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1 Introduction

The aim of this course is to present the essential concepts of classical mechanics at an intermediate
level. It is assumed that the student has already learned basic concepts such as reference frames,
vectors, forces and Newtons laws of motion. We build on this to study motion in three dimen-
sions, solid body dynamics, damped and driven oscillators, celestial mechanics and end with an
introduction to Lagrangian and Hamiltonian mechanics.1

We begin with a review of some basic concepts.

1.1 Units

One distinguishes between pure numbers such as 1, 2, π, e, etc. which we are dimensionless,
and dimensional quantities that require physical units for their specification. For example a
measurement of distance is meaningless until the units are specified (2.5 cm is not the same distance
as 2.5 m).

Of fundamental importance are the measurements of distance and time. To these we must add a
unit describing mass in order to discuss the acceleration of bodies to which forces are applied. In
the Systèm Internationale (SI) system of units, the base units for these quantities are the metre,
second and kilogram. These are the basic units of mechanics.

When electric or magnetic forces are present, one needs a new base unit, which is taken to be
the ampere, describing electrical current. When considering processes involving heat, a unit of
temperature, the kelvin, is added.

Other systems of units are often used, such as the cgs system. We will use SI units exclusively and
convert other units to SI as necessary.

1.2 Dimensional analysis

The word dimension can have several meanings. In this case it refers to the units of a quantity.
For example, in the SI system, length does not have the same units as time.

Square brackets are used to indicate the dimension of a quantity. For example, the dimensions of
length, time and mass are written rLs, rT s, rM s. The dimensions of other quantities can be reduced
to combinations of the basic units. For acceleration, we have

ras “

„

L

T 2



“ rLsrT s´2. (1.1)

When deriving equations, it is worth checking to be sure that the dimensions of both sides of the
equation are the same. If they are not, the equation is incorrect. Of course equality of units does
not guarantee that the equation is correct. It is a necessary but not a sufficient condition.

1Many figures in these notes are reproduced from the text book Analytical Mechanics by Fowles and Cassiday
and are copyright. They appear with their original figure numbers and captions.
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Dimensional analysis is a simple but powerful technique that can give insight into physical laws. In
many cases, simple relationships between physical parameters can be guessed, to within a constant
of proportionality, just by considering the units.

As an example, consider waves on the ocean. These come in various sizes which we can characterize
by the wavelength λ. You might have noticed that the speed with which a wave travels depends on
its wavelength. Waves that have a large wavelength propagate faster. This is unlike the situation
for sound, and light waves, for which the velocity is practically independent of wavelength.

Lets try to guess the relationship between the propagation speed v and the wavelength λ of a wave.
We begin by considering what quantities might be relevant. Since the waves oscillate due to the
restoring force provided by gravity, we expect that the gravitational acceleration g at the Earth’s
surface, will play a role.

Lets write our proposed formula in the form

v “ αgβλγ (1.2)

where α, β, γ are dimensionless numbers. The units of g are rLsrT s´2 and the units of v are
rLsrT s´1. So, if we take the dimensions of both sides of the equation we find

rLsrT s´1 “ rLsβrT s´2βrLsγ “ rLsβ`γrT s´2β (1.3)

In order to match the powers of rT s on both sides, we need β “ 1{2. Then, the powers of rLs
require that γ “ 1{2. Our formula becomes

v “ α
a

gλ (1.4)

Dimensional analysis cannot tell us the value of the constant α, but we expect that it will be of
order unity. In fact, the correct equation, from the theory of classical hydrodynamics, is

v “

c

gλ

2π
(1.5)

or more simply
v “

a

g{k (1.6)

where k “ 2π{λ is the wave number. Since g “ 9.81 m/s2, we see that a water wave having a
wavelength of 1 m will travel at a speed of

a

9.81{2π “ 1.25 m/s.

Our equation is valid only in deep water, where the depth h " λ. But a tsunami can have a
wavelength that is several hundred km. This is much greater than the typical depth of the ocean,
about 5 km. For such long wavelengths, the speed is given by

v “
a

gh{2π (1.7)

which is about 88 m/s (318 km/hr).
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1.3 Reference frames

The positions of a point in space can be described by specifying its distance from a reference point,
called the origin, along three independent directions. This requires three numbers, for example,
px, y, zq, which are called the coordinates of the point. Clearly, the coordinates have meaning
only with respect to a particular choice of the origin and the reference directions, together called
a frame of reference. In a different reference frame, the same point will generally have different
coordinates. If the point, or the reference frame, is moving, the coordinates will be functions of
time.

A frame of reference that is stationary, or moving with constant velocity, is called an inertial
frame. We shall see that inertial frames play a special role in classical mechanics.

In a Cartesian coordinate system, the reference directions are mutually orthogonal (at right
angles to each other) and are independent of the position of the point. We will use this type
of frame frequently as it simplifies many calculations. However, there will be situations where a
non-Cartesian system, such as spherical polar coordinates, is better suited to the symmetry of the
problem.

1.4 Coordinate transformations

Consider two Cartesian coordinate systems, O and O1 that have the same origin but are rotated
with respect to each other about the z axis by an angle θ, in the direction of the right-hand rule.
Then, a point that has coordinates px, y, zq in the O reference frame will have coordinates

x1 “ x cos θ ` y sin θ,

y1 “ ´x sin θ ` y cos θ,

z1 “ z,

in the O1 frame.

This can be written in matrix form,

¨

˝

x1

y1

z1

˛

‚“

¨

˝

cos θ sin θ 0
´ sin θ cos θ 0

0 0 1

˛

‚

¨

˝

x
y
z

˛

‚, (1.8)

or more simply
x1 “ Rx. (1.9)

This is an example of a linear transformation between the coordinates x and x1. In this case
it is a simple rotation but more generally, R can be any non-singular (invertible) matrix which
can represent a rotation about an arbitrary axis, stretching and possibly reflection of the reference
axes.

The above rotation Rpθq can be undone by rotating again by an angle ´θ. Therefore

x “ Rp´θqx1 “ Rp´θqRpθqx. (1.10)
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Therefore
Rp´θqRpθq “ I, (1.11)

where I is the identity matrix that has ones along the diagonal and zeros elsewhere. This means
that Rp´θq is the inverse of Rpθq,

Rp´θq “ R´1pθq (1.12)

Recalling that sinp´θq “ ´ sin θ and cosp´θq “ cos θ, we see that Rp´θq is equal to the transpose
of Rpθq. Therefore, the rotation matrix satisfies

RT “ R´1 (1.13)

Matrices satisfying this condition are called orthogonal matrices. They form a group called the
orthogonal group. A rotation about any axis can be represented by an orthogonal matrix.

1.5 Scalars

Some physical quantities can be represented by a single number, or function of position. An example
is the temperature at each point inside a room. If we rotate our reference frame, the temperature
does not change, even though the coordinates of the point do. In other words,

T 1px1q “ T pxq. (1.14)

Quantities or functions that behave this way are called scalars.

1.6 Vectors

Other quantities, such as force or velocity require both a magnitude and a direction to specify
them. These are vectors and can be represented geometrically by arrows. We represent vectors
using bold-face type, such at A, and the length of the vector by regular type and also by enclosing
the vector between vertical lines,

A “ |A|. (1.15)

1.7 Vector equality

Two vectors are said to be equal if they have the same length and same direction. It does not
matter where they are located. One is free to move vectors around in order to compare them.

1.8 Vector addition and scalar multiplication

Vector addition can be defined geometrically as the result of putting the tail of one vector on the
head of the other. Their sum is a vector extending from the tail of the second to the head of the
first.

Multiplying a vector by a number (a scalar) changes the length of the vector but not its direction.
For example 2V is a vector that points in the same direction as V but is twice as long. ´V “ ´1V
is a vector that has the sem length as V but points in the opposite direction.
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1.9 Unit vectors and components

Unit vectors have unit length. Place three unit vectors at the origin of a Cartesian reference frame
and orient them to point along the x, y and z directions. Call them i, j and k respectively. Then
an arbitrary vector V can be written as a sum

V “ Vxi` Vyj ` Vzk. (1.16)

The numbers Vx, Vy, Vz are called components of the vector V . In a Cartesian frame, these are
just the coordinates of the point at the tip of the vector when its tail is at the origin. In this
reference frame, we can represent the vector by a column matrix of components

V “

¨

˝

Vx
Vy
Vz

˛

‚. (1.17)

If we now rotate the reference frame (without rotating the vector V ), the orientation of the unit
vectors will change. Therefore in the rotated frame, the components of V will be different. They
will now correspond to the coordinates of the tip of the vector in the rotated frame. Looking back
at our discussion of coordinate transformations, we see that the components are related by the
same matrix R that relates the coordinates of the two frames,

V 1 “ RV . (1.18)

We shall often just denote a vector by its components as a row vector, bsA “ pAx, Ay, Azq with the
understanding that we actually mean a column vector.

As an example, consider the position vector which extends from the origin to some point P . In a
Cartesian frame, the coordinates of this point are px, y, zq. These are the same as the components
of the position vector, since we can write this vector in the form

r “ xi` yj ` zk. (1.19)

Vector addition and scalar multiplication can now be defined algebraically, by means of components.

aA “ paAx, aAy, aAzq, (1.20)

A`B “ pAx `Bx, Ay `By, Az `Bzq. (1.21)

1.10 Scalar product

Two kinds of multiplication are defined for vectors. The simplest is the scalar product, also called
the dot product. In terms of components, it is defined by

A ¨B “ AxBx `AyBy `AzBz. (1.22)

The dot product has a coordinate-free geometrical interpretation. To see this, choose a frame in
which A lies along the x axis and B is in the x´ y plane. Then

A “ Axi “ Ai,

B “ Bxi`Byj “ B cos θ i`B sin θ j, (1.23)
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where θ is the angle between the two vectors. Thus

A ¨B “ AB cos θ. (1.24)

From this we see that A2 “ A ¨A “ A2
x `A

2
y `A

2
z.

It follows that if vectors A and B are perpendicular (θ “ π{2), then A ¨B “ 0 and vice versa. We
then say that they are orthogonal vectors.

1.11 Vector product

Another kind of multiplication is the vector product, also called the cross product, AˆB “ C.
This product gives a new vector defined by,

AˆB “ pAyBz ´AzByqi` pAzBx.´AxBzqj ` pAxBy ´AyBxqk. (1.25)

From this we see that the product is anticommutative

AˆB “ ´B ˆA, (1.26)

To find the geometrical interpretation of the cross product, take the dot product with A,

A ¨ pAˆBq “ AxpAyBz ´AzByq `AypAzBx.´AxBzq `AzpAxBy ´AyBxq “ 0, (1.27)

and similarly for the dot product with B. Therefore, A ˆB is a vector that is perpendicular to
both A and B.

To find the magnitude of this vector, chose a frame in which A “ Ai and B “ B cos θ i`B sin θ j,
as before. Putting this into the definition we find

AˆB “ AB sin θ k. (1.28)

We see that the magnitude is AB sin θ and the direction is given by the right-hand rule.

1.12 Vector identities

It is straightforward to prove the following useful identities,

A ¨ pB `Cq “ A ¨B `A ¨C, (1.29)

Aˆ pB `Cq “ AˆB `AˆC, (1.30)

apA ¨Bq “ aA ¨B “ A ¨ aB, (1.31)

apAˆBq “ aAˆB “ Aˆ aB, (1.32)

A ¨B ˆC “ B ¨C ˆA “ C ¨AˆB, (1.33)

Aˆ pB ˆCq “ pA ¨CqB ´ pA ¨BqC (1.34)
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1.13 The derivative of a vector

Consider a vector V ptq that is changing with time. The time derivative of the vector is defined in
the usual manner,

dV

dt
“ lim

∆tÑ0

V pt`∆tq ´ V ptq

∆t
. (1.35)

This derivative of V is a new vector, which generally does not point in the same direction, or have
the same length, as V .

For example, consider a point P ptq, that is moving with time. The position of this point at time t
is described by the position vector rptq. The velocity of the point is defined as the time derivative
of the position vector.

v “
dr

dt
. (1.36)

In a Cartesian coordinate system, r can be written in the form given by Eqn (1.19). As long as
the frame is not rotating, the basis vectors i, j and k do not change with time. Therefore,

v “
dr

dt
“
dx

dt
i`

dy

dt
j `

dz

dt
k. (1.37)

Time derivatives occur frequently, so it is convenient to use a simpler notation. A dot above a
variable will denote a time derivative, so the previous result can be written more simply as

v “ 9r “ 9xi` 9yj ` 9zk. (1.38)

A second time derivative will be denoted with two dots, and so on. The acceleration is defined
as the time derivative of the velocity. Thus

a “ 9v “ :xi` :yj ` :zk. (1.39)

1.14 Circular motion

As an example, consider a particle moving uniformly in a circle in the x´ y plane, with radius r.
The angle θ increases with time t according to

θ “ ωt, (1.40)

where ω, the angular frequency is a constant. The position vector then has the form

rptq “ cospωtq i` sinpωtq j, . (1.41)

We see that the point returns to the same position after a time T “ 2π{ω, which is the period of
the motion.

Let’s now compute the velocity and acceleration of the particle. Differentiating, we find

v “ 9r “ ´ω sinpωtq i` ω cospωtq j, (1.42)

a “ 9v “ ´ω2 cospωtq i´ ω2 sinpωtq j, (1.43)
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Comparing Eqns (1.43) and (1.41) we see that

a “ ´ω2r (1.44)

so the acceleration is directed inward, directly towards the centre of the circle.

As expected, the velocity vector is perpendicular to the position vector, and therefore tangent to
the circle, which can be seen by taking the dot product of the two vectors,

v ¨ r “ ´ω2 sinpωtq cospωtq ` ω2 cospωtq sinpωtq “ 0. (1.45)

1.15 Polar coordinates

We can also analyze the case of circular motion using polar coordinates (r, θ) in two dimensions.

As Figure 1.11.1 shows, the coordinate r is the length of the position vector and θ is the angle that
it makes with the x axis. Each of these two coordinates is associated with a unit vector. The unit
vector points in the direction that the point P moves when the corresponding coordinate increases.
So, the unit vector er associated with r points in the radial direction, away from the origin.

If θ increases, the point P moves perpendicular to r, in the direction shown. Thus, the unit vector
eθ is perpendicular to r and to er.

Note that the directions of these unit vectors depend on the location of the point P . If this point
moves, they will both change their direction in general. We see that for polar coordinates, the unit
vectors are not constant, but in general will be functions of time.

We can find the derivatives of these unit vectors by letting θ increase by a small amount ∆θ.
Referring to the figure, we see that as δθ Ñ 0 the change in the two vectors is given by

∆er “ ∆θ eθ, (1.46)

∆eθ “ ´∆θ er. (1.47)
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Dividing by ∆θ and taking the limit ∆θ Ñ 0, we get

der
dθ

“ eθ, (1.48)

deθ
dθ

“ ´er. (1.49)

Let’s now calculate the velocity and acceleration of a particle in circular motion, as before. The
position vector is

r “ r er (1.50)

To get the velocity, we take the derivative with respect to time. The only thing that changes is er.
Using the chain rule, we find

v “ r
der
dt

“ r
dθ

dt

der
dθ

“ rω eθ. (1.51)

Similarly, we find the acceleration

a “ rω
deθ
dt

“ ´rω2 er, (1.52)

and we see that a “ ´ω2r as before.

1.16 General motion in three dimensions

In general, all coordinates of an object will vary with time, and with the exception of a non-rotating
Cartesian frame, the unit vectors will vary too. To find the velocity and acceleration, we must take
the derivatives of all time-varying quantities, using the chain rule.

In a Cartesian frame, the result is simple,

r “ x i` y j ` z k, (1.53)

v “ 9x i` 9y j ` 9z k, (1.54)

a “ :x i` :y j ` :z k. (1.55)

In a cylindrical coordinates, (R,φ, z), we must also differentiate the unit vectors,

r “ R eR ` z ez, (1.56)

v “ 9R eR `R 9φ eφ ` 9z ez, (1.57)

a “ p :R´R 9φ2q eR ` p2 9R 9φ`R:φq eφ ` :z ez, (1.58)

(1.59)

In a spherical coordinates, (r, θ, φ), the result is

r “ r er, (1.60)

v “ 9r er ` r 9φ sin θ eφ ` r 9θ eθ, (1.61)

a “ p:r ´ r 9φ2 sin2 θ ´ r 9θ2q er ` pr:θ ` 2 9r 9θ ´ r 9φ2 sin θ cos θq eθ (1.62)

` pr :φ sin θ ` 2 9r 9φ sin θ ` 2r 9θ 9φ cos θq eφ, (1.63)
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1.17 Newton’s laws

Building upon pioneering experiments and observations by Galileo, Newton proposed three laws of
motion:

1. An object at rest, or in uniform motion, continues in that state unless acted on by an external
force;

2. The change of motion is proportional to, and in the direction of, the applied force;

3. To every action there is an equal and opposite reaction.

The first law raises philosophical questions. At rest with respect to what? Is a single object,
alone in the Universe, at rest? How would one know if it was moving? To address this, Newton’s
introduced the concept of absolute space. Effectively, this is a frame that all observers agree is at
rest. The justification for this concept is solely that Newton’s laws correctly predict the observed
dynamics of objects, provided that their speeds are much less than the speed of light.

In fact Newton’s laws hold in any inertial frame - these are frames moving with constant velocity
with respect to the absolute frame. Only in an inertial frame does an object at rest remain at rest,
or in a state of uniform motion. Galileo had already reached this conclusion.

Newton’s second law is normally written as

F “ ma, (1.64)

where F is the external force, a the acceleration, and the proportionality constant m is called the
mass of the object.

Newton’s third law leads to the fundamental concept of conservation of momentum.

1.18 Linear momentum

The (linear) momentum of an object is defined by

p “ mv. (1.65)

Since mass is constant, we can write Newton’s second law in the form

F “
dp

dt
. (1.66)

Consider an isolated system consisting of two objects, with masses m1 and m2, connected by a
spring that is pushing them both apart. Here isolated means not acted upon by any external
forces. Newton’s third law requires that

m1
dv1

dt
“ ´m2

dv2

dt
, (1.67)

which we can rewrite as
d

dt
pp1 ` p2q “ 0 (1.68)
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This implies that the total momentum

p1 ` p2 “ constant (1.69)

This is easily extended to any number of objects, and any kind of forces (electrostatic, gravity, etc).
We thus arrive at the law of conservation of linear momentum :

The total linear momentum of an isolated system is conserved.

In fact the law of conservation of momentum is more fundamental than Newton’s laws and applies
even when Newton’s laws fail.
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2 Motion in one dimension

We often need to solve problems in which a force acts on an object and we wish to determine its
subsequent position and velocity as a function of time. This involves solving the equation of motion

m:x “ F px, 9x, tq. (2.1)

This is a second order vector differential equation. The solution will depend on the initial conditions,
namely the initial position and velocity of the object.

To illustrate this, we first consider simple problems in which the object is constrained to move in
one dimension. In this case the motion can be described by a single scalar parameter such as x, or
θ, so a vector equation is not needed.

2.1 Constant force

This is the simplest situation, where the equation of motion is

:xptq “
F

m
” a. (2.2)

The solution is found by integrating twice with respect to time,

v “ 9x “

ż

:xdt “

ż

adt “ at` v0,

x “

ż

vdt “

ż

pat` v0qdt “
1

2
at2 ` v0t` x0. (2.3)

Here v0 and x0 are constants of integration, determined by the initial conditions. We see that they
correspond to the initial velocity and position, respectively, v0 “ 9xp0q, x0 “ xp0q.

By eliminating t, one gets the familiar relation between distance and velocity for an object under-
going constant acceleration,

v2 ´ v2
0 “ 2apx´ x0q. (2.4)

2.2 Energy

More interesting is the case when the force depends on position (but not on velocity or time),

m:xptq “ F pxq (2.5)

In this case we can eliminate time by writing

:x “
dx

dt

d 9x

dx
“ v

dv

dx
(2.6)

so

F pxq “ mv
dv

dx
“
m

2

dv2

dx
“
dT

dx
, (2.7)

where

T “
1

2
mv2 (2.8)
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is the kinetic energy of the particle. We can now integrate with respect to x,

W “

ż x

x0

F pxqdx “ T ´ T0. (2.9)

W is the work done by the force as the particle moves from x0 to x. We see that it is equal to the
change in kinetic energy of the object.

To proceed further, let suppose that the force can be written as the derivative of some function
V pxq,

F pxq “ ´
dV

dx
. (2.10)

This is always true in one dimension, as long as the force is a smooth function of x. Then, the work
done is just

W “ ´

ż x

x0

dV

dx
dx “ ´

ż V pxq

V px0q
dV “ V px0q ´ V pxq. (2.11)

V pxq is called the potential energy.

Combining this with the previous expression for W we find that

T ´ T0 “ V px0q ´ V pxq (2.12)

so
T ` V pxq “ T0 ` V px0q ” E. (2.13)

E is a constant, since T0 and V px0q do not depend on time. It is called the total energy. We
see that as the object moves, the potential and kinetic energies may change, but the total energy
remains constant.

The extension to multiple objects is straightforward. We add the kinetic energies of all the objects
to get the total kinetic energy, and similarly to get the total potential energy. This leads to the
law of conservation of energy.

If the force is not an explicit function of time, the total energy of a system is conserved.

We can now find the velocity of the object as a function of its position. Start with

T ` V pxq “
m

2
v2 ` V pxq “ E, (2.14)

and now solve for v,

vpxq “

c

2

m
rE ´ V pxqs. (2.15)

From this we see that there is no solution if V pxq ą E. The object is confined to regions that
have V pxq ď E, Also, if V pxq “ E, v “ 0. The object’s velocity is zero at positions where the
potential energy equals the total energy. These positions are called turning points, because the
object reverses direction when it reaches these points.

One can now a relation between the position of the object and time by integrating the velocity,

t “

ż

dt “

ż

dx

v
“

c

m

2

ż

dx
a

E ´ V pxq
. (2.16)
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2.3 Velocity-dependent forces

Suppose now that the force depends on the velocity of the particle. Examples are the drag that
an object experiences when moving through a fluid, and the Lorentz force on a charged particle
moving in a magnetic field. The equation of motion is now

F pvq “ m
dv

dt
“ mv

dv

dx
. (2.17)

which has solutions

t “ m

ż

dv

F pvq
, (2.18)

x “ m

ż

vdv

F pvq
. (2.19)

For example, the force on a sphere moving through a fluid, including air, can be approximated by
the equation

F pvq “ ´vpc1 ` c2|v|q. (2.20)

The first term is a linear relationship in which the force is proportional to the velocity. It is called
Stokes law after George Stokes, who first identified it in 1851. The coefficient c1 is proportional
to the viscosity of the fluid and the diameter of the sphere.

The second term is quadratic in the velocity. It represents a drag force caused by momentum
transfer from molecules striking the sphere. The change in momentum is proportional to velocity,
and so is the rate at which the sphere encounters molecules.

For a sphere of diameter D moving through air,

c1 “ 1.55ˆ 10´4D,

c2 “ 0.22D2, (2.21)

in SI units. These two coefficients are equal for D “ 0.0007 m “ 0.7 mm. For objects that are
smaller than this, the linear term will dominate. For objects larger than this the quadratic term
dominates.

To get an idea of behaviour consider the two limiting cases of linear drag (c2|v| ! c1) and quadratic
drag (c2|v| " c1). We take the initial velocity to be v0 at t “ x “ 0.

For the linear case we have

t “ ´m

ż v

v0

dv

c1v
“ ´

m

c1
pln v ´ ln v0q “ ´

m

c1
ln

ˆ

v

v0

˙

, (2.22)

x “ ´m

ż v

v0

dv

c1
“ ´

m

c1
pv ´ v0q. (2.23)

The first equation can be solved for v by multiplying by ´c1{m and taking the exponential. This
gives

v “ v0e
´c1t{m (2.24)

x “
mv0

c1

´

1´ e´c1t{m
¯

. (2.25)
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We see that the velocity decreases exponentially with a characteristic time τ1 “ m{c1. In the limit
of infinite time, the distance traveled is v0τ1.

In the quadratic case, assuming v ą 0, we have

t “ ´m

ż v

v0

dv

c2v2
“
m

c2

ˆ

1

v
´

1

v0

˙

, (2.26)

x “ ´m

ż v

v0

dv

c2v
“ ´

m

c2
ln

ˆ

v

v0

˙

. (2.27)

Solving the first equation for v we find

v “
v0

1` t{τ2
. (2.28)

where the characteristic time is now τ2 “ m{c2v0. Substituting this in the equation for x gives

x “ v0τ2 lnp1` t{τ2q. (2.29)

In this case, the object never stops. This is because a quadratic force is less effective than a linear
force at low speed.
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2.4 Falling raindrops

Consider a raindrop of diameter D falling vertically. We suppose that the drop is released with
initial velocity v0 “ 0 at time t “ 0 and take xptq to be the distance traveled downward. The force
has two parts,

F “ mg ´ vpc1 ` c2|v|q. (2.30)

where c1 and c2 are defined in Eqn. (2.21).

The equation of motion is
dv

dt
“ v

dv

dx
“ g ´

v

m
pc1 ` c2|v|q. (2.31)

To simplify this define a1 “ c1{mg and a2 “ c2{mg

The solution for t, assuming v ą 0, is

t “
1

g

ż v

0

dv

1´ a1v ´ a2v2
(2.32)

2.4.1 Linear approximation

If a2 “ 0, the integral becomes

t “ ´
1

ga1
lnp1´ a1vq (2.33)

which has the solution

vptq “
1

a1

´

1´ e´t{τ1
¯

. (2.34)

We see that the velocity exponentially approaches a limiting value of 1{a1 with a characteristic
time τ1 “ 1{ga1.

2.4.2 General case

To solve the general case, observe that the denominator can be factored, giving

t “ ´
1

ga2

ż v

0

dv

pv ´ v`qpv ´ v´q
,

“ ´
1

ga2pv` ´ v´q

ż v

0

ˆ

1

v ´ v`
´

1

v ´ v´

˙

dv,

“ ´
1

g
a

a2
1 ` 4a2

rlnpv{v` ´ 1q ´ lnpv{v´ ´ 1qs ,

“ ´τ ln

ˆ

v{v` ´ 1

v{v´ ´ 1

˙

, (2.35)
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where

v` “
1

2a2

ˆ

´a1 `

b

a2
1 ` 4a2

˙

, (2.36)

v´ “
1

2a2

ˆ

´a1 ´

b

a2
1 ` 4a2

˙

, (2.37)

τ “
1

g
a

a2
1 ` 4a2

. (2.38)

Solving this for v, we get

v{v` ´ 1 “ pv{v´ ´ 1qe´t{τ

v ´ v` “ pv ´ v´q
v`
v´
e´t{τ

v

ˆ

1´
v`
v´
e´t{τ

˙

“ v`

´

1´ e´t{τ
¯

(2.39)

so

v “ v`
1´ e´t{τ

1´ pv`{v´qe´t{τ
. (2.40)

We see that as tÑ8, the velocity approaches the limit v Ñ v`, with a characteristic time τ . This
speed is called the terminal velocity

v` “
1

2a2

ˆ

´a1 `

b

a2
1 ` 4a2

˙

“
c1

2c2

ˆ

b

1` 4mgc2{c2
1 ´ 1

˙

,

“
0.00035

D

´

a

1` 3.59ˆ 108m´ 1
¯

» 6.6

?
m

D
. (2.41)

Since water has a density ρ “ 1000 kg/m3, a 2 mm diameter raindrop will have a mass of

m “ ρV “
4πR3ρ

3
“

4πp0.001q3p1000q

3
“ 4.19ˆ 10´6 kg, (2.42)

and a terminal velocity of

v` “ 6.6

?
4.19ˆ 10´6

0.002
“ 6.8 m/s. (2.43)

A larger object, such as a spherical skydiver of mass 70 kg and diameter 0.5 m, would reach a
terminal velocity of 110 m/s (about 400 km/hr).

Page 23 of 97



Intermediate Mechanics 2017

Figure 2.1: Raindrop velocity vs. time. The upper curve shows the limit of linear drag, the lower
curve shows the limit of pure quadratic drag.
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3 Oscillatory motion

Lets return now to the case when the force is a function of position F “ F pxq. In that case the
equation of motion is given by

m:x “ ´F pxq “ ´
dV pxq

dx
, (3.1)

where V pxq is the potential energy function.

Suppose that V pxq has a minimum at some value of x. Call this value x0. Let u “ x ´ x0 be the
displacement from this minimum position. Since x0 is a constant, du “ dx, so dV {dx “ dV {du

At the minimum, u “ 0. Also, the derivative dV {du “ 0 at this point.

If V(u) is a smooth function, it can be approximated by a polynomial, as follows,

V puq “ a0 ` a1u` a2u
2 ` a3u

3 ` ¨ ¨ ¨ , (3.2)

where a0, a1, a2, a3, . . . are constants. In terms of the variable u, the force is now

F puq “ ´
dV

dx
“ ´

dV

du
“ ´pa1 ` 2a2u` 3a3u

2 ` ¨ ¨ ¨ q (3.3)

Because the derivative of V is zero when u “ 0, we must have a1 “ 0.

So the equation of motion is now

m:u “ ´2a2u´ 3a3u
2 ´ ¨ ¨ ¨ . (3.4)

If the displacement u is small, the higher-order terms a3u
2, a4u

3, etc will be small compared to
the linear term a2u. In the limit of small displacements, they can be neglected. (This amounts to
approximating the potential function with a parabola.) To simplify what follows define the spring
constant constant k “ 2a2.

We thus obtain a second-order linear differential equation

:u “ ´
k

m
u (3.5)

which describes a simple harmonic oscillator.

It is easy to verify that a solution is

u “ A sinpω0t` φ0q, (3.6)

where A and φ0 are arbitrary constants and

ω0 “

c

k

m
. (3.7)

This represents a sinusoidal oscillation, with amplitude A and period T0 “ 2π{ω0. The parameter
ω0 is called the angular frequency. The constant φ0 describes the phase of the oscillation at
t “ 0.
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The velocity is found by differentiating this solution

9u “ Aω0 cospω0t` φ0q, (3.8)

If the values of u and v “ 9u are specified at some time, say t “ 0, then we can determine A and φ0

by solving the two equations

u0 “ up0q “ A sinpφ0q, (3.9)

v0 “ vp0q “ Aω0 cospφ0q (3.10)

so

φ0 “ arctan

ˆ

ω0u0

v0

˙

(3.11)

A2 “ u2
0 `

v2
0

ω2
0

. (3.12)

3.1 Vibrating diatomic molecule

As an example of oscillatory motion, consider a diatomic molecule consisting of two atoms of masses
m1 and m2 separated by a distance d. Let the position vectors of the two atoms, at time t, be r1

and r2. The separation between the two atoms can be represented by the vector r “ r1 ´ r2.

We chose an inertial reference frame in which the total momentum p “ p1`p2 “ 0. In this frame,

m1 9r1 `m2 9r1 “ 0, (3.13)

Which can be written as
d

dt
pm1r1 `m2r2q “ 0, (3.14)

so
m1r1 `m2r1 “ const, (3.15)

We chose the location the origin so that the constant is zero. This is called the centre-of-mass
frame. In this frame,

m1r1 “ ´m2r1. (3.16)

The potential energy of the system is a function of the separation r between the two atoms. It can
be described by the Morse potential,

V pxq “ V0r1´ e
´x{δs2 ´ V0 “ ´2V0e

´x{δ ` V0e
´2x{δ. (3.17)

where x “ r ´ r0 is the displacement from the equilibrium separation r0.

If the molecule is stretched or compressed, the first atom feels a force F 1prq directed towards the
equilibrium position. The second atom feels an equal and opposite force F 2 “ ´F 1 (imagine a
spring joining the two atoms).
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In vector form, the equations of motion for the two atoms are

:r1 “
1

m1
F 1prq (3.18)

:r2 “
1

m2
F 2prq (3.19)

(3.20)

If we subtract the second equation from the first we get

:r “
1

µ
F 1prq, (3.21)

where µ, defined by
1

µ
“

1

m1
`

1

m2
(3.22)

is called the reduced mass of the system.

We can now take the magnitude of this vector equation and write the result in terms of the
displacement u. This gives a single differential equation

:x “
1

µ
F1pxq “ ´

1

µ

dV pxq

dx
. (3.23)

Let’s now approximate the Morse potential by a polynomial. To do this we make a Taylor ex-
pansion about the minimum, x “ 0,

V pxq “ V p0q ` x

„

dV

dx



x“0

`
x2

2!

„

d2V

dx2



x“0

`
x3

3!

„

d3V

dx3



x“0

` ¨ ¨ ¨ . (3.24)

We know that the second (linear) term must be zero because the potential has a minimum at x “ 0.
Therefore

V pxq “ V p0q `
1

2

„

d2V

dx2



x“0

x2 ` ¨ ¨ ¨ (3.25)

For small displacements, x ! δ, the higher order terms are small compared to the quadratic term
and can be ignored in a first approximation. Our equation of motion reduces to that of a simple
harmonic oscillator,

:x “ ´
k

µ
x “ ´ω2

0x. (3.26)
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with spring constant

k “

„

d2V

dx2



x“0

“
2V0

δ2
. (3.27)

If excited, the diatomic molecule will vibrate about its equilibrium separation with frequency ω0 “
a

k{µ.

3.2 The rigid pendulum

A simple example of oscillatory motion is the simple pendulum. Here, a mass m is attached to the
end of a rigid rod of length l that is free to pivot about its endpoint C. Let θ be the angle made
by the rod with the vertical. On one side θ is positive and on the other side it is negative.

It is simplest to use a polar coordinate system, centred at C. In this system, the mass has coordi-
nates (r, θ) with r “ l. Because the mass is constrained to move only in the θ direction (positive
or negative), the only components of velocity and acceleration that we need consider are the θ
components.

At any given time, these components will be

vθ “
d

dt
prθq “ l 9θ, (3.28)

aθ “ 9vθ “ l:θ. (3.29)

The force F is provided by gravity, which acts in the downward vertical direction with magnitude
mg. The component of this force in the θ direction is

Fθ “ eθ ¨ F “ ´mg sin θ (3.30)

The equation of motion is therefore
ml:θ “ ´mg sin θ (3.31)
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which simplifies to
:θ “ ´

g

l
sin θ. (3.32)

In principle we could solve this exactly using the general methods developed in the previous section.
However this leads to integrals that have no analytic solution. A simpler way to proceed is to expand
sin θ in a Taylor series,

sin θ “ θ ´
θ3

3!
`
θ5

5!
` ¨ ¨ ¨ (3.33)

If the angle θ is small enough, we can just keep the linear term and ignore the higher-order terms.
We then have the equation of a harmonic oscillator,

:θ “ ´
g

l
θ. (3.34)

We see that the pendulum oscillates with an angular frequency

ω0 “

c

g

l
, (3.35)

which is independent of the mass. The period is

T “
2π

ω0
“ 2π

d

l

g
. (3.36)

The effect of the non-linear terms in the expansion of sin θ will be considered later.

3.3 Energy of a harmonic oscillator

In a harmonic oscillator, the potential corresponding to the force ´kx is

V pxq “
k

2
x2. (3.37)

This is the potential energy of the oscillator. The kinetic energy is T “ m 9x2{2 and the sum
T ` V “ E is the total energy, which is constant.

The turning points of the oscillator are the values of x for which v “ 9x “ 0, which correspond to
V “ E.

3.4 Effect of a constant force on a harmonic oscillator

Suppose we have a mass m hanging from a spring. Let x measure the vertical position of the mass
(increasing in the downward direction). Then the force on the mass is

F “ mg ´ kpx´ xeq (3.38)

where xe is the equilibrium position of the mass if there was no gravitational force.

When the mass is attached, the spring will extend to a new equilibrium x0 position that results in
no net force on the mass. Therefore

0 “ mg ´ kpx0 ´ xeq, (3.39)
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so
x0 “ xe `

mg

k
(3.40)

In terms of the displacement from the new equilibrium position, the force is

F “ mg ´ kpx´ xeq “ ´kpx´ x0q (3.41)

and the constant force has been absorbed into the change in equilibrium position. Apart from a
change in equilibrium position, a constant force has no effect on the motion of a harmonic oscillator.

3.5 Damped harmonic oscillator

In our discussion of harmonic motion, we have so far ignored frictional forces. A pendulum, or
an object on a spring, will loose energy to frictional or drag forces. As a result, its amplitude of
oscillation will gradually decrease. This is called damping.

As an example, consider a mass hanging vertically from a spring and suppose that it is subject to
a linear drag force F “ ´cv. Let x denote the displacement from the equilibrium position, the
equation of motion will now be

m:x “ ´kx´ c 9x. (3.42)

This can be written more simply as

:x` 2γ 9x` ω2
0x “ 0 (3.43)

where

ω0 “

c

k

m
(3.44)

is the angular frequency and

γ “
c

2m
(3.45)

is the damping coefficient.

To solve this equation, let D denote the differential operator d{dt. The equation of motion can
then be written in the form

rD2 ` 2γD ` ω2
0sx “ 0, (3.46)

which can be factored to give

„

D ` γ ´
b

γ2 ´ ω2
0

 „

D ` γ `
b

γ2 ´ ω2
0



x “ 0, (3.47)

This has two solutions, obtained by setting each of the two factors equal to zero. Let

q “
b

γ2 ´ ω2
0. (3.48)

The first factor gives us
dx

dt
` pγ ´ qqx “ 0 (3.49)

which has the solution
x “ A1e

´pγ´qqt (3.50)
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for any constant A1. The second term is similar but with a different sign, so the general solution
will be

x “ A1e
´pγ´qqt `A2e

´pγ`qqt (3.51)

The values of A1 and A2 are determined by the initial conditions.

The nature of the solution depends on whether q is real or imaginary. The possibilities are

1. q ą 0 - overdamping

2. q “ 0 - critical damping

3. q imaginary - underdamping

3.5.1 overdamping

If q ą 0 the displacement x returns to 0 smoothly and monotonically, with two different time
constants, τ1 “ 1{pγ ´ qq and τ2 “ 1{pγ ` qq.

3.6 critical damping

If q “ 0, both terms in Eqn (3.51) have the same form and can be added, leaving only one free
constant. But we need two constants and therefore two independent solutions in order to satisfy
general initial conditions (initial position and velocity). The equation of motion is now

pD ` γqpD ` γqx “ 0. (3.52)

Let u “ pD ` γqx. Then
pD ` γqu “ 0, (3.53)

which has the solution
u “ Ae´γt. (3.54)

Therefore,
A “ eγtu “ eγtpD ` γqx “ Dpeγtxq. (3.55)

This can be integrated to give
x “ Ate´γt `Be´γt (3.56)

which has two independent constants as required.

In this case γ “ ω0 and a displacement returns smoothly to zero with a characteristic time of
τ “ 1{γ.
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3.7 Underdamping

In this case γ ă ω0 so q is imaginary. We can write q “ iωd where

ωd “
b

ω2
0 ´ γ

2 (3.57)

The general solution now has the form

xptq “ e´γt
`

C1e
iωdt ` C2e

´iωdt
˘

. (3.58)

where C1 and C2 are complex constants.

We can convert this result to an expression involving trigonometric functions by means of Euler’s
equation

eix “ cosx` i sinx. (3.59)

Substitution gives

xptq “ e´γt tC1rcospω0tq ` i sinpω0tqs ` C2rcospω0tq ´ i sinpω0tqsu ,

“ e´γt rpC1 ` C1q cospω0tq ` ipC1 ´ C2q sinpω0tqs . (3.60)

The expression on the right hand side involves complex numbers, but x has to be real since it
represents a physical displacement. We conclude that C1 `C2 ” A1 and ipC1 ´C2q ” A2 must be
real constants. Our solution is therefore

xptq “ e´γtrA1 cospωdtq `A2 sinpωdtqs. (3.61)

One can use trig relations to convert this to the alternative form

xptq “ e´γtA cospωdt` φ0q. (3.62)

where the constants are related by A1 “ A cospφ0q and A2 “ ´A sinpφ0q.

We see that the motion corresponds to a harmonic oscillator with angular frequency ωd “
a

ω2
0 ´ γ

2

having an amplitude that decays exponentially with time. This is illustrated in Figure 3.4.3 in
Fowles and Cassiday.

3.8 Energy of a damped oscillator.

Since the motion of a damped oscillator decays, its total energy must also decrease. We can easily
calculate the rate of energy loss,

dE

dt
“

d

dt

ˆ

1

2
m 9x2 `

1

2
kx2

˙

“ pm:x` kxq 9x. (3.63)

Now substitute the equation of motion m:x` c 9x` kx “ 0, so m:x` kx “ ´c 9x and we again get

dE

dt
“ ´c 9x2. (3.64)
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Where does this energy go? It is dissapated (eventually into heat) by the mechanism that produces
the damping. The rate of work done by the damping force is

dW

dt
“ F ¨ v “ ´cv2. (3.65)

which we see equals the rate of energy loss.

Since both the velocity and the displacement of the motion are proportional to e´γt, and the kinetic
and potential energies are proportional to the squares of these quantities, it follows that the total
energy decays exponentially with a characteristic time τ “ 1{2γ,

E “ E0e
´2γt “ E0e

´t{τ (3.66)

3.9 Quality factor

For a weakly-damped harmonic oscillator, the rate of energy loss can be characterized by a dimen-
sionless parameter Q called the quality factor. An oscillator with very slow energy loss has a high
Q and vice versa.

This factor is defined as 2π times the ratio of the energy decay time constant τ to period of the
oscillator T “ 2π{ωd,

Q ”
2πτ

T
“
ωd
2γ
. (3.67)

Values ofQ for naturally occurring oscillations range from a few hundred for the Earth (earthquakes)
to more than 1012 for neutron stars and atomic nuclei (see the Table 3.4.1 in the text book).
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3.10 Phase space trajectories

Phase space is the space spanned by the coordinates of position and momentum, or equivalently
position and velocity. For one-dimensional motion, phase space has two dimensions, usually taken
to be x and v.

As an oscillating system evolves with time, the position and velocity change, tracing out a trajectory
in phase space. For a harmonic oscillator, the energy equation

E “
1

2
mv2 `

1

2
kx2 (3.68)

can be cast in the form
x2

a2
`
v2

b2
“ 1, (3.69)

where a2 “ 2E{k and b2 “ 2E{m are constants. This is the equation of an ellipse in phase space,
with a and b being the maximum values of x and v respectively. The axis ratio of the ellipse is

b

a
“

c

k

m
“ ω0 (3.70)

and the size of the ellipse is proportional to E, the total energy of the system. These curves are
illustrated in Figure 3.5.1 in the text book (with the y axis depicting velocity).

For a damped oscillator, energy is lost to friction, so the trajectory spirals inward and eventually
reaches the equilibrium point x “ v “ 0. The shape of the trajectory depends on the degree of
damping (see Figure 3.5.3 in Fowles and Cassiday).

3.11 Stability

An equilibrium point is a point in phase space where the system will remain if not disturbed.
An example is the point (x “ 0, v “ 0) for a harmonic oscillator. For example, a mass on a spring
that is at rest will remain at rest because there is no net force on the mass.
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An equilibrium point is said to be stable if the system returns to this point if it is disturbed by
a small amount. Suppose for example that we have a mass on a spring, at rest. If we push it a
little it will oscillate up and down and gradually come back to rest at the equilibrium point. This
happens because a displacement results in a force directed towards the equilibrium point.

This is equivalent to the statement that the potential curves upwards on either side of the equilib-
rium point. In other words, the second derivative V 2pxq is positive here.

An equilibrium point is said to be unstable if the system moves away from this point if disturbed.
This will happen if a displacement results in a force directed away from the equilibrium point,
which corresponds to the second derivative of the potential being negative at the equilibrium point.

A simple way to remember this is the following:

Equilibrium points correspond to peaks or valleys (or inflection points) in the potential V pxq.

If the point is at the bottom of a valley it is stable.

If the point is at the top of a peak, it is unstable.

3.12 Driven harmonic oscillator

In many situations we are faced with a system that is driven or perturbed by a force that is periodic
in time. If the system has a natural frequency of oscillation which is close to the driving frequency,
the oscillations can grow to vary large amplitude. This is called resonance.
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Consider a harmonic oscillator with natural frequency ω0 to which is applied a period force F “
F0 cospωtq. The equation of motion is

:x` ω2
0x “

F0

m
cospωtq. (3.71)

It is often easier to work with complex exponential functions than with trigonometric functions.
From the Euler equation we see that

cospωtq “ Re eiωt (3.72)

where Re denotes the real part of the complex number. We can omit it and work with the complex
numbers directly as long as we remember that at the end we need to take the real part of our
equation. In complex form, our equation becomes

:x` ω2
0x “

F0

m
eiωt. (3.73)

If we wait long enough we expect that the system will reach a steady state in which it oscillates
at the driving frequency ω, but with an amplitude and phase to be determined. So we try the
expression

x “ Ceiωt (3.74)

where C is some complex constant that encodes the amplitude and phase. Substituting this in the
equation of motion gives

´ω2Ceiωt ` ω2
0Ce

iωt “
F0

m
eiωt. (3.75)

Solving this for C we find

C “
F0{m

ω2
0 ´ ω

2
(3.76)

so

x “ Re
F0{m

ω2
0 ´ ω

2
eiωt “

F0{m

ω2
0 ´ ω

2
cospωtq. (3.77)

We see that if the driving frequency ω is less than the natural frequency ω0, the oscillation is in
phase with the driving force.

As ω approaches ω0 the amplitude increases, becoming infinite (for an ideal system with no friction
or damping) when ω “ ω0. This is the resonant frequency.

Finally, when ω ą ω0 the constant C changes sign, which means that the oscillations are now
opposite to the driving force. In other words, the oscillation is 180˝ out of phase with the driving
force.

3.13 Damped driven harmonic oscillator

Lets now add some damping and see what happens. The equation of motion becomes

:x` 2γ 9x` ω2
0x “

F0

m
eiωt. (3.78)
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Again we try the solution
x “ Ceiωt (3.79)

and find that now

p´ω2 ` 2iγω ` ω2
0qCe

iωt “
F0

m
eiωt. (3.80)

so

C “
F0{m

ω2
0 ´ ω

2 ` 2iγω
. (3.81)

Recall that any complex number can be written in polar form

C “ Ae´iφ (3.82)

where A and φ are real numbers given by

A “ |C| “
?
CC˚, (3.83)

φ “ ´ arctan

ˆ

Im C

Re C

˙

. (3.84)

(The minus sign is inserted in order to match the definition of φ used in the text book.)

Our solution can now be written as

x “ Re Aeiωt´φ “ A cospωt´ φq (3.85)

The amplitude of the oscillation is

A “
?
CC˚ “

F0{m
a

pω2
0 ´ ω

2q2 ` 4γ2ω2
, (3.86)

and the phase shift is

φ “ arctan

ˆ

2γω

ω2
0 ´ ω

2

˙

. (3.87)

The maximum amplitude occurs not at ω “ ω0, but at ω “ ωr, where

ω2
r “ ω2

0 ´ 2γ2 “ ω2
d ´ γ

2, (3.88)

which can be verified by taking the derivative of Apωq and equating it to zero. Observe that if the
the damping coefficient γ is too large, ω2

r will be negative, which means that there is no peak. This
can be seen in the Figure 3.6.2 of the text book.

If the damping is not too strong, the amplitude at the peak will be

Apωrq “
F0{m

b

4γ4 ` 4γ2pω2
d ´ γ

2q

“
F0

2mγωd
(3.89)

and the ratio of the amplitude at the peak to the amplitude at zero frequency (ω “ 0) is

Apωrq

Ap0q
“

ω2
0

2γωd
»
ωd
2γ
“ Q, (3.90)

which is the Q of the system, defined earlier.

The sharpness of the peak can be described by the frequency difference ∆ω between the frequencies
at which which the energy (proportional to A2) drops to half of its peak value. One finds that

∆ω

ω0
»

1

Q
, (3.91)

which shows that a system with a high Q value has a large, narrow, resonant peak.
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4 General motion of a particle in three dimensions

Let’s now consider full three-dimensional motion. Recall that the position of a particle is described
by a position vector r. From this we can determine velocity, and acceleration by taking derivatives
with respect to time. Newtons second law takes the form

F “
dp

dt
, (4.1)

where p “ mv “ m 9x.

4.1 Conservative forces

Suppose that a moving particle is acted on by a force F prq that is a function of position. The work
done by this force on the particle as it makes an infinitesimal displacement dr is given by

dW “ F ¨ dr. (4.2)

Note the use of the dot product here. The work done depends only on the component of the force
along the direction that the particle is moving.

The total work done by the force as the particle moves from point A to point B is obtained by
dividing up the path into infinitesimal displacements and adding up all the contributions to the
work,

W “

ż B

A
F ¨ dr. (4.3)

The integration is done along the path, or line, followed by the particle. It is called a line integral.
In general, a different path between the same points will result in a different amount of work being
done.

However, if the force field is conservative, the the work done will be independent of the path that
the particle takes from A to B.

Equivalently, if a particle moves in a closed loop, returning to point A, in a conservative force field,
the total work done by the force will be zero.
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In one dimension, this will be the case if the force can be written as the derivative of a function
V pxq called the potential. Let’s try to generalize this to three dimensions. We assume that there
exists some scalar function V prq “ V px, y, zq such that

Fx “ ´
BV

Bx
, Fy “ ´

BV

By
, Fz “ ´

BV

Bz
. (4.4)

Here we need to use partial derivatives B since the function V depends on more than one variable.
BV {Bx means “take the derivative of V with respect to x, while holding y and z constant”.

Now we can evaluate the line integral. We write the dot product in terms of components,

F ¨ dr “ Fxdx` Fydy ` Fzdz “ ´

ˆ

BV

Bx
dx`

BV

By
dy `

BV

Bz
dz

˙

“ ´dV (4.5)

The last step follows because the expression in parenthesis is the total change in V resulting from
the displacements dx, dy and dz.

If we now substitute this in the line integral we just get

W “ ´

ż B

A
dV “ V pAq ´ V pBq. (4.6)

we see that the work depends only on the end-points, and not on the path taken. Thus the force
described by Eqn.(4.4) is conservative.

It follows that for a conservative force, the work done by the force on a particle whose path is any
closed loop is zero.

4.2 Vector operators

4.2.1 Gradient

Eqn.(4.4) can be written more simply by introducing a vector differential operator ∇ which, when
acting on a scalar function, has Cartesian components

∇ “

ˆ

B

Bx
,
B

By
,
B

Bz

˙

. (4.7)

With this notation we can write
F “ ´∇V “∇p´V q (4.8)

and we say that F is the gradient of the function ´V .

The symbol ∇ is called del or nabla. When acting on a function fprq, it is usually just called grad.
It produces a vector that points in the direction in which f increases the fastest, and whose length
is equal to the rate of increase of f with distance in that direction.

When applied to ´V , it therefore points in the direction in which V is decreasing the fastest. Thus
the force pushes the particle towards smaller values of V .
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4.2.2 Curl

The line integral is related to another vector differential operator called the curl. It is defined, in
Cartesian coordinates in a manner analogous to the cross product. For any vector A,

∇ˆA “

ˆ

BAy
Bz

´
BAz
By

˙

i`

ˆ

BAz
Bx

´
BAx
Bz

˙

j `

ˆ

BAx
By

´
BAy
Bx

˙

k (4.9)

We see that the curl of a vector field is another vector field.

Stokes theorem states that for any closed loop and any vector field F ,

¿

F ¨ dr “

ż

S
p∇ˆ F q ¨ dS. (4.10)

The right side of this equation is the integral over the surface S enclosed by the loop. The vector
dS is a vector perpendicular to the surface whose length is equal to the infinitesimal element of
area,

dS “ dydz i` dzdx j ` dxdy k. (4.11)

(See Section 4.1 of Fowles and Cassiday, or any advanced calculus textbook, for a derivation of
Stokes theorem. Fowles and Cassiday use the notation nda for dS.)

Since the integral around any loop is zero if F is a conservative force, we see that an alternative
condition for F to be conservative is that its curl must vanish everywhere.

In fact this condition is equivalent to the force being the gradient of a potential, because of the
following vector identity, valid for any function f ,

∇ˆ∇f “ 0. (4.12)

In other words, the curl of a gradient is always zero.
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4.2.3 Divergence and Laplacian

The divergence operator produces a scalar field from a vector field A. In Cartesian coordinates, it
is defined by

∇ ¨A “
BAx
Bx

`
BAy
By

`
BAz
Bz

. (4.13)

Gauss’s theorem relates the integral of a vector field over a closed surface to the integral of the
divergence of the field over the enclosed volume,

ż

S
A ¨ dS “

ż

V
∇ ¨A dV. (4.14)

The Laplacian operator ∇2 is a second-order differential operator that produces a scalar field
from a scalar field. It is defined as the divergence of the gradient,

∇2f “∇ ¨∇f. (4.15)

4.2.4 Helmholtz decomposition theorem

Any smooth (twice differentiable) vector field can be written as the sum of irrotational (zero curl)
and divergenceless (zero divergence) vector fields,

F “ ´∇Φ`∇ˆA (4.16)

where

φprq “
1

4π

ż

V

∇1 ¨ F pr1q

|r ´ r1|
dV 1 ´

1

4π

ż

S

F pr1q

|r ´ r1|
¨ dS1 (4.17)

Aprq “
1

4π

ż

V

∇1 ˆ F pr1

|r ´ r1|
dV 1 `

1

4π

ż

S

F pr1q

|r ´ r1|
ˆ dS1 (4.18)

(4.19)

Here V is some volume enclosing the point r and S is a surface enclosing that volume. If the F
goes to zero sufficiently quickly (faster than 1{r) at infinity, the surface integral will vanish if the
volume is taken to be infinite.

4.2.5 Vector operator identities

There are many identities involving these operators. They are linear operators, which means
Lpaf ` bgq “ aLf ` bLg, where L stands for div, grad or curl, a, b are constants and f, g are scalar
or vector fields. Some non-intuitive identities are

∇pA ¨Bq “ pA ¨∇qB ` pB ¨∇qA`Aˆ p∇ˆBq `B ˆ p∇ˆAq (4.20)

∇ ¨ pAˆBq “ B ¨ p∇ˆAq ´A ¨ p∇ˆBq (4.21)

∇ˆ pAˆBq “ Ap∇ ¨Bq ´Bp∇ ¨Aq ` pB ¨∇qA´ pA ¨∇qB (4.22)

Page 42 of 97



Intermediate Mechanics 2017

Useful identities involving two operators are

∇ˆ∇f “ 0, (4.23)

∇ ¨ p∇ˆAq “ 0, (4.24)

∇ˆ p∇ˆAq “∇p∇ ¨Aq ´∇2A. (4.25)

The last symbol, ∇2A is the vector Laplacian. It is a vector whose components are the Laplacian
operator acting on each component of A.

4.2.6 Curvilinear coordinates

It is often useful to employ coordinate systems that matched to the symmetry of the problem. We
have already seen cylindrical and spherical coordinates. Other systems have also been devised, such
as parabolic coordinates. In orthogonal curvilinear coordinate systems, lines traced by varying
individual coordinates, leaving the others constant, always cross at right angles. As a result, the
unit vectors are orthogonal at every point in space.

For a general orthogonal coordinate system having coordinates pq1, q2, q3q and unit vectors e1, e2, e3,
the element of length (called the line element) can be written as

dr “ ph1dq1qe1 ` ph2dq2qe2 ` ph3dq3qe3. (4.26)

where the h’s, called scale factors, are functions of the coordinates.

The element of volume is
dV “ h1h2h3 dq1 dq2 dq3. (4.27)

The gradient, divergence, curl and Laplacian are given by

∇f “
e1

h1

Bf

Bq1
`

e2

h2

Bf

Bq2
`

e3

h3

Bf

Bq3
, (4.28)

∇ ¨A “
1

h1h2h3

„

B

Bq1
ph2h3A1q `

B

Bq2
ph3h1A2q `

B

Bq3
ph1h2A3q



, (4.29)

∇ˆA “
1

h1h2h3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h1e1 h2e2 h3e3

B{Bq1 B{Bq2 B{Bq3

h1A1 h2A2 h3A3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (4.30)

∇2f “
1

h1h2h3

„

B

Bq1

ˆ

h2h3

h1

Bf

Bq1

˙

`
B

Bq2

ˆ

h3h1

h2

Bf

Bq2

˙

`
B

Bq3

ˆ

h1h2

h3

Bf

Bq3

˙

. (4.31)

The scale factors have the following values:

Cartesian coordinates: hx “ 1 hy “ 1 hz “ 1,
Cylindrical coordinates: hR “ 1 hφ “ R hz “ 1,
Spherical coordinates: hr “ 1 hθ “ r hφ “ r sin θ.

(4.32)
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4.3 Separable forces

Some three-dimensional problems are quite simple because the force can be written in the form

F “ Fxpxq i` Fypyq j ` Fzpzqk. (4.33)

Note that the x component is a function only of x, etc. It is easy to verify that ∇ˆF “ 0, so the
force is conservative.

The equation of motion is m:r “ F , which can only be true if the corresponding components of the
vectors on the left and right sides are equal. Thus

m:x “ Fxpxq, m:y “ Fypyq, m:z “ Fzpzq. (4.34)

These are three independent differential equations, each describing motion in one dimension. They
can be solved separately using the methods that we have already discussed.

4.4 Motion of a projectile in a uniform gravitational field

As an example, consider a projectile launched with initial velocity v0 at an angle α from the
horizontal direction. We wish to determine the path it follows, and the distance and velocity when
it hits the ground. The problem is two-dimensional so we set up a Cartesian coordinate system
px, zq, with z being the vertical height.

4.4.1 No air resistance

In this case, the only force is that of gravity, acting in the ´z direction.

The equation of motion m:r “ F has two components

m:x “ 0, (4.35)

m:z “ ´mg (4.36)

The solutions are easily found,

x “ At`B, (4.37)

z “ ´
1

2
gt2 ` Ct`D. (4.38)

where A,B,C,D are constants of integration.

We take the position at time t “ 0 to be x “ z “ 0, which requires B “ D “ 0. The initial
components of the velocity are

vxp0q “ 9xp0q “ v0 cosα, vzp0q “ 9zp0q “ v0 sinα. (4.39)

so A “ v0 cosα and C “ v0 sinα. The solution is therefore

x “ v0t cosα, (4.40)

z “ ´
1

2
gt2 ` v0t sinα. (4.41)
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If we eliminate t by substitution of the first equation into the second we get an equation giving the
height in terms of distance,

z “ ´
g

2v2
0 cos2 α

x2 ` x tanα (4.42)

We see that the trajectory is a parabola. The distance travelled is found by setting z “ 0 then
solving for x. This gives

xpz “ 0q “
2

g
v2

0 cos2 α tanα “
v2

0

g
sinp2αq. (4.43)

For a given initial velocity, this is greatest when α “ π{4 “ 45˝,

xmax “ v2
0{g. (4.44)

The maximum height can be found by equating the vertical velocity 9z to zero,

9z “ ´gt` v0 sinα “ 0, (4.45)

which gives the time of maximum height

tp 9z “ 0q “
v0

g
sinα. (4.46)

The maximum height is then found by substituting this in the equation for z

zmax “ ´
1

2
g

ˆ

v0

g
sinα

˙2

`
v2

0

g
sin2 α “

v2
0

2g
sin2 α. (4.47)

Note that these are all independent of the mass of the projectile. Also, we see that the maximum
distance and height are proportional to the square of the initial velocity, and therefore proportional
to the initial kinetic energy.

4.4.2 Including air drag

For a more realistic analysis, we should include air resistance. For any practical projectile, baseball,
golf ball, artillery shell, etc, the drag will be dominated by the quadratic term.

Since the drag force is opposite to the velocity vector 9r, and has magnitude cv2, we can write it in
the form Fdrag “ ´cv 9r. The equation of motion is now

m:r “ ´mgk ´ cv 9r. (4.48)

Unfortunately, the drag force is not separable as it involves all components (v “
a

9x2 ` 9y2). It also
makes our differential equation non-linear.

Since we cannot solve this analytically, we try an approximation and set v “ v0. This makes the
equation of motion linear and separable.

:x “ ´γ 9x, (4.49)

:z “ ´γ 9z ´ g, (4.50)
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where
γ “

cv0

m
(4.51)

Integrating once gives the velocity components

9x “ 9x0e
´γt, (4.52)

9z “ 9z0e
´γt ´

g

γ
p1´ eγtq (4.53)

A second integration gives the positions,

x “
9x0

γ
p1´ e´γtq, (4.54)

z “

ˆ

9z0

γ
`

g

γ2

˙

p1´ e´γtq ´
g

γ
t. (4.55)

We can combine these to give a vector equation

r “

ˆ

v0

γ
`

g

γ2
k

˙

p1´ e´γtq ´
gt

γ
k. (4.56)

The trajectory is no longer described by a parabola, but drops below it as the projectile looses
energy. We can see from the equation for x that there is an upper limit to the distance that it can
travel.

The distance at which it falls to earth can be found as before by setting z “ 0. Solving the x
equation for t we find

t “ ´
1

γ
ln

ˆ

1´
γx

9x0

˙

(4.57)

Substituting this in the z equation, we get

0 “

ˆ

9z0 `
g

γ

˙

x

9x0
`

g

γ2
ln

ˆ

1´
γx

9x0

˙

. (4.58)

This is a transcendental equation for x. We can get an approximate answer by using a series
expansion

lnp1` uq “ u´
u2

2
`
u3

3
` ¨ ¨ ¨ . (4.59)

Using this we find

0 “

ˆ

9z0 `
g

γ

˙

x

9x0
´

g

γ2

ˆ

γx

9x0
`
γ2x2

2 9x2
0

` ¨ ¨ ¨

˙

. (4.60)

which leads to

xmax “
2 9z0 9x0

g
´

8 9x0 9z2
0

3g2
γ ` ¨ ¨ ¨ (4.61)

In terms of v0 and α, this is

xmax “
v2

0 sin 2α

g
´

4v3
0 sin 2α sinα

3g2
γ ` ¨ ¨ ¨ (4.62)

The first term is the range if there is no air resistance. The remaining terms correct for the effect
of air resistance.

The results of numerical calculations for the trajectory of a baseball are shown in Figure 4.3.4 of
the text book.
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4.5 Three dimensional harmonic oscillator

Suppose that a particle under a force that has the form F “ ´kr. The force is directed radially
towards the origin and has a magnitude that is proportional to distance from the origin.

The equation of motion m:r “ ´kr separates into three equations

m:x` kx “ 0,

m:y ` ky “ 0,

m:z ` kz “ 0. (4.63)

These are three independent harmonic oscillator equations, having the same frequency ω “
a

k{m.
The solutions can be written in the form

x “ Ax sinωt`Bx cosωt,

y “ Ay sinωt`By cosωt,

z “ Az sinωt`Bz cosωt, (4.64)

where the six constants are determined by the initial conditions (three components of the initial
position and three components of the initial velocity). These equations can be combined to form a
single vector equation,

r “ A sinω0t`B cosω0t. (4.65)

We see that r is a linear combination of the vectors A and B. It therefore lies in the plane that
contains these two vectors. So, the motion is two-dimensional.

We can rotate the reference frame, using an orthogonal transformation O Ñ O1, so that the motion
is confined to the x1 ´ y1 plane. In the rotated frame, the constant vectors A and B will have
different components,

A “ A1xi
1 `A1yj

1 (4.66)

B “ B1xi
1 `B1yj

1 (4.67)
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Now there are only two equations involving four constants, since z1 “ 0 for the orbit,

x1 “ A1x sinωt`B1x cosωt,

y1 “ A1y sinωt`B1y cosωt,

(4.68)

We can solve this for sinωt and cosωt,

sinωt “
1

∆
px1B1y ´ y

1B1xq, cosωt “
1

∆
py1A1x ´ x

1A1yq. (4.69)

where ∆ “ A1xB
1
y ´ A1yB

1
x is the determinant of the matrix of coefficients. Squaring these and

adding, we get an equation for the path of the particle,

pA1
2
y `B

12
yqx

12 ´ 2pA1xA
1
y `B

1
xB

1
yqxy ` pA

12
x `B

12
xqy

2 “ ∆2 (4.70)

This has the form of a general quadratic

ax12 ` bx1y1 ` cy12 ` dx1 ` ey1 “ f (4.71)

This represents and ellipse, parabola or hyperbola depending on whether b2 ´ 4ac is negative, zero
or positive, respectively. In this case

b2 ´ 4ac “ ´pA1xB
1
y ´A

1
yB

1
xq

2 (4.72)

which is negative, and d “ e “ 0, so the path is an ellipse centred at the origin. Unless b “ 0, the
major axis of the ellipse is rotated with respect to the x1 and y1 axes.

4.6 Anisotropic harmonic oscillator

In the above, the constant k was independent of direction. This corresponds to a potential V prq “
kr2{2 that is spherically symmetric. More generally, the surfaces of constant potential could be
ellipsoids. In a coordinate system aligned with the principal axes of the ellipsoid, the potential has
the form

V “
1

2
k1x

2 `
1

2
k2y

2 `
1

2
k3z

2. (4.73)

and the equation of motion m:r “ ´∇V separates to give the equations

m:x` k1x “ 0,

m:y ` k2y “ 0,

m:z ` k3z “ 0. (4.74)

The solutions can be written in the form

x “ A1 sinpω1t` φ1q,

y “ A2 sinpω2t` φ2q,

z “ A3 sinpω3t` φ3q, (4.75)

Again these are independent oscillators, but now they have different frequencies. The motion is
confined to the interior of a box whose sides are 2A1, 2A2, 2A3. The path will close and repeat itself
only if there exists integers n1, n2, n3 such that

ω1

n1
“
ω2

n2
“
ω3

n3
. (4.76)

The path is then a Lissajous figure. Otherwise, the path never repeats and the particle will
eventually visit every point inside the box.
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4.7 Constrained motion

Suppose that a body moves subject to a constraint. A simple pendulum is one example. Another
would be a marble rolling inside a dish. We assume here that the constraint is frictionless and time
independent.

The motion can be treated by adding a constraining force R, corresponding to the force of reaction
of the constraint. In the pendulum, it would be the tension in the arm or string. For the marble
it is the force normal to the constraining surface.

The force of constraint is always perpendicular to the velocity of the particle and therefore does
not add to or subtract from the energy of the body. If the other forces acting on the body are
conservative, the total energy E will therefore be constant.

1

2
mv2 ` V prq “ E “ constant. (4.77)

This can be seen by writing the total force as F ` R and taking the dot prodoct of v with the
equation of motion

mv ¨ 9v ` v ¨∇V “ v ¨R “ 0. (4.78)

which can be written as
d

dt

„

1

2
mv2 ` V



“ 0. (4.79)
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5 Noninertial reference frames

In some situations it is convenient to use a non-inertial reference frame, such as a frame on the
surface of the Earth, aligned with the horizontal and vertical directions. This frame rotates with a
period of about 23 hrs 56 minutes (the sidereal period of the Earth).

Before examining rotating frames, we consider the simpler case of frames that are accelerating, but
not rotating.

5.1 Non-rotating frames

Consider two reference frames. O is an inertial frame, and therefore not accelerating, and O1 is an
accelerating frame. Coordinates in the accelerating frame with be denoted by primes.

In this case the frame O1 is accelerating with respect to an inertial frame O, which may also be
moving, and displaced, from O. Let the position, velocity and acceleration of the origin of the O1

frame as seen from the O frame be R0, V0, and A0. Then, the position, velocity and acceleration
of a body as seen from the inertial frame is

r “ R0 ` r1, (5.1)

v “ V0 ` v1, (5.2)

a “ A0 ` a1, (5.3)

Newton’s second law is valid in the inertial system O, so for a particle of mass m,

F “ ma “ mA0 `ma1 (5.4)

Now define F 1 “ F ´mA0. Then
F 1 “ ma1 (5.5)

Thus, in the O1 frame, the particle moves as if acted on by the force F 1. This force has two
components. The first is the “true” force F and the second is a ficticious or inertial force ´mA0

due to the acceleration of the reference frame.

Example (5.1.1 in the text book):
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A block of wood rests on a rough horizontal table. If the table is accelerated in the horizontal
direction, under what conditions will the block slip?

The block is prevented from slipping by friction, which exerts a force that has a maximum value
of µsmg, where µs is the coefficient of static friction and m is the mass of the block. The block
will begin to slip if the magnitude of the inertial force mA0 exceeds the maximum frictional force
µsmg. This gives the condition

A0 ą µsg. (5.6)

5.2 Rotating frames

Suppose now that O is an inertial frame and O1 is a frame having the same origin but that O1

is rotating with angular speed ω about an axis defined by the unit vector n. Define the angular
velocity vector by

ω “ ωn (5.7)

Any vector Q that appears fixed when viewed from the rotating frame, will be seen to be rotating
with that frame when viewed from the inertial frame. Referring to Figure 5.1, we see that in time
dt, the vector will change by an amount dQ “ Q sin θdφ in a direction perpendicular to both the
vector ω and the vector Q. The angle that the frame rotates in this time is dφ “ ωdt. Therefore
we can write the rate of change of Q in terms of the cross product,

dQ

dt
“ ω ˆQ. (5.8)

Now suppose that the vector Q is moving even in the rotating frame. There will then be an
additional change dQrot, where the subscript indicates the change seen in the rotating frame. The
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Figure 5.1: Change of a vector Q that is fixed in the rotating frame.

total change in Q, as seen from the fixed (inertial) frame, is then dQrot ` dQ. Thus the total rate
of change seen in the fixed frame is

ˆ

dQ

dt

˙

fixed

“

ˆ

dQ

dt

˙

rot

` ω ˆQ. (5.9)

Lets now apply this result to relate the position, velocity and acceleration of a particle as seen from
the rotating and fixed frames. Because the origins of the two frames coincide, r “ r1.

To find the velocity, we must differentiate r with respect to time. Our previous result gives

v “

ˆ

dr

dt

˙

fixed

“

ˆ

dr

dt

˙

rot

` ω ˆ r “ v1 ` ω ˆ r. (5.10)

Since r “ r1 we can write
v “ v1 ` ω ˆ r1. (5.11)

To find the acceleration we differentiate the velocity,

a “

ˆ

dv

dt

˙

fixed

“

ˆ

dv

dt

˙

rot

` ω ˆ v. (5.12)

Now substitute Equation (5.11) in Equation (5.12) to get

a “

„

d

dt
pv1 ` ω ˆ r1q



rot

` ω ˆ pv1 ` ω ˆ r1q,

“ a1 ` 9ω ˆ r1 ` 2ω ˆ v1 ` ω ˆ pω ˆ r1q. (5.13)

If we now include the possibility that the rotating frame is also moving and accelerating, the
relations between vectors in the fixed and rotating frames become

v “ v1 ` ω ˆ r1 ` V 0, (5.14)

a “ a1 ` 9ω ˆ r1 ` 2ω ˆ v1 ` ω ˆ pω ˆ r1q `A0. (5.15)

The term ω ˆ pω ˆ r1q is called the centripetal acceleration. It points directly towards the axis
of rotation.
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The term 2ω ˆ v1 is called the Coriolis acceleration. It occurs whenever an object moves in a
rotating frame (unless v1 is parallel to the axis of rotation).

The term 9ω ˆ r1 is called the transverse acceleration as it is always perpendicular to r1. It
occurs whenever the angular velocity (speed or direction) of the rotating frame changes.

5.3 Dynamics in non-inertial frames

Now that we have found the transformation rules, we can write down Newton’s second law, which
holds in the inertial frame,

F “ ma “ ma1 `m 9ω ˆ r1 ` 2mω ˆ v1 `mω ˆ pω ˆ r1q `mA0. (5.16)

If we now move everything except ma1 to the left side of the equation and call this F 1, we obtain

F 1 “ ma1 (5.17)

where
F 1 “ F ´m 9ω ˆ r1 ´ 2mω ˆ v1 ´mω ˆ pω ˆ r1q ´mA0. (5.18)

For an observer in the rotating frame, the particle appears to move under the action of F plus
a number of inertial forces. These are the transverse force ´m 9ω ˆ r1, the Coriolis force
´2mω ˆ v1, the centrifugal force ´mω ˆ pω ˆ r1q and the inertial force ´mA0.

5.4 Effects of the Earth’s rotation

Let’s now apply this theory to a specific example, a frame that is rotating with the Earth. We shall
consider only the rotational motion of the Earth and ignore the small acceleration of the centre of
the Earth as it orbits the Sun, and also the small acceleration of the centre of the Sun as it orbits
the Galaxy.

The sideral period of the Earth is the rotation period with respect to an inertial coordinate system
defined by distant stars. It is approximately 23 hours, 56 minutes and 4.0916 seconds (86,164.0916
s). In this time, the Earth rotates through an angle of 2π radians. This corresponds to an angular
rate of

ω‘ “ 7.29211576ˆ 10´5 s´1. (5.19)

5.4.1 The plumb bob

A plumb bob is a weight hanging from a string, used to define the vertical direction. While it is
generally perpendicular to the horizontal plane, it does not point directly towards the centre of the
Earth, unless it is at a pole, or on the equator.

To see this, set up an inertial frame O centred on the Earth, and a rotating frame O1 that has the
bob (the weight) at its origin. In this frame, the acceleration of the bob is given by

a1 “
1

m
F 1 “ g ´ 9ω ˆ r1 ´ 2mω ˆ v1 ´ ω ˆ pω ˆ r1q ´A0. (5.20)
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where g, the gravitational acceleration, points towards the centre of the Earth (although not exactly,
see below). Since the bob is at rest at the origin, v1 “ r1 “ 0, so this reduces to

a1 “ g ´A0, (5.21)

This acceleration produces a force ma1 that is opposed by the tension in the string. So, when the
bob is at rest, the direction of the string is exactly aligned with the direction of a1. Let us now
find that direction.

The acceleration A0 of the origin of the O1 frame is the centripetal acceleration due to the motion
of the frame O1 around the Earth’s axis. It points directly towards this axis and has magnitude

A0 “ ω2
‘R‘ cosλ, (5.22)

where λ is the latitude of the plumb bob. Both A0 and g lie in a plane that contains the Earth’s
axis (i.e. a plane of constant longitude). a1 must lie in that plane too since it is a linear combination
of these two vectors. To an observer in the O1 frame, it appears that the plumb bob is affected by
a slightly modified gravitational force, which we can denote as mg1 “ ma1.

Let ε be the angle between the vectors g1 and g. This angle is the deviation of the plumb bob
caused by A0. To find it take the following dot products with Equation (5.21),

g1 ¨ g “ g ¨ g ´A0 ¨ g, (5.23)

g1 ¨ a1 “ g ¨ g ´ 2A0 ¨ g `A0 ¨A0. (5.24)

From the definition of the dot product, g ¨ g “ g2, etc, and

g1 ¨ g “ g1g cos ε, (5.25)

A0 ¨ g “ A0g cosλ, (5.26)

so we find that

cos ε “
g1 ¨ g

g1g
“
g ´A0 cosλ

g

1

“
g ´A0 cosλ

a

g2 `A2
0 ´ 2A0g cosλ

. (5.27)
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Since ε is small, sin ε is more useful,

sin ε “
a

1´ cos2 ε “
A0 sinλ

a

g2 `A2
0 ´ 2A0g cosλ

. (5.28)

Now A0 ď ω2
‘R‘ » 0.03 ! g so a good approximation is

ε » sin ε »
A0 sinλ

g
“
ω2
‘R‘
g

cosλ sinλ “
ω2
‘R‘
2g

sin 2λ (5.29)

We see that the maximum deviation occurs for a latitude of ˘45˝ and has the value

εmax “
ω2
‘R‘
2g

“ 1.7ˆ 10´3 radian » 0.1˝. (5.30)

In fact g does not point exactly towards the centre of the Earth, since the Earth is slightly oblate,
due to its rotation. Also, the direction of g depends on local terrain and density variations such as
mountains, ore deposits, etc.

5.4.2 Ballistic motion

Now consider the motion of a projectile, as seen from a reference frame rotating with the Earth.
The equation of motion in this frame is

ma1 “ F `mg ´mA0 ´ 2mω ˆ v1 ´mω ˆ pω ˆ r1q. (5.31)

Here F represents any force other than gravity. We saw in the previous example that g´A0 “ g1,
the apparent gravitational acceleration seen in the rotating frame. For this example, we shall
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assume that the projectile does not go so far that we need to consider variations of g1 with latitude,
and we take it to be constant. Also, we shall ignore air resistance, so F “ 0. Finally, for the Earth’s
rotation, ω “ ω‘ ! 1, so terms such as ω ˆ pω ˆ r1q that have two or more factors of ω will be
very small. We can integrate the equation of motion analytically if we keep only terms that are at
most first order in ω. The equation of motion becomes

a1 “ g1 ´ 2ω ˆ v1. (5.32)

Integrating this once, we get
v1 “ g1t´ 2ω ˆ r1 ` v10. (5.33)

We cannot integrate again due to the presence of r1. But instead, we can substitute Equation (5.33)
into (5.32) to get

a1 “ g1 ´ 2ω ˆ pg1t´ 2ω ˆ r1 ` v0q,

“ g1 ´ 2ω ˆ g1t´ 2ω ˆ v10. (5.34)

In the last equation we have dropped the term 4ω ˆ pω ˆ r1q as it is second-order in ω.

Now we can integrate this new equation to get the velocity and position vectors,

v1 “ v10 ` g1t´ 2ω ˆ v0t´ ω ˆ g1t2, (5.35)

r1 “ r10 ` v0t`
1

2
g1t2 ´ ω ˆ v0t

2 ´
1

3
ω ˆ g1t3. (5.36)

We recognize the first few terms as they are the same as we found for projectile motion in an inertial
frame. But now we have additional terms involving ω.

The term
´ω ˆ v0t

2 (5.37)

represents a horizontal deflection that is perpendicular to the velocity. The projectile moves in
a curved path being deflected towards the right in the northern hemisphere and to the left in
the southern hemisphere. Note that the amount of the deflection or bending of the trajectory is
independent of the direction of motion. This is a result of the Coriolis force. It is the reason that
air converging towards the centre of a low-pressure system or hurricane rotates about the centre in
a counter-clockwise direction (clockwise in the southern hemisphere).

The term

´
1

3
ω ˆ g1t3 (5.38)

also represents a horizontal deflection, but this is independent of the velocity. It is a deflection to
the East (in both hemispheres) and increases with decreasing latitude, reaching a maximum at the
equator.

5.4.3 The Foucault pendulum

A spherical pendulum is a pendulum that is free to move in two dimensions, such as a mass
suspended from an overhead point by a thin wire. In an inertial frame, the equation of motion of
the mass is

ma “ mg ` S (5.39)
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where S is the tension in the wire. This tension has a vertical component Sz “ mg, which opposes
the gravitational force, and a horizontal component ´gR{l that pushes the pendulum towards the
vertical position. Since the pendulum is constrained by the wire, for small amplitudes in moves
essentially in the horizontal plane and we can ignore the vertical components of the forces. The
equation of motion is then that of a two-dimensional harmonic oscillator.

m :R “ ´
g

l
R (5.40)

The general solution is elliptical motion, but if the mass is pulled sideways and released with no
initial velocity, it will swing back and forth radially, returning exactly to its starting position (in
the absence of friction) with a period T “ 2π

a

l{g.

In a frame O1 fixed to the earth, the equation of motion of the mass must be modified to include
the Coriolis force

ma1 “ mg1 ` S ´ 2mω ˆ v1 (5.41)

(we have omitted the small term mω ˆ pω ˆ r1q). Here ω is the angular velocity of the Earth,
which points along the Earth’s rotation axis, in the direction of the north pole.

As before, we need only consider the horizontal components of the forces. To do this we first resolve
the angular velocity into the sum of vertical (z1) and horizontal (x1, y1) components. Choosing the
y1 axis in the north direction, for latitude λ,

ω “ ω sinλk1 ` ω cosλ j1 (5.42)

Now, for small amplitudes, the velocity v is in the horizontal plane, as is the unit vector j1, so the
horizontal component of ω (the second term in the above equation) will produce a force that acts
vertically. That force will be opposed by the tension in the wire and will not affect the motion of
the pendulum. Keeping only the horizontal forces, the equation of motion becomes

m :R
1
“ ´

g

l
R1 ´ 2mω1 ˆ v1 (5.43)

where we have defined ω1 “ ω sinλk1, the component of the Earth’s angular velocity along the
direction of the local vertical.

We can eliminate the second term by transforming to a new frame O2 that is rotating about the
vertical axis with angular velocity ´ω1 with respect to the frame O1. In this new frame, the Coriolis
force disappears. The equation of motion becomes

m :R
2
“ ´

g

l
R2, (5.44)

which is just the previous equation for a spherical pendulum. In this frame the pendulum swings
back and forth returning to its original position.

But this frame is rotating with respect to the Earth, at a rate ´ω sinλ. So in the O1 frames, the
the direction in which the pendulum swings slowly rotates. In other words, the pendulum precesses
with a period

T “
2π

ω‘ sinλ
. (5.45)

At the Earth’s pole, the period is about 23 hours 56 minumtes (the Earth’s sidereal period). The
period gets longer as you approach the equator, becoming infinite there (no precession at all).
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6 Gravitation and central forces

Having perfected Newtonian dynamics, Newton turned his attention to gravity. He formulated his
Law of Universal Gravitation around 1665, during the plague, but did not publish it for more than
20 years. Newton was influenced by the laws of planetary motion established by Kepler in 1609 and
1618. Kepler’s laws were empirical formulae based on extensive observations obtained by Tycho
Brahe. in the preceeding decades.

Newton’s insight was to realize that as the Moon circles the Earth, it is accellerating towards the
Eaarth, just as if it were falling. Newton wondered if the Moon’s acceleration could be caused by
the same “gravitational” force that causes local objects, such as apples, to fall. This led him to the
inverse square law, which he then found accurately explained all of Kepler’s laws.

6.1 Newton’s law of Universal Gravitation

Newton postulated that all bodies attract one another in proportion to the product of their masses
and inversely proportional to the square of their separation. The force on one body acts directly
towards the other body. Thus the force acting on a mass mi due to a mass mj is

F ij “ G
mimj

r3
ij

rij , (6.1)

where rij “ rj ´ ri is a vector extending from mi to mj and rij is its magnitude (the separa-
tion between the two masses). The proportionality constant G, called Newton’s gravitational
constant, has the value G “ 6.6726ˆ 10´11 N m2 kg´2.

Newton had no idea of why such a force existed, or how it was transmitted, and declined to
speculate on this.is law of gravity was criticized on the basis of requiring some mysterious “action
at a distance”. Nevertheless, it correctly describes gravity (within certain limits).

A puzzling feature of Newton’s law of gravity is that the force is exactly proportional to the mass
that appears in his second law, the inertial mass. Why inertia should be connected to gravity in
this way is unknown, but it has been tested to very high accuracy by experiments such as that of
Eötvos. The equality of gravitational and interial mass is called the principle of equivalence and
it led Einstein to his geometrical theory of gravity, General Relativity, which is more accurate
that Newton’s theory, but equivalent to it when the gravitational force is weak.

6.2 Newton’s theorems

Newton also proved two useful theorems:

1. A spherically-symmetric mass affects external objects gravitationally as if all of its mass were
concentrated at its centre.

2. A uniform shell of constant density exerts no net gravitational force on any object within it.

The proofs of these theorems rely on the inverse square dependence of the gravitational force. The
first theorem is proved in the text book.
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6.3 Kepler’s laws

Kepler’s three laws of planetary motion are

1. The orbit of a planet is an ellipse, with the Sun at a focus.

2. A line connecting the planet to the Sun sweeps out equal area in equal time.

3. The square of the orbital period is proportional to the cube of the semi-major axis of the
ellipse.

Recall that an ellipse is the locus of points for which the sum of the distances from two points
called foci is a constant. In a Cartesian coordinate system centred on the ellipse, its equation is

x2

a2
`
y2

b2
“ 1, (6.2)

where a is the semi-major axis and b ď a is the semi-minor axis. The two focii are located at
x “ ˘εa, where

ε “
a

1´ b2{a2 (6.3)

is called the eccentricity of the ellipse.

Another useful expression is the equation of an ellipse in polar coordinates, centred on one of the
foci,

r “
ap1´ ε2q

1` ε cos θ
. (6.4)

Here r is the distance from the focus to a point on the ellipse and θ is the angle of that point,
measured from the point on the ellipse that is closest to the focus, called the pericentre or, for
motion about the Sun, the perihelion.

Since ´1 ď cos θ ď 1 and 1 ´ ε2 “ p1 ´ εqp1 ` εq, we that the distance from the focus to the
pericentre is

rp “ ap1´ εq. (6.5)

Similarly, the distance from the focus to the most distant point, the apocentre (or aphelion) is

ra “ ap1` εq. (6.6)

6.4 Kepler’s second law, central forces and angular momentum

The angular momentum L of an object of mass m with respect to a point in an inertial frame,
which we can take to be the origin, is defined by

L “ mr ˆ v (6.7)

where r is the position vector and v is the velocity of the object. Since the (linear) momentum of
the object is defined by p “ mv, we can write this as

L “ r ˆ p (6.8)
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Taking the time derivative,
dL

dt
“ v ˆ p` r ˆ

dp

dt
“ r ˆ F . (6.9)

The first term is zero because v and p are parallel vectors and in the second term we have used
Newton’s second law F “ dp{dt.

The second term rˆF is the moment or torque acting on the particle with respect to the origin.
If a second mass is located at the origin, the gravitational force that it exerts on the object is
parallel to r and so the torque is zero. This is true for any central force, regardless of the radial
dependence of the force.

We conclude that the angular momentum of a planet orbiting the Sun will be a conserved quantity.
The angular momentum L will not change its magnitude nor its direction. Since both r and v are
perpendicular to L, it follows that the orbit is confined to the plane that is perpendicular
to L. So, the orbit is two-dimensional and we can use polar coordinates (r, θ) in the orbital plane
to describe it.

Kepler’s second law states that the position vector r sweeps out equal areas in equal time. This is
equivalent to the statement that

dA

dt
“ constant. (6.10)

where dA is the area swept out in time dt. Referring to figure 6.4.1, we see that

dA “
1

2
|r ˆ dr| , (6.11)

so
dA

dt
“

1

2

ˇ

ˇ

ˇ

ˇ

r ˆ
dr

dt

ˇ

ˇ

ˇ

ˇ

“
L

2m
“
l

2
. (6.12)

So we see that Kepler’s third law is equivalent to the law of conservation of angular momentum,
which follows from Newton’s law of gravity as a central force.
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6.5 Kepler’s first law

We shall follow the development in the text book and first consider an arbitrary central force. This
is then specialized to an inverse square law. We assume that the mass of the planet is negligible
compared to that of the Sun.

Set up a polar coordinate system (r,θ) centred on the Sun. Since the mass of the planets is small,
we assume that their gravity does not significantly perturb the motion of the Sun, so this frame is
approximately inertial.

The equation of motion is
m:r “ fprqer (6.13)

where m is the mass of the planet and fprq is the magnitude of the force acting on the planet. The
radial and angular components of this equation are (see Section 1.16)

mp:r ´ r 9θ2q “ fprq, (6.14)

mp2 9r 9θ ` r:θq “ 0 (6.15)

The second equation tells us that
d

dt
pr2 9θq “ 0 (6.16)

so
r2 9θ “ l (6.17)

where l is a constant. From the previous section we see that l “ L{m, the angular momentum per
unit mass. This result does not depend on the form of fprq. We see, as we found in the previous
section, that the angular momentum of an orbiting point mass is conserved for any
central force.

To find the shape of the orbit, we need an equation that gives r as a function of θ. Therefore we
need to eliminate t from these equations. This is easily done using the last equation, which tells us
that

d

dt
“

l

r2

d

dθ
. (6.18)

The radial equation can therefore be written as

l

r2

d

dθ

ˆ

l

r2

dr

dθ

˙

´
l2

r3
“

1

m
fprq (6.19)

This can be simplified by means of the substitution

r “
1

u
(6.20)

which gives

´l2u2d
2u

dθ2
´ l2u3 “

1

m
fp1{uq (6.21)

so
d2u

dθ2
` u “ ´

1

ml2u2
fp1{uq (6.22)

This is the general equation for the orbit of a mass attracted by a central force.
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Let’s now consider the special case

fprq “ ´
k

r2
(6.23)

where k “ GMm is a constant. The equation of the orbit now becomes

d2u

dθ2
` u “

k

ml2
. (6.24)

This is the equation of a simple harmonic oscillator, with an additive constant. The constant is
just an constant “force” applied to the oscillator and we saw in Section 3.4 that this results in an
offset to the equilibrium position. Thus the solution is

u “ A cospθ ´ θ0q `
k

ml2
(6.25)

where A and θ0 are constants. The latter depends on the direction that we choose to measure theta
from, so we are free to set θ0 “ 0. Substituting u “ 1{r, we get

r “
1

A cospθq ` k{ml2
“

ml2{k

1` pAml2{kq cos θ
. (6.26)

Compare this to the equation of an ellipse in polar coordinates (Equation 6.4),

r “
ap1´ ε2q

1` ε cos θ
(6.27)

We see that Aml2{k “ ε and

ap1´ ε2q “
ml2

k
“

l2

GM
. (6.28)

so the planet’s orbital angular momentum per unit mass l is related to the parameters of the orbit
by

l2 “ GMap1´ ε2q. (6.29)

You might wonder what the orbit would look like if gravity did not follow an inverse square law.
There is a discussion of this in Section 6.13 of the text book. In that case the orbit would not be
an ellipse, in fact it would not generally be any closed curve. Rather, the orbit would eventually
fill the entire orbital plane between an inner and outer radius.

If the force law is nearly, but not exactly, an inverse square, the orbit can be described by an ellipse
in which the major axis slowly precesses (rotates about the Sun). In fact this is observed for the
planet Mercury and is due in part to a departure from an inverse square law according to Einstein’s
theory of gravity. The correct prediction of the precession of Mercury’s orbit was an important
early confirmation of the theory of General Relativity.

6.6 Kepler’s third law

We have already found that the rate at which a line connecting a planet to the Sun sweeps out
area at a rate that is proportional to the orbital angular momentum,

dA

dt
“
l

2
. (6.30)
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To find the period T of the orbit, we multiply by dt and integrate,

ż A

0
dA “

l

2

ż T

0
dt (6.31)

where A “ πab is the total area of the ellipse. Therefore,

T “
2πab

l
“

2πa2
?

1´ ε2

l
. (6.32)

Squaring this and substituting from Equation (6.28),

T 2 “
4π2a4p1´ ε2q

GMap1´ ε2q
. (6.33)

Which gives us Kepler’s third law,

T 2 “
4π2a3

GM
. (6.34)

(The textbook denotes the orbital period by τ . Most astronomers use the symbol P for period.)

6.7 Gravitational potential energy

Consider a small particle of mass m acted on by a central force

F “ fprqer, (6.35)

This force is conservative (to see this, calculate the curl of the above equation), and can therefore
be written in terms of the gradient of a potential energy function,

F “ ´∇V “ ´
dV

dr
er (6.36)

where

fprq “ ´
dV

dr
. (6.37)

Thus

V prq “ ´

ż r

rref

fprqdr, (6.38)

where rref is a reference value of r at which the potential is defined to be zero. (Note that we can
add any constant to V without changing the force. This gives us freedom to choose a distance at
which the potential is zero). Forces, such as gravity, that vary inversely as a power of the distance,
go to zero as r Ñ8, so rref is usually taken to be infinity. Then,

V prq “

ż 8

r
fprqdr, (6.39)

The energy required to move an object from r to infinity against the force is ´V prq.

For gravity,

fprq “ ´
GMm

r2
“ ´

d

dr

ˆ

´
GMm

r

˙

(6.40)
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so

V prq “ ´
GMm

r
. (6.41)

It is often more convenient to use potential energy per unit mass, which is independent of the mass
of the particle. So we define the gravitational potential Φ by

Φprq “
1

m
V prq. (6.42)

The gravitational force acting on a particle of mass m is therefore

F “ ´m∇Φ.

6.8 Orbital energy

Consider a small mass m orbiting a large mass M , where (m !M). The total energy is

E “
1

2
mv2 ` V prq (6.43)

To find the energy, evaluate this expression when the object is at perihelion. r “ rp. At this point
the radial component of the velocity is zero, so v “ l{rp. Thus

E “
ml2

2r2
p

´
GMm

rp
“
GMmap1´ ε2q

2r2
p

´
GMm

rp
“
GMm

rp

„

ap1´ ε2q

2rp
´ 1



. (6.44)

Now substitute rp “ ap1´ εq.

E “
GMm

ap1´ εq

„

1´ ε2

2p1´ εq
´ 1



“
GMm

2ap1´ εq
p1` ε´ 2q , (6.45)

which gives the total energy

E “ ´
GMm

2a
. (6.46)

Recall that the geometry of the orbit is related to the angular momentum by Equation (6.28).

ap1´ ε2q “
l2

GM
“ ´

ml2

2aE
. (6.47)

so

ε “

c

1`
ml2

2a2E
. (6.48)

We see from this that if l “ 0, ε “ 1 which corresponds to a radial orbit. The object falls directly
into the Sun. For nonzero l, if E is negative, then ε ă 1 so the orbit is elliptical (or circular) and
the object is said to be bound to the Sun. If E ą 0 then ε ą 1 and the orbit is a hyperbola. In
this case the object is not bound to the Sun. It approaches from a great distance, passes by the
Sun and then recedes to infinite distance. A final case is E “ 0. Then, a “ 8 and ε “ 1. The orbit
is a parabola.
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6.9 Orbital velocity

We can rearrange the energy equation to find the velocity of the object at any point in its orbit,

v2 “
2E

m
´

2V

m
“ ´

GM

a
`

2GM

r
, (6.49)

so

v2 “ GM

ˆ

2

r
´

1

a

˙

. (6.50)

For a circular orbit, r “ a and we see that the circular velocity is

v “

c

GM

r
(6.51)

6.10 Repulsive inverse-square forces - Rutherford scattering

We can use the results of the previous sections to study a completely different problem, that of the
scattering of alpha particles by a thin foil of gold. The unexpected result of this experiment led to
the discovery of the atomic nucleus.

In SI units, the electrostatic force between a charge Q and a charge q is given by Coulomb’s law,

fprq “
1

4πε0

Qq

r2
, (6.52)

where ε0 “ 8.854188ˆ 10´12 F/m (“ C2/Nm2) is the permittivity of free space.

Suppose that the charge q has a small mass m, which is negligible compared to the large mass M
of the charge Q. The motion of the charge q can then be found by exactly the same analysis that
we used for gravity, provided that we set the force constant to

k “ ´
Qq

4πε0
. (6.53)

We obtain the same equation for the orbit (6.26), but now the eccentricity is given by

ap1´ ε2q “
ml2

k
“ ´

4πε0ml
2

Qq
, (6.54)

so

ε “

d

1`
4πε0ml2

aQq
. (6.55)

We see that if Q and q have the same sign, ε ą 1 and the path of the small particle is a hyperbola
(see Figure 6.14.1).

In scattering problems, it is convenient to express the results in terms of the particle energy E and
the impact parameter b. If the particle has initial velocity v0 when far away, its total energy is the
same as the initial kinetic energy,

E “
1

2
mv2

0. (6.56)
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and the angular momentum is the same as the initial angular momentum

l “ v0b. (6.57)

Using our previous relations for the orbital parameters in terms of energy and angular momentum,
we find

a “ ´
k

2E
“

Qq

8πε0E
, (6.58)

ε2 ´ 1 “ ´
ml2

ka
“ 2p4πε0q

2mEl
2

Q2q2
. (6.59)

Let’s find the scattering angle θs shown in the figure. The equation of the orbit is

r “
ap1´ ε2q

1` ε cospθ ` πq
“

4πε0ml
2{Qq

´1` ε cospθq
, (6.60)

where the constant angle π is chosen so that the closest approach occurs when θ “ 0. We see that
r Ñ8 when θ “ ˘θ0, where cos θ0 “ 1{ε. The scattering angle is therefore

θs “ π ´ 2θ0. (6.61)

From this it follows that

cotpθs{2q “ tan θ0 “
a

ε2 ´ 1 “
4πε0l

Qq

?
2Em “

4πε0bmv
2
0

Qq
“

8πε0bE

Qq
. (6.62)
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For an individual scattering event, it is practically impossible to measure the impact parameter.
However, in a typical experiment many particles are scattered from many nuclei so one can use a
statistical approach.

Let N be the number of incident particles and n be the number of atoms per unit area in the gold
foil. Then, the number of particles dN scattered with impact parameter between b and b` db will
be the same as the number of particles having an impact parameter that fall inside the shaded area
shown in Figure 6.14.1. This is equal to this area multiplied by the number of atoms per unit area
multiplied by the number of incident particles,

dNpbq “ Nnp2πbdbq (6.63)

These particles will be scattered by an angle between θs and θs` dθs, which corresponds to a solid
angle dΩ “ 2π sin θsdθs. If we define the differential scattering cross section σpθsq by

σpθsq “
1

Nn

dN

dΩ
, (6.64)

then it follows that
dN “ Nnσpθsqp2π sin θsdθsq “ Nn2πbdb, (6.65)

so

σpθsq “
b

sin θs

ˇ

ˇ

ˇ

ˇ

db

dθs

ˇ

ˇ

ˇ

ˇ

. (6.66)

If we differentiate Equation (6.62) with respect to θs we get

1

2 sin2pθs{2q
“

8πε0E

Qq

ˇ

ˇ

ˇ

ˇ

db

dθs

ˇ

ˇ

ˇ

ˇ

. (6.67)

We can now eliminate b by substituting this, and Equation (6.62) into Equation (6.66). The result
is

σpθsq “
Q2q2 cotpθs{2q

128π2ε2
0E

2 sin θs sin2pθs{2q
. (6.68)

This can be simplified using the trigonometric identity

sin θs “ 2 sinpθs{2q cospθs{2q, (6.69)

which gives

σpθsq “
Q2q2

256π2ε2
0E

2 sin4pθs{2q
. (6.70)

This famous result was obtained by Rutherford in 1911 and agrees very well with experimental
measurements.
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7 Multi-particle systems

7.1 Centre of mass and linear momentum

Consider a system of n particles having masses m1, . . . ,mn, positions r1, . . . , rn and velocities
v1, . . . ,vn. The centre of mass of the system is defined by

rcm “
1

m

n
ÿ

i“1

miri, (7.1)

where

m “

n
ÿ

i“1

mi (7.2)

is the total mass. We see that the centre of mass is just the mean of the positions of the particles,
weighted by the mass of each particle.

If we take the derivative of this with respect to time, we get

p ” m 9rcm “
ÿ

i

mi 9ri “
ÿ

i

pi. (7.3)

which is the total linear momentum of the system. For simplicity we will use the notation

ÿ

i

”

n
ÿ

i“1

. (7.4)

Now suppose that the particles are acted upon by external forces F i, representing the external
force on particle i, and internal forces F ij , representing the force acting on particle i due to particle
j.

Newton’s second law tells us that
9pi “ F i `

ÿ

j

F ij . (7.5)

Therefore,
9p “

ÿ

i

F i `
ÿ

i,j

F ij . (7.6)

In the second term, for every term, such as F 23 there is a corresponding term F 32. But by Newton’s
third law these forces are equal and opposite, F ij “ ´F ji. Therefore the last term sums to zero,

9p “
ÿ

i

F i. (7.7)

This tells us that the rate of change of the total linear momentum equals the sum of the external
forces. If there are no external forces (or if they add to zero), 9p “ 0 and the momentum is conserved.
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7.2 Angular momentum

The total angular momentum of the system is defined by

L “
ÿ

i

ri ˆ pi. (7.8)

From this definition, it follows that the rate of change of the angular momentum is given by

dL

dt
“

ÿ

i

9ri ˆ pi `
ÿ

i

ri ˆ 9pi “
ÿ

i

ri ˆ 9pi. (7.9)

The first term vanishes because 9ri “ vi is parallel to pi “ mivi.

Using Newton’s second law,
dL

dt
“

ÿ

i

ri ˆ F i `
ÿ

i,j

ri ˆ F ij . (7.10)

The second term vanishes if the internal forces are central. To see this write

ÿ

i,j

ri ˆ F ij “
1

2

˜

ÿ

i,j

ri ˆ F ij `
ÿ

j,i

rj ˆ F ji

¸

“
1

2

ÿ

i,j

pri ´ rjq ˆ F ij “
1

2

ÿ

i,j

rij ˆ F ij “ 0, (7.11)

where rij “ ri ´ rj is the vector extending from particle j to particle i, which is parallel to Fij for
a central force.

In the first term, ri ˆ F i is the moment of the external force on particle i. The sum over i gives
the total moment N of the external forces. Thus,

dL

dt
“N . (7.12)

If the total moment of the external forces is zero (i.e. there is no net torque), then dL{dt “ 0 and
the total angular momentum of the system is conserved.

This derivation will fail if the internal forces are not central. For example the particles could
be charged and therefore subject to electromagnetic forces. However, if the angular momentum
present in the electromagnetic field generated by the particles is also included, one finds that the
total angular momentum is conserved.
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7.3 Centre of mass frame

If there is no net external force, the centre of mass is fixed, or moves with a constant velocity. We
can then define an inertial frame called the centre of mass frame, in which the position of the
centre of mass is fixed, and we can choose it as the origin of our coordinate system.

Following the text book, we denote postions, velocities, momentum in the centre of mass frame
with a bar, for example, r̄i.

In the centre of mass frame, rcm “ 0, so it follows that

ÿ

i

mir̄i “ 0. (7.13)

The derivative of this with respect to time gives

ÿ

i

miv̄i “
ÿ

i

p̄i “ 0. (7.14)

We can write the position in any frame as the sum of the position of the centre of mass in that
frame and the position of the particle in the centre of mass frame,

ri “ rcm ` r̄i. (7.15)

The derivative gives a corresponding relation for velocities,

vi “ vcm ` v̄i. (7.16)

With a little algebra (see the text book), one finds that

L “ rcm ˆ pcm `
ÿ

i

r̄i ˆ p̄i (7.17)

This shows that the total angular momentum is the sum of an orbital part, due to the motion of
the centre of mass, and a spin part involving rotation about the centre of mass.
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7.4 Kinetic energy

The total kinetic energy is the sum of the kinetic energy of the individual particles,

T “
1

2

ÿ

i

mivi ¨ vi (7.18)

Since vi “ vcm ` v̄i, this can be written as

T “
1

2

ÿ

i

mipvcm ` v̄iq ¨ pvcm ` v̄iq

T “
1

2

ÿ

i

mivcm ¨ vcm ` vcm ¨
ÿ

i

miv̄i `
1

2

ÿ

i

miv̄i ¨ v̄i

“
1

2
mv2

cm `
1

2

ÿ

i

miv̄
2
i . (7.19)

We see that the kinetic energy is the sum of the energy of motion of the centre of mass and the
internal kinetic energy of the system.

7.5 Two-body motion

In the previous section on planetary motion, we assumed that the mass of the planet is negligible
compared to that of the Sun. Lets now consider the case of two comparable masses.

Let the masses be m1 and m2. It is simplest to work in the centre-of-mass frame, with the origin
at the centre of mass. The position vectors r̄1 and r̄2 then satisfy the condition

m1r̄1 `m2r̄2 “ 0 (7.20)

Therefore,

r̄1 “ ´
m2

m1
r̄2. (7.21)

Both masses orbit about their common centre of mass, staying exactly opposite to each other. The
ratio of their distances from the centre of mass is constant. The gravitational force acting on each
mass is directed towards the other mass, and therefore points directly towards the centre of mass.

Let R “ r̄1 ´ r̄2 be the vector extending from m1 to m2. The equation of motion of m1 is

m1:̄r1 “ ´
Gm1m2

R2
eR. (7.22)

where eR “ R{R is a unit vector in the R direction.

From the centre-of-mass relation,

m1r̄1 “ ´m2pr̄1 ´Rq “ 0 (7.23)

so
r̄1 “

m2

m1 `m2
R. (7.24)
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Substituting this in the equation of motion, we find

:R “ ´
Gpm1 `m2q

R2
eR. (7.25)

This is the same as the equation of motion found in the previous section, except that M (the mass
of the Sun) has been replaced by m1 `m2. The motion is therefore an ellipse (or circle, parabola
or hyperbola).

Since r1 and r2 are proportional, and their sum is R, in the centre-of-mass frame, each mass moves
in an elliptical orbit with the centre of mass at a focus. The other mass moves correspondingly, in
an elliptical orbit that has the same eccentricity but with a different semi-major axis a2. It is easy
to see that a1 ` a2 “ a, where a is the semi-major axis of the ellipse traced by R.

Kepler’s third law is now replaced by the more general form

T 2 “
4π2a3

Gpm1 `m2q
. (7.26)

7.6 Collisions

When two objects collide, they are subject to an internal force that changes the momentum of each.
However the total momentum of the two objects remains the same. If we denote the momenta after
the collision with a prime, then

p1 ` p2 “ p11 ` p12. (7.27)

The energy need not be conserved during the collision. For example, some of the kinetic energy
may be converted into heat during the collision. We can write

p2
1

2m1
`

p2
2

2m2
“

p1 21

2m1
`

p1 22

2m2
`Q. (7.28)

where Q represents the energy gained or lost in the collision.
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If Q “ 0 (no change in energy) the collision is elastic. If Q ą 0 (energy is lost), the collision is
exoergic. If Q ă 0 (energy is gained), the collision is endoergic.

For a direct (head-on) collision, in which the motion is one dimensional, one can define the coeffi-
cient of restitution, e, which is the ratio of the relative velocities after and before the collision,

e “
|v12 ´ v

1
1|

|v2 ´ v1|
. (7.29)

It is easy to show that

Q “
1

2
µv2p1´ e2q (7.30)

where µ “ m1m2{pm1 `m2q is the reduced mass and v “ |v2 ´ v1| is the relative velocity before
the collision.

Collisions are simplest in the centre of mass frame. In this frame the initial and final values of the
total momentum are both zero,

p̄1 ` p̄2 “ p̄11 ` p̄12 “ 0. (7.31)

As an example, consider the collision of a moving object m1 with a stationary object m2, as seen
in the laboratory frame. After the collision, we see the two objects moving away at angles φ1 and
φ2 from the initial path of m1. We wish to determine the final velocities of the two particles and
the energy released or absorbed in the collision.

We wish to determine Q, which is the difference between the initial and final kinetic energies,

Q “
1

2
m1v

2
1 ´

ˆ

1

2
m1v

12
1 `

1

2
m2v

12
2

˙

. (7.32)

To determine this we need to find the final velocities. These are related to the initial velocity by
conservation of momentum. The components of the momentum in direction parallel and perpen-
dicular to the initial velocity must be the same before and after the collision. Referring to the
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figure we see that

m1v1 “ m1v
1
1 cosφ1 `m2v

1
2 cosφ2, (7.33)

0 “ m1v
1
1 sinφ1 ´m2v

1
2 sinφ2, (7.34)

We can use these two equations to eliminate v11 and v12. Solving the second equation for v12, we get

m2v
1
2 “ m1v

1
1

sinφ1

sinφ2
. (7.35)

Substituting this in the first equation gives

m1v1 “ m1v
1
1

ˆ

cosφ1 `
sinφ1

sinφ2
cosφ2

˙

“ m1v
1
1 sinφ1pcotφ1 ` cotφ2q. (7.36)

Finally, we can substitute these results into the equation for Q to get

Q “
1

2
m1v

2
1 ´

1

2
m1v

12
1

ˆ

1`
m1

m2

sin2 φ1

sin2 φ2

˙

,

“
1

2
m1v

2
1

„

1´
1

sin2 φ1pcotφ1 ` cotφ2q
2

ˆ

1`
m1

m2

sin2 φ1

sin2 φ2

˙

, (7.37)

“
1

2
m1v

2
1

„

1´
m2 csc2 φ1 `m1 csc2 φ2

m2pcotφ1 ` cotφ2q
2



. (7.38)

7.7 Motion involving a variable mass

So far we have assumed that the masses of objects are constant. But this may not always be true.
Rockets, for example, eject part of their mass as exhaust gasses in order to provide propulsion.
Raindrops increase collide with smaller droplets as they fall, growing in size. Let’s now examine
such situations.

Suppose that we have a mass mptq moving with velocity vptq, which at time t collides with a small
mass ∆m moving with velocity u and absorbs it. A short time ∆t after the collision we have a
single object moving with speed v `∆v.
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The change in the total momentum is

∆p “ pm`∆mqpv `∆vq ´ pmv `∆muq “ m∆v `∆mpv ´ uq `∆m∆v. (7.39)

Dividing by ∆t and taking the limit ∆tÑ 0, we get

dp

dt
“ m

dv

dt
`
dm

dt
pv ´ uq. (7.40)

This is the rate of change of the total momentum, which must equal the net external force on the
system

F ext “ m
dv

dt
`
dm

dt
pv ´ uq. (7.41)

Note that if u is constant, this can be written as

F ext “
d

dt
rmpv ´ uqs, (constant uq. (7.42)

This same equation applies to a rocket, except in that case dm{dt is negative. The second term can
be written as ´ 9mpu´ vq “ ´ 9mV , where V is the relative velocity of the exhaust. F thrust “ 9mV
is called the thrust of the rocket. We see that it is proportional to the relative velocity of the
exhaust and the rate at which mass is being expelled. Thus

m
dv

dt
“ F ext ` F thrust. (7.43)

As a simple example, consider a rocket in deep space, not subject to any external forces, and
suppose that V is constant. Let v0 and m0 be the initial speed and mass of the rocket. We wish
to find the speed as a function of time.

The problem is one dimensional,

m
dv

dt
“ ´V

dm

dt
. (7.44)

Multiply by dt and then separating the variables v and m to get

dv “ ´V
dm

m
. (7.45)

Integrating,
ż v

v0

dv “ ´V

ż m

m0

dm

m
, (7.46)

therefore
v “ v0 ` V ln

´m0

m

¯

. (7.47)

This shows that to achieve a high velocity, one needs a very high exhaust velocity, and a large mass
of propellant.

If the burn rate 9m is constant, m “ m0 ´ 9mt and the velocity is

vptq “ v0 ´ V ln

ˆ

m0 ´ 9mt

m0

˙

“ v0 ´ V ln

ˆ

1´
9mt

m0

˙

. (7.48)
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8 Rigid bodies

We can consider rigid bodies as an extension of a multi-particle system, in which the relative
positions of all the particles are fixed. Define the mass density ρprq to be the mass per unit
volume. It is a function of position. The mass contained within an infinitesimal volume dV located
at position r is therefore dmprq “ ρprqdV .

8.1 Centre of mass

The centre of mass of the body can be found by replacing sums by integrals,

rcm “
1

m

ż

rρprqdV. (8.1)

where

m “

ż

ρprqdV (8.2)

is the total mass of the body.

If the body is symmetric about any plane, the centre of mass will lie in that plane. The text book
gives some examples of how to calculate the position of the centre of mass for various shapes in
Chapter 8.

8.2 Kinetic energy of rotation

Suppose that a body is constrained to rotate about a fixed axis (which may or may not pass through
the body). What is the rotational kinetic energy?

In an inertial frame, set up a Cartesian coordinate system in which the z axis coincides with the
rotation axis. Let ω denote the angular velocity vector. The velocity of an element of mass dmprq
is given by

v “ ω ˆ r “ ωk ˆ r, (8.3)

The velocity components are therefore

vx “ ´ωry, (8.4)

vy “ ωrx, (8.5)

so the kinetic energy of this element is

dT “
1

2
v2dm “

ω2

2
px2 ` y2qdm (8.6)

The total kinetic energy of rotation is obtained by integrating this over the entire body,

T “
ω2

2

ż

px2 ` y2qρdV (8.7)

We can write this result as

T “
1

2
Izω

2, (8.8)
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where

Iz “

ż

px2 ` y2qρdV (8.9)

is the moment of inertia about the z axis.

For a freely rotating body, the axis of rotation will pass through the centre of mass.

8.3 Angular momentum

Let’s now consider the rotational angular momentum. For an element dm the z component of the
angular momentum is

dLz “ pr ˆ vq dm “ pxvy ´ yvxq dm “ ωpx2 ` y2q dm. (8.10)

Therefore the total angular momentum about the z axis is

Lz “ ω

ż

px2 ` y2qρdV “ Izω. (8.11)

If a torque is applied about the z axis, the angular momentum will change. We previously found
that

dL

dt
“N (8.12)

For a rigid body, Iz is constant, so the z component of this equation gives us

Iz
dω

dt
“ Nz. (8.13)

Note the following correspondences between linear motion and rotation,

Translation along x axis Rotation about z axis
Linear momentum px “ mvx Angular momentum Lz “ Izω
Force Fx “ m 9vx Torque Nz “ Iz 9ω
Kinetic energy T “ 1

2mv
2 Kinetic energy T “ 1

2Izω
2

(8.14)

We see that for rotation, Iz plays a similar role as m does for linear motion, with the linear velocity
v being replaced by the angular velocity ω.

8.4 The parallel-axis theorem

If the axis of rotation does not go through the centre of mass of the body, we can write

x “ xcm ` x̄, (8.15)

y “ ycm ` ȳ, (8.16)

where the bar indicates the centre of mass frame. The moment of inertia about the z axis then
becomes

Iz “

ż

px2 ` y2qρdV

“

ż

px̄2 ` ȳ2qρdV ` px2
cm ` y

2
cmq

ż

ρdV ` 2xcm

ż

x̄ρdV ` 2ycm

ż

ȳρdV,

“ Icm `ml
2, (8.17)

where l2 “ x2
cm ` y

2
cm is the perpendicular distance from the axis of rotation to the centre of mass.

(The last two terms are zero due to the definition of the centre of mass.)
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8.5 The radius of gyration

If we divide the moment of inertia by the mass of the object, the result is

Iz
m
“

1

m

ż

px2 ` y2qρdV (8.18)

which is a density-weighted mean square distance from the rotation axis. The square root of this
quantity is a length k, called the radius of gyration,

k “

c

I

m
(8.19)

If the density is constant, the radius of gyration depends only on the shape and size of the object.
Specifying k, and the axis, is equivalent to specifying the moment of inertia per unit mass. Some
values are listed in Table 8.3.1 in the text book.

For example, a thin rod of length a rotating about its centre has k2 “ a2{12, a uniform sphere of
radius a has k2 “ 2a2{5 and solid cylinder rotating about its axis has k2 “ a2{2.

8.6 Example: object rolling down an inclined plane

As an example, consider the system shown in the diagram below

The forces acting on the body, through the centre of mass (CM) are gravity mg, a normal force
FN and a frictional force F P . Choose Cartisian px, yq coordinates as shown. In these coordinates,
the equations for the linear motion of the CM are

m:x “ mg sin θ ´ FP , (8.20)

m:y “ mg cos θ ` FN . (8.21)
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As the object moves, the y coordinate of the CM does not change, therefore :y “ 0, so the second
equation tells us that the normal force is

FN “ ´mg cos θ (8.22)

The first equation tells us about the motion in the x direction, but we cannot solve it until we
determine FP . To find it we observe that this force will exert a torque r ˆ F P about the CM of
the object. The magnitude of the torque is

N “ aFp.

This will cause the object to rotate,
N “ aFp “ I 9ω

where ω “ 9φ is the angular speed and I is the moment of inertia of the object about the axis of
rotation.

We now have and expression for FP in terms of ω, but not x. To relate these two quantities, observe
that if the CM is moving with speed 9x and there is no slipping, the angular speed of rotation is

ω “
9x

a
.

Therefore,

9ω “
:x

a
.

We can now substitute these results into the equation for the acceleration,

m:x “ mg sin θ ´
I

a2
:x.

Solving this for :x, we get

:x “
g sin θ

1` I{ma2
“

g sin θ

1` k2{a2
.

For a cylinder, k2 “ a2{2 so

:x “
2

3
g sin θ.

For a sphere, k2 “ 2a2{3 so

:x “
5

7
g sin θ.

We see that the resulting acceleration is independent of the mass and the radius of the object, and
that a sphere will accelerate faster than a cylinder.
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9 Lagrangian mechanics

An alternative approach to Newtonian mechanics was developed by Leibniz, Bernoulli, D’Alembert,
Lagrange and Hamilton, not long after Newton. A key difference of this formalism is its reliance
on scalar quantities, such as energy, as opposed to the vectors of the Newtonian approach. This
approach is often simpler, particularly for complex problems. It also provides new insight into
dynamical systems and let to the discovery of an extraordinary result, Hamilton’s principle.

9.1 Generalized coordinates

We have used several coordinate systems to describe the motions of objects. For example, a
pendulum swinging in a plane can be described by Cartesian coordinates px, yq both of which would
be functions of time. However, it is simpler in this case to use polar coordinates pr, θq because,
since r is constant, only one variable pθq is needed to describe the position of the pendulum.

Generalized coordinates qi are any set of independent scalar coordinates that just suffice to
uniquely specify the configuration of a system at any particular time.

The number of generalized coordinates needed to specify the configuration of a system is the same
as the number of degrees of freedom of the system.

For example, consider two masses attached to the end of a thin, massless rigid rod of length d.
The masses are both free to move in any direction subject to the constraint that the distance
between them is constant and equal to d. If there was no rod, we would need six coordinates (in
three dimensions) to specify the positions of the two masses. But with the rod, these coordinates
are not all independent because of the constraint

px1 ´ x2q
2 ` py1 ´ y2q

2 ` pz1 ´ z2q
2 ´ d2 “ 0. (9.1)

Because of the constraint, the number of degrees of freedom is reduced by one, from 6 to 5.
Therefore, the system can be described by five generalized coordinates. These could be taken
to be, for example, the coordinates xcm, ycm, zcm of the centre of mass of the system, and polar
coordinates θ, φ of one of the objects with respect to the centre of mass. These five generalized
coordinates suffice to uniquely specify the positions of both masses.

In general, if we have N particles in three-dimensional space, connected by m independent con-
straints, there will exist 3N ´m generalized coordinates.

Each constraint can be expressed in the form

fjpxi, yi, zi, tq “ 0 (9.2)

for some functions fj (j “ 1, . . . ,m). Constraints of this form are said to be holonomic.

An example of a non-holonomic constraint would be confining a particle to the exterior of a sphere,

x2 ` y2 ` z2 ´R2 ě 0. (9.3)

Such a constraint does not reduce the number of degrees of freedom (one still needs three coordinates
to specify the location of the particle).

Given generalized coordinates qi (i “ 1, . . . , n) we can define generalized velocities

9qi “
dqi
dt
. (9.4)
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9.2 Kinetic and potential energy in generalized coordinates

The potential energy of the system is a function of the coordinates of the particles, and therefore
can be written as some function V pqiq of the generalized coordinates.

Similarly, the kinetic energy can be written as a function of the generalized coordinates and the
generalized velocities, T pqi, 9qiq.

As an example, consider a small mass m moving in the gravitational field of a much larger mass
M that is at rest. For the generalized coordinates we take pr, θ, φq of a spherical coordinate system
centred on the mass. The potential energy is then

V prq “ ´
GMm

r
,

which is a function of the single generalized coordinate r.

In Section 1 we found that
v “ 9r er ` r 9φ sin θ eφ ` r 9θ eθ,

so the kinetic energy is

T “
1

2
mv2 “

1

2
m
´

9r2 ` r2 sin2 θ 9φ2 ` r2 9θ2
¯

.

This is a function of the generalized coordinates and the generalized velocities, and is quadratic in
the latter (powers of the velocities are no greater than 2).

9.3 Hamilton’s variational principle

We have seen that the configuration of a system can be described by some number n of generalized
coordinates which are functions of time t. These coordinates span an n-dimensional configuration
space. Every point in configuration space specifies a unique the state of the system.

Figure 9.1: Configuration space. Credit: Masahiro Morii, Harvard

As the system evolves dynamically from some initial state at time t1 to a later state at time t2, it
follows a unique path qiptq through configuration space from qipt1q to qipt2q. One could determine
the path by applying Newton’s laws, but in 1834 Hamilton discovered a different approach following
from his work on the unification of optics and mechanics.

The action J is defined by the integral

Jpt1, t2q “

ż t2

t1

Ldt
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where L “ T ´ V is the Lagrangian of the system. Hamilton’s principle states that the path
followed by the system is the one that either maximizes or minimizes the action. Mathematically
this is expressed as

δJ “ δ

ż t2

t1

Ldt “ 0.

Here δ represents the change due to an infinitesimal variation of the the path along which the
integral is evaluated. The path can be varied in an arbitrary manner, provided that it starts and
ends at the same points. In other words the variations must vanish at the end points.

Figure 9.2: A path variation. Credit: Masahiro Morii, Harvard

In general, the Lagrangian will depend both on qi and 9qi, so we must consider variations in 9qi as
well as qi. In other words, the rate at which the system moves through configuration space may
vary, even if the path is the same.

Another way to think of this is to imagine a path in 2n-dimensional phase space, spanned by qi
and 9qi. Variations in 9qi correspond to changing the path in the generalized velocity dimensions.

9.4 Lagrange’s equations

Let’s see what the implications of Hamilton’s principal are. We wish to determine under what
conditions the principal may be satisfied. We begin by rewriting the principle, making it more
clear what the functional dependencies are,

δ

ż t2

t1

Lrqiptq, 9qiptqsdt “ 0. (9.5)

The left side is the change of the integral, resulting from some variation of the path δqiptq. Now the
integral can be thought of as an infinite sum, and the change of the sum is the sum of the changes.
Therefore, we can take the δ symbol inside the integral,

ż t2

t1

δLrqiptq, 9qiptqsdt “ 0. (9.6)

The integrand now is the change in L due to the variation of the path. That can be split into two
parts, since L depends both on qi and on 9qi. For each part we must sum over possible variations
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in each of the n dimensions,

ż t2

t1

«

ÿ

i

BL

Bqi
δqi `

ÿ

i

BL

B 9qi
δ 9qi

ff

dt “ 0. (9.7)

Now in the second term we have δ 9qi. This is a variation of the rate at which the system moves
along the path qi. It is therefore the difference between two slightly different functions of time qiptq
that follow the same path at different rates. In other words,

δ 9qi “
d

dt
δqi. (9.8)

The second term in the integrand can now be written in the form

ÿ

i

BL

B 9qi

d

dt
δqi “

d

dt

˜

ÿ

i

BL

B 9qi
δqi

¸

´
ÿ

i

d

dt

ˆ

BL

B 9qi

˙

δqi. (9.9)

The first term on the right side is a total derivative, so its integral is just the difference between
the values at the end points,

ż t2

t1

«

ÿ

i

BL

Bqi
δqi ´

ÿ

i

d

dt

ˆ

BL

B 9qi

˙

δqi

ff

dt`

«

ÿ

i

BL

B 9qi
δqi

fft2

t1

“ 0. (9.10)

This last term is in fact zero because the variation δqi is zero at the end points. Factoring out
common terms in the integral, we get

ż t2

t1

ÿ

i

„

BL

Bqi
´
d

dt

ˆ

BL

B 9qi

˙

δqidt “ 0. (9.11)

Now, this must be true for any small variation δqi, otherwise the path would not be an extremum
of the action. That can only happen if the quantity in square brackets is exactly zero.

We thus arrive at Lagrange’s equations,

BL

Bqi
´
d

dt

BL

B 9qi
“ 0. (9.12)

These are n partial differential equations that describe the motion of the system.

9.5 Examples of Lagrangian mechanics

9.5.1 Harmonic oscillator

Consider a one-dimensional harmonic oscillator. We need only one generalized coordinate, x, the
displacement of the oscillator. The Lagrangian is

L “ T ´ V “
1

2
m 9x2 ´

1

2
kx2 (9.13)

There is only one Lagrange equation,

BL

Bx
´
d

dt

BL

B 9x
“ kx´

d

dt
m 9x “ 0. (9.14)

which gives us the equation of motion that we previously derived from Newtonian mechanics,

m:x´ kx “ 0. (9.15)
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9.5.2 Particle in a central force field

Consider now a particle moving in the plane z “ 0 subject to a central force f(r). For the generalized
coordinates we take q1 “ r and q2 “ θ. These are related to the Cartesian coordinates x and y by
the relations

x “ r cos θ, (9.16)

y “ r sin θ. (9.17)

The velocities are

9x “ 9r cos θ ´ r 9θ sin θ, (9.18)

9y “ 9r sin θ ` r 9theta cos θ. (9.19)

The kinetic energy is

T “
1

2
mp 9x2 ` 9y2q “

1

2
mp 9r2 ` r2 9θ2q (9.20)

so the Lagrangian is

L “
1

2
mp 9r2 ` r2 9θ2q ´ V prq. (9.21)

Now calculate the partial derivatives,

BL

Br
“ mr 9θ2 ´

BV

Br
“ mr 9θ2 ` fprq,

BL

B 9r
“ m 9r, (9.22)

BL

Bθ
“ 0,

BL

B 9θ
“ mr2 9θ. (9.23)

The two Lagrange equations give

d

dt

BL

B 9r
“
BL

Br

d

dt

BL

B 9θ
“
BL

Bθ
, (9.24)

m:r “ mr 9θ2 ` fprq,
d

dt
pmr2 9θq “ 0. (9.25)

Observe that the last equation tells us that mr2 9θ, the orbital angular momentum of the particle,
is a constant of the motion. This happened because the Lagrangian does not contain θ. This is an
example of Noether’s theorem (we will discuss this later).

9.5.3 Atwood’s machine

Suppose that two masses m1 and m2 are attached to a massless string that passes over a pulley,
as shown in Figure 10.5.1. Let the length of the string be l and the radius of the pulley be a. A
single coordinate x is sufficient to specify the position of the system.

The kinetic energy is

T “
1

2
m1 9x2 `

1

2
m2 9x2 `

1

2
I

9x2

a2
, (9.26)

and the potential energy is
V “ ´m1gx´m2gpl ´ πa´ xq (9.27)
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which gives the Lagrangian

L “
1

2

ˆ

m1 `m2 `
I

a2

˙

9x2 ` pm1 ´m2qgx`m2gpl ´ πaq. (9.28)

The single Lagrange equation becomes
ˆ

m1 `m2 `
I

a2

˙

:x “ pm1 ´m2qg (9.29)

which tells us that the acceleration is

:x “
pm1 ´m2qg

m1 `m2 ` I{a2
. (9.30)

9.5.4 Particle sliding on a moveable inclined plane

Consider a mass m sliding down a frictionless inclined plane of angle θ. The inclined plane is rests
on a frictionless horizontal surface and is free to slide horizontally on this plane. Find the equations
of motion.

There are two degrees of freedom, which can be represented by the generalized coordinates q1 “ x
and q2 “ x1, where x is the horizontal position of the inclined plane and x1 is the distance along
the plane to the mass, measured from the top.
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The kinetic energy is the sum of the kinetic energy of m and M . The velocity v of m can be found
either by vector analysis, or by the cosine rule,

v2 “ p 9x` 9x1q ¨ p 9x` 9x1q “ 9x2 ` 9x12 ` 2 9x 9x1 cospθq. (9.31)

The potential energy is ´mgx1 sin θ (we need not include the potential energy of M as it does not
change). Therefore, the Lagrangian is

L “ T ´ V “
1

2
rM 9x2 `mp 9x2 ` 9x12 ` 2 9x 9x1 cos θqs `mgx1 sin θ. (9.32)

There are two Lagrange equations,

d

dt

BL

B 9x
“
BL

Bx

d

dt

BL

B 9x1
“
BL

Bx1
, (9.33)

d

dt

“

pM `mq 9x`m 9x1 cos θ
‰

“ 0,
d

dt

`

9x1 ` 9x cos θ
˘

“ g sin θ. (9.34)

We see that pM ` mq 9x ` m 9x1 cos θ is a constant of the motion. This is a consequence of the
Lagrangian being independent of x1. Evaluating the time derivatives,

pM `mq:x`m:x1 cos θ “ 0, :x1 ` :x cos θ “ g sin θ. (9.35)

Solving these for :x and :x1, we find

:x “
´g sin θ cos θ

pm`Mq{m´ cos2 θ
, :x1 “

g sin θ

1´m cos2 θ{pm`Mq
. (9.36)

9.5.5 The physical pendulum

A real pendulum is not a point mass. The mass is extended and so one needs to consider rotational
energy of the mass and the pendulum rod. Let the moment of inertial of the pendulum about the
suspension point be I. There is only one degree of freedom, so one coordinate is needed. We can
take this to be θ, the angle between the pendulum arm and the vertical axis. The kinetic energy
is I 9θ2{2 and the potential energy is mglp1´ cos θq, where l is the distance between the suspension
point and the centre of mass.

Therefore, the Lagrangian is

L “
1

2
I 9θ2 ´mgp1´ cos θq. (9.37)

The Lagrange equation is
I :θ `mgl sin θ “ 0 (9.38)

For small oscillations, sin θ » θ and this is a harmonic oscillator equation. The period is therefore

T “ 2π

d

I

mgl
. (9.39)
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9.6 Non-conservative and dissipative forces

So far we have considered only forces that can be derived from a potential. Can Lagrangian
mechanics handle non-conservative or dissipative forces? Yes, one can include such forces by adding
additional terms to the Lagrangian. However, the simplest way to deal with such forces is to just
add them to the Lagrange equations.

d

dt

BL

B 9qi
´
BL

Bqi
“ Qipqi, 9qiq, (9.40)

where Qi represents the non-conservative or dissipative forces affecting the coordinate qi.

For example, consider a large molecule moving in a solution under the action of a constant force
F0 acting in the x direction. Resisting the motion is a drag force Q “ ´cv that is proportional to
the velocity of the molecule. We wish to find the equation of motion.

The problem is one-dimensional, with a single generalized coordinate q1 “ x. The potential that
gives rise to the constant force is

V pxq “ ´F0x, (9.41)

so the Lagrangian is

L “
1

2
m 9x2 ` F0x, (9.42)

and the additional non-conservative force is Q1 “ ´c 9x. The Lagrange equation (9.40) becomes

m:x´ F0 “ ´c 9x (9.43)

which is the same as the Newtonian result.

9.7 Conjugate momenta

For each generalized coordinate qi, we can define a generalized momentum pi that is associated
with it, according to

pi “
BL

B 9qi
(9.44)

The various pi are called conjugate momenta.

For example, a free particle of mass m has the Lagrangian

L “
1

2
m 9x2. (9.45)

The momentum conjugate to the generalized coordinate x is therefore

px “
BL

B 9x
“ m 9x, (9.46)

which is the usual linear momentum.

Now consider a wheel having moment of inertia I. Let θ be the rotation angle of the wheel. The
Lagrangian is

L “
1

2
I 9θ2, (9.47)
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so the momentum conjugate to θ is
pθ “ I 9θ “ Iω. (9.48)

This quantity is the angular momentum of the wheel.

In terms of the conjugate momenta, the Lagrange equations become

dpi
dt
“
BL

Bqi
. (9.49)

From this we see that if the Lagrangian does not contain a particular generalized coordinate qk,
then the corresponding generalized momentum is conserved,

dpk
dt

“ 0. (9.50)

We then say that qk is an ignorable coordinate and its conjugate momentum is a constant of
the motion.

9.8 Constraints

In the examples so far, we have implicitly used any constraints present to reduce the number
of degrees of freedom of the problem. That is usually the simplest way to solve the problem.
However, sometimes it may be easier to include all the coordinates, and relate them with equations
of constraint. This would be the case if one wanted to determine the forces associated with the
constraints (such as the tension in a pendulum wire). To solve the problem this way, we use the
method of Lagrange multipliers.

To illustrate the method, suppose that we have a system that has two generalized coordinates q1

and q2 related by a holonomic constraint that can be written as

fpq1, q2q “ 0 (9.51)

for some function f .

Hamilton’s principle tells us that

δ

ż t2

t1

Ldt “

ż t2

t1

2
ÿ

i“1

„

BL

Bqi
´
d

dt

ˆ

BL

B 9qi

˙

δqidt “ 0 (9.52)

Previously we argued that because the δq1 were all arbitrary functions of time, this equation would
be satisfied only if the quantity in square brackets was identically zero for all values of i. But now
we cannot do that because the two coordinates q1 and q2 are related. Therefore, their variations
are related also.

To find the relationship between δq1 and δq2, consider the variation of the constraint equation,

δf “
Bf

Bq1
δq1 `

Bf

Bq2
δq2 “ 0. (9.53)
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Therefore,

δq2 “ ´

ˆ

Bf{Bq1

Bf{Bq2

˙

δq1. (9.54)

Hamilton’s principle becomes

ż t2

t1

"„

BL

Bq1
´
d

dt

ˆ

BL

B 9q1

˙

´

„

BL

Bq2
´
d

dt

ˆ

BL

B 9q2

˙ˆ

Bf{Bq1

Bf{Bq2

˙*

δq1dt “ 0 (9.55)

Now there is just one δqi, so the quantity inside the braces must be zero. Thus,

„

BL

Bq1
´
d

dt

ˆ

BL

B 9q1

˙ˆ

Bf

Bq1

˙´1

“

„

BL

Bq2
´
d

dt

ˆ

BL

B 9q2

˙ˆ

Bf

Bq2

˙´1

. (9.56)

The left and right side of this equation are both functions of time, so they can be equal only if they
are the same function of time, ´λptq say. Therefore,

„

BL

Bqi
´
d

dt

ˆ

BL

B 9qi

˙ˆ

Bf

Bqi

˙´1

“ ´λptq, (9.57)

which we can write as
d

dt

ˆ

BL

B 9qi

˙

´
BL

Bqi
“ λptq

Bf

Bqi
” Qiptq. (9.58)

Comparing this to Equation (9.40), we see that the quantities Qiptq act like non-conservative forces.
They are in fact the the forces of the constraint.

We now have three unknown functions, q1ptq, q2ptq and λptq. But we also have three equations: the
two Lagrange equations above, and the equation of the constraint. Therefore the problem can be
solved.

For example, consider again a wheel rolling down an inclined plane. This time we take two general-
ized coordinates, x and φ. They are not independent, but are related since x “ aφ. The constraint
equation is therefore

fpx, φq “ x´ aφ “ 0,

and the Lagrangian is

L “
1

2
m 9x2 `

1

2
I 9φ2 `mgx sin θ

The Lagrange equations are

m:x´mg sin θ “ Qx “ λ, (9.59)

I :φ “ Qφ “ ´λa. (9.60)

Differentiating the constraint equation we find

:φ “
:x

a
. (9.61)

Substituting this into the second Lagrange equation and eliminating λ we get

ˆ

m`
I

a2

˙

:x “ mg sin θ (9.62)
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which is the equation of motion.

If instead of eliminating λ we eliminate :x, we get

pma2{I ` 1q{λ “ ´mg sin θ (9.63)

so

λ “ ´
mg sin θ

a2{k2 ` 1
. (9.64)

For a disk, k2 “ a2{2 so this becomes

λ “ ´
1

3
mg sin θ. (9.65)

and the equation of motion becomes

:x “
2

3
g sin θ. (9.66)

as we obtained previously using Newton’s equations.

The force of constraint is

Qx “ ´
Qy
a
“ λ “ ´

1

3
mg sin θ. (9.67)

This is the frictional force that is producing the constraint.

9.9 Hamilton’s equations

An alternative formulation of mechanics was developed by William Rowan Hamilton in 1833, build-
ing on Lagrangian mechanics. Hamilton’s approach describes a mechanical system using generalized
coordinates qiptq and generalized momenta piptq, which are given equal status. The configuration,
and motion, of the system at any time t are then described by a single point in a 2n dimensional
phase space.

Building on Lagrange’s description of mechanics, Hamiltonian considered the function

Hpqi, pi, tq “
ÿ

i

9qipi ´ Lpqi, 9qi, tq. (9.68)

which we call the Hamiltonian. Recall that

L “ T pqi, 9qi, tq ´ V pqiq (9.69)

where T is generally a homogeneous quadratic function of the 9q’s and V is a function of the q’s
alone. The conjugate momenta are defined by pi “ BL{B 9qi. The first term in the definition of the
Hamiltonian is therefore

ÿ

i

9qipi “
ÿ

i

9qi
BL

B 9qi
“

ÿ

i

9qi
BT

B 9qi
“ 2T. (9.70)

The last step follows from Euler’s theorem for homogeneous functions f of degree n in the variables
xi

ÿ

i

xi
Bf

Bxi
“ nf. (9.71)
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(For example, if f “ ax2
1 ` bx

2
2 ` cx1x2, we find

ÿ

i

xi
Bf

Bxi
“ x1p2ax1q ` x1p2cx2q ` x2p2bx2q ` x2pcx1q “ 2f

in agreement with Euler’s theorem.)

Substituting this result into the definition of the Hamiltonian, we find

H “ 2T ´ L “ 2T ´ pT ´ V q “ T ` V

which is the total energy of the system.

Note: this result holds only if the potential does not depend on any of the velocities 9qi. This
is generally, but not always, the case. The definition (Eqn. 9.68) is always correct, but the
Hamiltonian is not always equal to the total energy.

Now, H is a function of qi and pi, so lets see how it changes under a variation of the path in
configuration space,

δH “ δ

«

ÿ

i

9qipi ´ L

ff

“
ÿ

i

„

piδ 9q ` 9qiδpi ´
BL

B 9qi
δ 9qi ´

BL

Bqi
δqi



(9.72)

The first and third terms cancel, due to the definition of the conjugate momentum. We can also
use Lagrange’s equations in the form 9pi “ BL{Bqi to simplify this,

δH “
ÿ

i

r 9qiδpi ´ 9piδqis (9.73)

Now for any function Hppi, qiq we must have

δH “
ÿ

i

„

BH

Bpi
δpi ´

BH

Bqi
δqi



(9.74)

so these two equations will be equal, for arbitrary variations, only if

9qi “
BH

Bpi
, 9pi “ ´

BH

Bqi
. (9.75)

These are Hamilton’s equations. They are 2n first-order differential equations, equivalent to the
n second-order differential equations of Lagrange.

In Hamiltonian mechanics, pi and qi are independent functions of time, on an equal footing. To-
gether they span a 2n-dimensional phase space. Each point in this phase space specifies both the
configuration of the system and its motion. As the system evolves, it traces a path through phase
space, according to Hamilton’s equations.

While not particularly advantageous for the solution of problems in mechanics, the Hamiltonian
approach provided new insights into the physics and mathematics of mechanics. This formalism is
used extensively in quantum mechanics, where the Hamiltonian H is regarded as an operator that
generates the time evolution of the quantum-mechanical system.
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9.10 Examples of Hamiltonian mechanics

9.10.1 Harmonic oscillator

For the one-dimensional harmonic oscillator,

T “
1

2
m 9x2, V “

1

2
kx2, L “ T ´ V, (9.76)

p “
BL

B 9x
“ m 9x, so 9x “

p

m
. (9.77)

The Hamiltonian is

H “ T ` V “
p2

2m
`
kx2

2
, (9.78)

and Hamilton’s equations give

9p “ ´
BH

Bx
“ ´kx, (9.79)

9x “
BH

Bp
“

p

m
(9.80)

Hence
m:x` kx “ 0. (9.81)

9.10.2 Particle moving in a central force field

As before, we use polar coordinates in the plane of the orbit. The Lagrangian is

L “ T ´ V “
1

2
mp 9r2 ` r2 9θ2q ´ V prq, (9.82)

so the conjugate momenta are

pr “
BL

B 9r
“ m 9r (9.83)

pθ “
BL

B 9θ
“ mr2 9θ. (9.84)

Substituting these in the expression for the kinetic energy, we get the Hamiltonian

H “ T ` V “
1

2m

ˆ

p2
r `

p2
θ

r2

˙

` V prq (9.85)

We can now write down Hamilton’s equations. Recalling that f “ ´dV {dr,

9pr “ ´
BH

Br
“

p2
θ

mr3
` fprq 9r “

BH

Bpr
“
pr
m

(9.86)

9pθ “ ´
BH

Bθ
“ 0 9θ “

BH

Bpθ
“

pθ
mr2

. (9.87)

The first equation on the second line tells us that the angular momentum pθ “ mr2 9theta ” ml is
conserved. The first line then gives

m:r ´
ml2

r3
“ fprq, (9.88)

which is the same equation that we found earlier using Newtonian and Lagrangian methods.
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9.11 Legendre transformations

The definition of the Hamiltonian (Eqn. 9.68) is an example of a class of mathematical transfor-
mations studied by the mathematician Adrien-Marie Legendre.

Suppose that we have a system described by a function fpx, yq of two variables, x and y. Its
differential can be written as

df “ udx` vdy (9.89)

where

u “
Bf

Bx
, v “

Bf

By
. (9.90)

Suppose now that we wish to change the description from the variables x, y to u, y. This can be
done by defining a new function

gpu, yq “ fpx, yq ´ ux (9.91)

The differential of the function g is then

dg “ df ´ udx´ xdu “ vdy ´ xdu. (9.92)

This has the desired form, which can be compared to

dg “
Bg

Bu
du`

Bg

By
dy. (9.93)

The quantities x and v are therefore related to u and y by

x “ ´
Bg

Bu
, v “

Bg

By
. (9.94)

From this we see that the Hamiltonian Hpp, qq is the result of applying a Legendre transformation
to the Lagrangian Lp 9q, qq in order to change the description from 9q, q to p, q. The generalization to
higher dimensions 9qi, qi is a simple extension.

Legendre transformations are also used in other areas of physics, such as thermodynamics, to change
state variables.

9.12 More difficult examples solved using Lagrangian methods

9.12.1 Dropped plank

Two people are holding the ends of a uniform plank of length l and mass m. Show that if one
person suddenly lets go, the load supported by the other person suddenly from from mg{2 to mg{4.
Show that the initial downward acceleration of the free end is 3g{2.

There are no sideways forces, so there will be no sideways motion of the centre of mass of the plank.
Therefore we need only two generalized coordinates. Let y be the height of the centre of mass and
let θ be the angle that the plank makes with the horizontal, in the sense that θ increases as the
end of the plank drops. Initially, θ “ 0 and we can take y “ 0.
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The Lagrangian is

L “
1

2
m 9y2 `

1

2
I 9θ2 ´mgy (9.95)

There is also a constraint in that, initially, one end of the plank is held at a fixed height (which we
have defined to be zero). The height of this end can be written, when θ ! 1, as y ` lθ{2, so our
constraint equation is

fpy, θq “ y `
l

2
θ “ 0 (9.96)

Lagrange’s equations are

m:y `mg “ λ
Bf

By
“ λ, (9.97)

I :θ “ λ
Bf

Bθ
“
l

2
λ. (9.98)

Differentiating the constraint equation gives us

:y “ ´
l

2
:θ (9.99)

Eliminating λ from the Lagrange equations, we find

m:y `mg “
2I

l
:θ “ ´

4I

l2
:y, (9.100)

so
:y “ ´

g

1` 4I{ml2
“ ´

g

1` 4k2{l2
(9.101)

Referring to Table 8.3.1 in the text, we see that for a thin rod of length l, k2 “ l2{12, so this
simplifies to

:y “ ´
g

1` 4I{ml2
“ ´

g

1` 1{3
“ ´

3

4
g. (9.102)

This is the downward acceleration of the centre of mass. The vertical position of the free end is 2y,
so its acceleration is 2:y “ ´3g{2, namely 3g{2 in the downward direction.

From the first Lagrange equation we see that the force of constraint, referred to the centre of mass,
is Qy “ λ “ p´3{4 ` 1qmg “ mg{4, which is the upward force that the person holding the end of
the plank must exert.

The second Lagrange equation tells us that there is a torque Qθ “ λl{2 “ mgl{8. This is the torque
produced by the upward force calculated above, N “ Qypl{2q.

9.12.2 Rotating plank

A thin uniform plank of length l lies at rest on a horizontal sheet of ice. If the plank is given a
kick at one end in a direction normal to the plank, show that the plank will begin to rotate about
a point located a distance l{6 from the centre.

This system is confined to a plane, that of the ice sheet, which we assume is frictionless. If we were
to kick the plank at its centre (the centre of mass), it would begin to move sideways at constant
speed. But because the kick is at one end, there is also a torque, so the plank will also begin to
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rotate. In the centre-of-mass frame, the plank must rotate about its centre of mass. (If it didn’t, the
centre of mass would be moving in a circle, which would violate conservation of linear momentum
since no forces are acting). The combination of rotation around the centre of mass, and translation
of the centre of mass means that there is some point on the plank where the rotational velocity is
equal and opposite to the velocity of the centre of mass so the velocity of that point as seen in the
lab (ice) frame is zero right after the kick. This is the point that we wish to find.

We can describe the position of the plank by giving x, y coordinates of the centre of mass, and a
rotation angle θ, with respect to the x axis, that is initially zero. Since the initial impulse is in the
y direction, there are no components of force in the x direction. So the x coordinate of the centre
of mass will not change. Therefore, we need only two generalized coordinates, y and θ.

We can now write down the Lagrangian,

L “
1

2
m 9y2 `

1

2
I 9θ2. (9.103)

There is no potential energy in this case.

The Lagrange equations give

m:y “ Qyptq, (9.104)

I :θ “ Qθptq. (9.105)

Here the Q’s represent generalized forces corresponding to the kick. Qθ is a torque, and is related
to the force Qy by

Qθ “
l

2
Qy. (9.106)

. Therefore, we can eliminate the Q’s from the Lagrange equations, to get

m:y “
2I

l
:θ. (9.107)

Integrating this once we obtain

m 9y “
2I

l
9θ. (9.108)

(The constant of integration must be zero otherwise one could have a translation without a rotation.)

In the centre-of-mass frame, the plank rotates about the centre of mass. Therefore in the stationary
frame, the velocity at a distance u from the centre of mass is

v “ u 9θ ` 9y “

ˆ

u`
2I

ml

˙

9θ. (9.109)

This will be zero when

u “ ´
2I

ml
“ ´

2k2

l
“ ´

2l2

12l
“ ´

l

6
. (9.110)
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Review

1. Introduction

• reference frames and coordinate systems

• vector algebra

• vector calculus

• 3d motion

• Newton’s laws

2. 1-d motion

• kinetic and potential energy

• velocity-dependent forces

3. Oscillations

• simple pendulum

• damped and driven harmonic oscillator

• phase space

4. 3-d motion

• conservative forces

• vector operators

• curvilinear coordinates

• separable forces

• 3-d harmonic oscillator

• constrained motion

5. Noninertial reference frames

• nonrotating frames

• rotating frames

• effects of Earth rotation

• plumb bob, ballistic motion and Foucault pendulum

6. Gravitation and central forces

• Newton’s law of gravity

• Newton’s theorems

• Kepler’s laws

• gravitational potential

• orbital energy and velocity

• Rutherford scattering
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7. Multi-particle systems

• centre of mass and linear momentum

• kinetic energy and aorbital ngular momentum

• 2-body motion

• colisions

• variable-mass systems

8. Rigid bodies

• centre of mass and moment of inertia

• kinetic energy of rotation and angular momentum

9. Lagrangian and Hamiltonian mechanics

• Hamilton’s principle

• Lagranges equations

• nonconservative and dissipative forces

• conjugate momenta

• constraints and Lagrange multipliers

• Hamilton’s equations

Final exam:

• April 27, 15:30, Hebb 100

• 2.5 hours

• closed book

• two formula sheets and simple calculator (no internet or wifi)

• expect to choose 5 of 6 questions to answer
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