1. Prove that

$$
\begin{equation*}
\frac{d}{d t}[\boldsymbol{r} \cdot(\boldsymbol{v} \times \boldsymbol{a})]=\boldsymbol{r} \cdot(\boldsymbol{v} \times \dot{\boldsymbol{a}}) . \tag{1}
\end{equation*}
$$

Answer:
Using the chain rule,

$$
\begin{aligned}
\frac{d}{d t}[\boldsymbol{r} \cdot(\boldsymbol{v} \times \boldsymbol{a})] & =\dot{\boldsymbol{r}} \cdot(\boldsymbol{v} \times \boldsymbol{a})+\boldsymbol{r} \cdot(\boldsymbol{\boldsymbol { v }} \times \boldsymbol{a})+\boldsymbol{r} \cdot(\boldsymbol{v} \times \dot{\boldsymbol{a}}), \\
& =\boldsymbol{v} \cdot(\boldsymbol{v} \times \boldsymbol{a})+\boldsymbol{r} \cdot(\boldsymbol{a} \times \boldsymbol{a})+\boldsymbol{r} \cdot(\boldsymbol{v} \times \dot{\boldsymbol{a}}),
\end{aligned}
$$

The first term on the RHS is zero because $\boldsymbol{v} \times \boldsymbol{a}$ is perpendicular to \boldsymbol{v}. The second term vanishes because $\boldsymbol{a} \times \boldsymbol{a}=0$. This gives the desired result.
2. Suppose that the force acting on a particle of mass m is given by

$$
\begin{equation*}
F=k v x \tag{2}
\end{equation*}
$$

in which k is a positive constant. If the particle passes through the origin $(x=0)$ at time $t=0$ with velocity v_{0}, find x as a function of t.
Answer:
The equation of motion is

$$
\begin{equation*}
m \ddot{x}=m \frac{d v}{d t}=m v \frac{d v}{d x}=k v x . \tag{3}
\end{equation*}
$$

This simplifies to

$$
\begin{equation*}
m \frac{d v}{d x}=k x \tag{4}
\end{equation*}
$$

which can be separated to give

$$
\begin{equation*}
d v=\frac{k}{m} x d x \tag{5}
\end{equation*}
$$

Integrating both sides we have

$$
\begin{equation*}
v=\frac{k}{2 m} x^{2}+v_{0} \tag{6}
\end{equation*}
$$

where the integration constant v_{0} is clearly the speed at $x=0$, as required.
Since $v=d x / d t$, we can again separate varibles

$$
\begin{equation*}
\frac{d x}{k x^{2} / 2 m+v_{0}}=d t \tag{7}
\end{equation*}
$$

This can be integrated to give

$$
\begin{equation*}
t=\frac{1}{v_{0}} \int_{0}^{x} \frac{d x}{k x^{2} / 2 m v_{0}+1}=\sqrt{\frac{2 m}{k v_{0}}} \int_{0}^{x} \frac{d u}{1+u^{2}}=\sqrt{\frac{2 m}{k v_{0}}} \arctan \left(\sqrt{\frac{k}{2 m v_{0}}} x\right) \tag{8}
\end{equation*}
$$

To solve this for $x(t)$, multiply by $\sqrt{k v_{0} / 2 m}$ and take the tangent of both sides,

$$
\begin{equation*}
x=\sqrt{\frac{2 m v_{0}}{k}} \tan \left(\sqrt{\frac{k v_{0}}{2 m}} t\right) . \tag{9}
\end{equation*}
$$

The particle goes to infinity in a finite time $t=(\pi / 2) \sqrt{2 m / k v_{0}}$.
3. A particle of mass m is released from rest a distance b from a fixed origin of force that attracts the particle according to the inverse square law:

$$
\begin{equation*}
F(x)=-k x^{-2} . \tag{10}
\end{equation*}
$$

Show that the time taken for the particle to reach the origin is

$$
\begin{equation*}
t=\pi \sqrt{\frac{m b^{3}}{8 k}} \tag{11}
\end{equation*}
$$

Answer:
It is easy to verify that the potential,

$$
\begin{equation*}
V(x)=-\frac{k}{x} \tag{12}
\end{equation*}
$$

gives rise to the desired force, since

$$
\begin{equation*}
F(x)=-\frac{d V}{d x}=-\frac{k}{x^{2}} \tag{13}
\end{equation*}
$$

Initially, when $x=b$, the kinetic energy T is zero, so the total energy is

$$
\begin{equation*}
E=T+V=-\frac{k}{b} \tag{14}
\end{equation*}
$$

The velocity is then

$$
\begin{equation*}
v(x)=-\sqrt{\frac{2}{m}(E-V)}=-\sqrt{\frac{2 k}{m}\left(\frac{1}{x}-\frac{1}{b}\right)}=-\sqrt{\frac{2 k(b-x)}{m b x}} \tag{15}
\end{equation*}
$$

(We need the negative square root since the particle is moving in the $-x$ direction.) We can now find the time by integrating the reciprocal of the velocity,

$$
\begin{equation*}
t=\int d t=\int_{b}^{0} \frac{d x}{v(x)}=-\sqrt{\frac{m b}{2 k}} \int_{b}^{0} \sqrt{\frac{x}{b-x}} d x=\sqrt{\frac{m b}{2 k}} \int_{0}^{b} \sqrt{\frac{x}{b-x}} d x \tag{16}
\end{equation*}
$$

To do the integral, try the substitution $x=b \sin ^{2} \theta$. Then $d x=2 b \sin \theta \cos \theta d \theta$. The limits of integration change to 0 to $\pi / 2$. The integral becomes

$$
\begin{equation*}
\int_{0}^{b} \sqrt{\frac{x}{b-x}} d x=\int_{0}^{\pi / 2} \frac{2 b \sin ^{2} \theta \cos \theta d \theta}{\sqrt{1-\sin \theta^{2}}}=2 b \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \tag{17}
\end{equation*}
$$

Now simplify this by using the trigonometric identity $\sin ^{2} \theta=(1-\cos 2 \theta) / 2$. we see that

$$
\begin{equation*}
\int_{0}^{\pi / 2}(1-\cos 2 \theta) d \theta=\frac{\pi}{2}-\int_{0}^{\pi / 2} \cos 2 \theta d \theta=\frac{\pi}{2} \tag{18}
\end{equation*}
$$

which gives the desired result

$$
\begin{equation*}
t=\pi \sqrt{\frac{m b^{3}}{8 k}} \tag{19}
\end{equation*}
$$

