PHYS 216 Assignment 9

1. [15] Show that for a one-dimensional collision between two objects, the change in kinetic energy Q is related to the coefficient of restitution e by

$$
Q=\frac{1}{2} \mu v^{2}\left(1-e^{2}\right),
$$

where μ is the reduced mass and v is the initial difference in the velocities of the two objects.
Answer:
The coefficient of restitution is defined by

$$
e=\frac{\left|v_{1}^{\prime}-v_{2}^{\prime}\right|}{\left|v_{1}-v_{2}\right|},
$$

so $e^{2}=\left(v_{1}^{\prime}-v_{2}^{\prime}\right)^{2} / v^{2} . Q$ is defined by

$$
Q=T-T^{\prime}=\frac{1}{2 m_{1}} p_{1}^{2}+\frac{1}{2 m_{2}} p_{2}^{2}-\frac{1}{2 m_{1}} p_{1}^{\prime 2}-\frac{1}{2 m_{2}} p_{2}^{2} .
$$

It is simplest to work in the centre-of-mass frame. In this frame the total momentum is zero, so $p_{1}^{2}=p_{2}^{2}$ and $p_{1}^{\prime 2}=p_{2}^{\prime 2}$. Therefore

$$
Q=\frac{1}{2 \mu}\left(p_{1}^{2}-p_{1}^{\prime 2}\right)
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass.
Since the total momentum is zero, $m_{1} v_{1}+m_{2} v_{2}=0$ and $m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}=0$, so

$$
v^{2}=\left(v_{1}-v_{2}\right)^{2}=\left(v_{1}+\frac{m_{1}}{m_{2}} v_{1}\right)^{2}=\frac{p_{1}^{2}}{\mu^{2}}
$$

Similarly,

$$
e^{2} v^{2}=\left(v_{1}^{\prime}-v_{2}^{\prime}\right)^{2}=\frac{p_{1}^{\prime 2}}{\mu^{2}}
$$

Substituting these two results into the equation for Q give the expected answer,

$$
Q=\frac{\mu^{2}}{2 \mu}\left(v^{2}-v^{2} e^{2}\right)=\frac{1}{2} \mu v^{2}\left(1-e^{2}\right) .
$$

2. A rocket, whose total mass is m_{0}, contains a mass of fuel ϵm_{0}, where $0 \leqslant \epsilon \leqslant 1$. Suppose that the the fuel is burned at a constant rate of $k \mathrm{~kg} / \mathrm{s}$ and that the relative exhaust velocity V is constant.
(a) [10] If the rocket starts from rest and there are no external forces, what distance will it have travelled at the time that it runs out of fuel?
(b) [5] What is the maximum possible value of this distance?

Answers:
(a) The problem is one-dimensional, so the equation of motion for the rocket, while it is burning fuel, is

$$
m \frac{d v}{d t}=-\frac{d m}{d t} V
$$

(We need the minus sign on the right side because $d m / d t$ is negative.) Note that the mass m on the left side of the equation is not a constant. To solve the equation multiply by $d t$ and separate the variables v and m,

$$
d v=V \frac{d m}{m}
$$

This is easily integrated,

$$
\int_{0}^{v} d v=-V \int_{m_{0}}^{m} \frac{d m}{m}
$$

which gives

$$
v(m)=-V \ln \left(\frac{m}{m_{0}}\right)
$$

Since the burn rate is constant, $m=m_{0}-k t$. Therefore

$$
v(t)=-V \ln \left(\frac{m_{0}-k t}{m_{0}}\right)=-V \ln \left(1-\frac{k t}{m_{0}}\right) .
$$

To find the distance travelled we need to integrate the velocity,

$$
v(t)=\frac{d x}{d t}=-V \ln \left(1-\frac{k t}{m_{0}}\right) .
$$

so

$$
x=-V \int \ln \left(\frac{m_{0}-k t}{m_{0}}\right) d t=-V \int \ln \left(1-\frac{k t}{m_{0}}\right) d t .
$$

To integrate this let $u=1-k t / m_{0}$ and use the fact that the integral of $\ln (u)$ is $u \ln (u)-u$. Note that the initial value of u is 1 .

$$
\begin{aligned}
x & =\frac{m_{0} V}{k} \int_{1}^{u} \ln (u) d u=\frac{m_{0} V}{k}[u \ln (u)-u+1] . \\
& =\frac{m_{0} V}{k}\left[\left(1-\frac{k t}{m_{0}}\right) \ln \left(1-\frac{k t}{m_{0}}\right)+\frac{k t}{m_{0}}\right]
\end{aligned}
$$

The time required to burn all the fuel is $t=\epsilon m_{0} / k$ so the distance traveled at the time that the fuel is exhausted is

$$
x=\frac{m_{0} V}{k}[(1-\epsilon) \ln (1-\epsilon)+\epsilon]
$$

(b) This function is zero if $\epsilon=0$ and increases monotonically as one increases ϵ [to see this note that $\left.d x / d \epsilon=-\left(m_{0} V / k\right) \ln (1-\epsilon)\right]$. Therefore the distance is maximized by setting $\epsilon=1$. In that case, the rocket consists entirely of fuel, and the maximum distance is $m_{0} V / k$. Carrying a lot of fuel, burning it slowly, and with a high exhaust velocity, maximizes the distance travelled.

