric silver bismuthate Ag_2BiO_3 typically contains equal amounts of bismuth in the Bi⁺³ and Bi⁺⁵ states, and this charge ordering renders Ag₂BiO₃ insulating [1]. Recent theoretical predictions of a metal-insulator transition and Weyl semimetal state in Ag₂BiO₃ have revived the interest in this material [2]. However, such novel properties are expected in the absence of charge ordering.

Here, we utilize spectroscopic tools to examine the possibility of suppressing the charge ordering in Ag₂BiO₃ via chemical substitution/doping, and achieving the topologically nontrivial phase predicted. We present a new high-pressure synthesis route for Ag₂BiO₃, which we utilize for substituting/doping at the Ag site.

High Pressure Synthesis

Solid state syntheses of materials in the Ag-Bi-O

Furthermore, predictions of a topological insulating state were made in the ilmenite structure of AgBiO₃. We have investigated the effect of pressure on AgBiO₃ and identified a new polymorph at 6 GPa. Optical conductivity results reveal a comparable gap of ~1.0 eV in AgBiO₃ and Ag₂BiO₃, while Raman spectroscopy shows a peak at ~515 cm⁻¹, characteristic of local distortion in bismuthates.

Conclusion

- Our study reveals that Ag₂BiO₃ is a charge ordered insulator with a band gap of ~1.0 eV, \bullet contradictory to the theoretical prediction of Dirac-semimetal phase!
- We found a **band gap in two AgBiO₃ phases** ($R\overline{3}$ and $P\overline{6}$), again inconsistent with DFT.
- The **breathing phonon at** \sim **520 cm⁻¹** is observed in these silver bismuthates. ullet
- Our band structure calculations (**HSE**) match the features in optical spectroscopy results! \bullet
- Our results give guidance to **design of new topological insulating materials**.
- **X-ray absorption spectroscopy** will be performed to confirm the bismuth oxidation state.

References

[1] C. B. M. Oberndorfer et al., *Solid State Sci.* 8, 267 (2006).

[2] J. He et al., *Nat. Commun.*, 9, 492 (2018).

[3] T. Zhang et al., *arXiv:1807.08756* (2018).

[4] S. Tajima et al., *Phy. Rev. B*, **46**, 1232 (1992).

[5] N. Kumada et al., *Mater. Res. Bull.* **35**, 2397 (2000).

