PHYS 216 Assignment 10

1. Use Lagrange's method to find the equations of motion for a double harmonic oscillator, consisting of a spring of stiffness k_{1} suspending a mass m_{1}, from which hangs another spring of stiffness k_{2} supporting a mass m_{2}.

Answers:
To specify the configuration of the system at any time, we need two generalized coordinates, which we can take to be the positions of the two masses, x_{1} and x_{2}. Therefore there are two degrees of freedom and there will be two Lagrange equations.
The kinetic energy is

$$
T=\frac{1}{2} m_{1}{\dot{x_{1}}}^{2}+\frac{1}{2} m_{1} \dot{x_{2}}{ }^{2} .
$$

The potential energy is

$$
V=\frac{1}{2} k_{1} x_{1}^{2}+\frac{1}{2} k_{2}\left(x_{2}-x_{1}\right)^{2},
$$

so the Lagrangian is

$$
L=\frac{1}{2}\left(m_{1}{\dot{x_{1}}}^{2}+m_{1} \dot{x_{2}^{2}}\right)-\frac{1}{2}\left[k_{1} x_{1}^{2}+k_{2}\left(x_{2}-x_{1}\right)^{2}\right]
$$

The Lagrange equations are

$$
\begin{array}{r}
m_{1} \ddot{x}_{1}+k_{1} x_{1}-k_{2}\left(x_{2}-x_{1}\right)=0, \\
m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right)=0 .
\end{array}
$$

These are identical to the Newtonian equations of motion.
2. A simple pendulum of length l and mass m is suspended from a point on the circumference of a massless disk of radius a that rotates with an constant angular velocity ω about its axis, as shown below. Use Lagrangian mechanics to find the equation of motion of the mass.

Answer:
Let $\phi=\omega t$ be the the rotation angle of the disk, measured counterclockwise from the highest point, and θ is the angle of the pendulum with respect to the vertical direction. Since ϕ is a known function of time, there is only one degree of freedom, represented by θ.

To find the kinetic energy we need to find the velocity of the mass (in an inertial frame). In a Cartesian coordinate system with origin at the axle of the disk, the position of the pendulum mass is

$$
\begin{equation*}
x=-a \sin \phi+l \sin \theta, \quad y=a \cos \phi-l \cos \theta . \tag{1}
\end{equation*}
$$

The velocity components are

$$
\begin{equation*}
\dot{x}=-a \dot{\phi} \cos \phi+l \dot{\theta} \cos \theta, \quad \dot{y}=-a \dot{\phi} \sin \phi+l \dot{\theta} \sin \theta \tag{2}
\end{equation*}
$$

The kinetic energy is

$$
\begin{align*}
T & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2} m\left[a^{2} \dot{\phi}^{2}+l^{2} \dot{\theta}^{2}-2 a l \dot{\phi} \dot{\theta}(\cos \phi \cos \theta+\sin \phi \sin \theta)\right] \\
& =\frac{1}{2} m\left[a^{2} \dot{\phi}^{2}+l^{2} \dot{\theta}^{2}-2 a l \dot{\phi} \dot{\theta} \cos (\theta-\phi)\right] \tag{3}
\end{align*}
$$

The potential is

$$
V=m g y=m g(a \cos \phi-l \cos \theta) .
$$

So the Lagrangian is

$$
L=\frac{1}{2} m\left[a^{2} \omega^{2}+l^{2} \dot{\theta}^{2}-2 a l \omega \dot{\theta} \cos (\theta-\omega t)\right]-m g(a \cos \omega t-l \cos \theta) .
$$

The Lagrange equation is,

$$
m l^{2} \ddot{\theta}-m a l \omega^{2} \sin (\theta-\omega t)+m g l \sin \theta=0,
$$

which simplifies to

$$
l \ddot{\theta}=-g \sin \theta+a \omega^{2} \sin (\theta-\omega t),
$$

This is an example of a system in which the Lagrangian is an explicit function of time, in addition to the generalized coordinates and velocities.
3. The equation of motion of a particle of rest mass m moving a relativistic speed in a potential V is

$$
m \gamma \frac{d}{d t}(\gamma \boldsymbol{v})=\boldsymbol{f}
$$

where $\boldsymbol{f}=-\gamma \boldsymbol{\nabla} V$ is the relativistic force, $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$ is the Lorentz factor and c is the speed of light. Show that the Lagrangian

$$
L=-m c^{2} / \gamma-V
$$

gives this equation of motion.
Answer:
The particle is moving in three dimensions, with no constraints. Therefore, there are three generalized coordinates, which we take to be x, y, z.
In terms of these, the Lagrangian is

$$
L=-m c^{2}\left[1-\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) / c^{2}\right]^{1 / 2}-V .
$$

Thus,

$$
\begin{align*}
& \frac{\partial L}{\partial \dot{x}}=m\left[1-\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) / c^{2}\right]^{-1 / 2} \dot{x}, \\
& \frac{\partial L}{\partial x}=-\frac{\partial V}{\partial x} . \tag{4}
\end{align*}
$$

The Lagrange equation corresponding to x is therefore

$$
m \frac{d}{d t}(\gamma \dot{x})=-\frac{\partial V}{\partial x} .
$$

There are corresponding equations for y and z. We recognize these as the components of the vector equation

$$
m \frac{d}{d t}(\gamma \boldsymbol{v})=-\nabla V
$$

Multiplying this by γ and substituting $\boldsymbol{f}=-\gamma \boldsymbol{\nabla} V$ gives the desired equation.

