PHYS 216 Assignment 3

1. A guitar string vibrates harmonically with a frequency of 512 Hz (one octave above middle C on the musical scale). If the amplitude of oscillation of the centerpoint of the string is 0.002 $\mathrm{m}(2 \mathrm{~mm})$, what are the maximum speed and the maximum acceleration at that point?
Answer:
The string vibrates transversely, with a displacement

$$
x=A \sin \left(\omega_{0} t+\phi_{0}\right) .
$$

The maximum displacement is $A=0.002 \mathrm{~m}$.
The frequency (vibrations per second) is $\nu=512 \mathrm{~Hz}$, so

$$
\omega_{0}=2 \pi \nu=3217.0 \text { radians } / \mathrm{s} .
$$

The velocity is

$$
v=\dot{x}=A \omega_{0} \cos \left(\omega_{0} t+\phi_{0}\right)
$$

which has a maximum value of $A \omega_{0}=6.434 \mathrm{~m} / \mathrm{s}$.
The acceleration is

$$
a=\dot{v}=-A \omega_{0}^{2} \sin \left(\omega_{0} t+\phi_{0}\right),
$$

which has a maximum value of $A \omega_{0}^{2}=2.07 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$.
2. Two springs having stiffness k_{1} and k_{2} are used to support a single object of mass m. Show a) that the angular frequency of the oscillation is $\sqrt{\left(k_{1}+k_{2}\right) / m}$ if the springs are connected in parallel, and b) $\sqrt{k_{1} k_{2} /\left(k_{1}+k_{2}\right) m}$ if the springs are connected in series.
Answer:
If the springs are connected in parallel, they are both displaced by the same amount k and so exert forces $F_{1}=k_{1} x$ and $F_{2}=k_{2} x$ respectively. The total force acting on the mass is the sum of these forces $F=\left(k_{1}+k_{2}\right) x$, so the system acts line a single spring of stiffness (spring constant) $k=k_{1}+k_{2}$. The angular frequency is $\omega_{0}=\sqrt{k / m}=\sqrt{\left(k_{1}+k_{2}\right) / m}$.
If the springs are in series, they will extend by different amounts, which add to give the total displacement. The force F on each spring is the same. Therefore,

$$
x=x_{1}+x_{2}=\frac{F}{k_{1}}+\frac{F}{k_{2}}=F \frac{k_{1}+k_{2}}{k_{1} k_{2}}
$$

We see that the force is

$$
F=\frac{k_{1} k_{2}}{k_{1}+k_{2}} x \equiv k x
$$

so the effective spring constant of the system is now $k_{1} k_{2} /\left(k_{1}+k_{2}\right)$.
3. A spring of stiffness k supports a box of mass M in which is placed a block of mass m. If the system is pulled down a distance d from the equilibrium position and then released. Find the force of reaction between the block and the bottom of the box as a function of time. For what value of d does the block just begin to leave the bottom of the box at the top of the vertical oscillations.

The angular frequency will be

$$
\omega_{0}=\sqrt{\frac{k}{M+m}}
$$

and the downward vertical displacement is given by

$$
x=A \sin \left(\omega_{0} t+\pi / 2\right)=d \cos \left(\omega_{0} t\right)
$$

The constants $A=d$ and $\phi_{0}=\pi / 2$ are chosen to satisfy the initial conditions $x(0)=d$ and $v(0)=0$.
The small block feels the acceleration of gravity g and also the acceleration a of the box. The force on the block is proportional to the difference between these accelerations (if $a=g$ the force is zero, as in a freely falling elevator).

$$
F_{\text {reaction }}(t)=m(g-a)=m(g-\ddot{x})=m\left[g+d \omega_{0}^{2} \cos \left(\omega_{0} t\right)\right] .
$$

The maximum upward displacement occurs when $\omega_{0} t=\pi$ so the block will just begin to lift of the box at that time if

$$
F_{\text {reaction }}\left(\pi / \omega_{0}\right)=m\left(g-d \omega_{0}^{2}\right)=0
$$

which happens when

$$
d=g / \omega_{0}^{2}
$$

