1. [10 points] Show that the ratio of two successive maxima in the displacement of a damped harmonic oscillator is constant.
Answer:
Since there are oscillations, the harmonic oscillator must be underdamped. We saw that the solution for the displacement can be written as

$$
x=A e^{-\gamma t} \cos \left(\omega_{r} t+\phi_{0}\right)
$$

Maximum (positive or negative) displacement will occur when the velocity is zero, so we take the derivative of x and set it equal to zero,

$$
v=\ddot{x}=-A e^{-\gamma t}\left(\omega_{d} \sin \left(\omega_{d} t+\phi_{0}\right)+\gamma \sin \left(\omega_{d} t+\phi_{0}\right)\right]=0 .
$$

This has the solution

$$
\tan \left(\omega_{d} t+\phi_{0}\right)=\frac{\gamma}{\omega_{d}} .
$$

The tangent function is periodic, with period π, so if t is a solution of this equation, then so is $t+n \pi / \omega_{d}$ where n is any positive integer. This shows that successive maxima are all separated by the same time interval, $\Delta t=\pi / \omega_{d}$. Successive positive maxima will be separated by an interval of $2 \Delta t$.
To find the ratio of successive maxima we need to compute

$$
\begin{equation*}
\frac{x(t+\Delta t)}{x(t)}=\frac{e^{-\gamma(t+\Delta t)} \cos \left(\omega_{r} t+\phi_{0}+\pi\right)}{e^{-\gamma t} \cos \left(\omega_{r} t+\phi_{0}\right)}=-e^{-\gamma \Delta t} \tag{1}
\end{equation*}
$$

which is constant.
2. [20 points] A simple pendulum whose length $l=9.8 \mathrm{~m}$ satisfies the equation

$$
\begin{equation*}
\ddot{\theta}+\sin \theta=0 \tag{2}
\end{equation*}
$$

(a) If θ_{0} is the amplitude of the oscillation, show that its period T is given by

$$
\begin{equation*}
T=4 \int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-\alpha \sin ^{2} \phi}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\sin ^{2}\left(\theta_{0} / 2\right) \tag{4}
\end{equation*}
$$

Hint: the identity $\cos \theta=1-2 \sin ^{2}(\theta / 2)$ will be helpful.
(b) Expand the integrand in powers of α, integrate term by term, and fond the period T as a power series in α. Keep turns up to and including $O\left(\alpha^{2}\right)$.
(c) Expand α in a power series of θ_{0}, insert the result into the power series found in (b), and find the period T as a power series in θ_{0}. Keep terms up to and including $O\left(\theta_{0}^{2}\right)$.

Answers:
(a) The equation of motion can be expressed in terms of the angular velocity $\omega=\dot{\theta}$ as follows

$$
\ddot{\theta}=\frac{d \omega}{d t}=\frac{d \theta}{d t} \frac{d \omega}{d \theta}=\omega \frac{d \omega}{d \theta}=\frac{d}{d \theta}\left(\frac{1}{2} \omega^{2}\right)=-\sin \theta .
$$

Integrating this we find

$$
\omega^{2}=-2 \int \sin \theta d \theta=2 \cos \theta+\text { const }
$$

Since $\omega=0$ at the turning point where $\theta=\theta_{0}$, the constant must be equal to $-2 \cos \theta_{0}$, so

$$
\omega^{2}=2\left(\cos \theta-\cos \theta_{0}\right)
$$

The period is four times the time needed to go from $\theta=0$ to $\theta=\theta_{0}$.

$$
T=\int d t=\int \frac{d \theta}{\omega}=4 \int_{0}^{\Theta_{0}} \frac{d \theta}{\omega}=4 \int_{0}^{\theta_{0}} \frac{d \theta}{\sqrt{2\left(\cos \theta-\cos \Theta_{0}\right)}}
$$

Using the trig identity $\cos \theta=1-2 \sin ^{2}(\theta / 2)$, this can be written as

$$
\begin{aligned}
T & =2 \int_{0}^{\theta_{0}} \frac{d \theta}{\sqrt{\sin ^{2}\left(\theta_{0} / 2\right)-\sin ^{2}(\theta / 2)}} \\
& =\frac{2}{\sin \left(\theta_{0} / 2\right)} \int_{0}^{\Theta_{0}} \frac{d \theta}{\sqrt{1-\sin ^{2}(\theta / 2) / \sin ^{2}\left(\theta_{0} / 2\right)}}
\end{aligned}
$$

To simplify the denominator we try the substitution

$$
\sin \phi=\frac{\sin (\theta / 2)}{\sin \left(\theta_{0} / 2\right)}
$$

so

$$
\cos \phi d \phi=\frac{\cos (\theta / 2) d \theta}{2 \sin \left(\theta_{0} / 2\right)}
$$

When $\theta=0, \phi=0$ and when $\theta=\theta_{0}, \sin \phi=1$, so the limits of integration change to $(0, \phi / 2)$. Putting this in and simplifying, we get

$$
T=4 \int_{0}^{\pi / 2} \frac{d \phi}{\cos (\theta / 2)}=4 \int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-\alpha \sin ^{2} \phi}}
$$

(b) Using the expansion

$$
(1+x)^{\beta}=1+\beta x+\frac{\beta(\beta-1)}{2!} x^{2}+\frac{\beta(\beta-1)(\beta-2)}{3!} x^{3}+\cdots,
$$

the integral becomes

$$
\begin{aligned}
T & =4 \int_{0}^{\pi / 2}\left(1-\alpha \sin ^{2} \phi\right)^{-1 / 2} d \phi \\
& =4 \int_{0}^{\pi / 2}\left(1+\frac{1}{2} \alpha \sin ^{2} \phi+\cdots\right) d \phi
\end{aligned}
$$

The integral can be done using the identity

$$
\sin ^{2} \phi=\frac{1}{2}(1-\cos 2 \phi) .
$$

We get

$$
\begin{aligned}
T & =4 \int_{0}^{\pi / 2}\left[1+\frac{\alpha}{4}(1-\cos 2 \phi)+\cdots\right] d \phi \\
& =4\left[\left(1+\frac{\alpha^{2}}{4}\right) \phi-\frac{\alpha}{8} \sin 2 \phi\right]_{0}^{\pi / 2}=2 \pi\left(1+\frac{\alpha}{4}\right)
\end{aligned}
$$

(c) Using

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots,
$$

we obtain

$$
\begin{aligned}
\alpha & =\sin ^{2}\left(\theta_{0} / 2\right)=\left[\frac{\theta_{0}}{2}-\frac{\theta_{0}^{3}}{48}+\cdots\right]^{2}, \\
& =\frac{\theta_{0}^{2}}{4}\left[1-\frac{\theta_{0}^{2}}{24}+\cdots\right]^{2}=\frac{\theta_{0}^{2}}{4}\left[1-\frac{\theta_{0}^{2}}{12}\right]+\cdots
\end{aligned}
$$

So, to second order in θ_{0}, the period is given by

$$
T=2 \pi\left(1+\frac{\theta_{0}^{2}}{16}+\cdots\right)
$$

which shows that the period increases with increasing amplitude.

