Tutorial exercises, March 14

1. (7.11 in the text) Show that the angular momentum of a two-particle system is

$$
\boldsymbol{r}_{\mathrm{cm}} \times m \boldsymbol{v}_{\mathrm{cm}}+\boldsymbol{R} \times \mu \boldsymbol{v}
$$

where $m=m_{1}+m_{2}, \mu$ is the reduced mass, \boldsymbol{R} is the relative position vector, and \boldsymbol{v} is the relative velocity of the two particles.

Answers:

1. The angular momentum, in an arbitrary inertial frame, is

$$
\boldsymbol{L}=m_{1} \boldsymbol{r}_{\mathbf{1}} \times \boldsymbol{v}_{1}+m_{2} \boldsymbol{r}_{\mathbf{2}} \times \boldsymbol{v}_{2}
$$

The position and velocity of the centre of mass are

$$
\begin{aligned}
& \boldsymbol{r}_{\mathrm{cm}}=\frac{1}{m}\left(m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}\right) \\
& \boldsymbol{v}_{\mathrm{cm}}=\frac{1}{m}\left(m_{1} \boldsymbol{v}_{1}+m_{2} \boldsymbol{v}_{2}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \boldsymbol{r}_{2}=\boldsymbol{r}_{1}-\boldsymbol{R} \\
& \boldsymbol{v}_{2}=\boldsymbol{v}_{1}-\boldsymbol{v}
\end{aligned}
$$

Using these four equations, we can eliminate $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{v}_{1} a n d \boldsymbol{v}_{2}$ from the equation for \boldsymbol{L}. First substitute the last two equations into those for the centre-of-mass quantities,

$$
\begin{aligned}
& \boldsymbol{r}_{\mathrm{cm}}=\frac{1}{m}\left[m_{1} \boldsymbol{r}_{1}+m_{2}\left(\boldsymbol{r}_{1}-\boldsymbol{R}\right]=\boldsymbol{r}_{1}-\frac{m_{2}}{m} \boldsymbol{R}\right. \\
& \boldsymbol{v}_{\mathrm{cm}}=\frac{1}{m}\left[m_{1} \boldsymbol{v}_{1}+m_{2}\left(\boldsymbol{v}_{1}-\boldsymbol{v}\right)\right]=\boldsymbol{v}_{1}-\frac{m_{2}}{m} \boldsymbol{v}
\end{aligned}
$$

So,

$$
\begin{aligned}
\boldsymbol{r}_{1} & =\boldsymbol{r}_{\mathrm{cm}}+\frac{m_{2}}{m} \boldsymbol{R} \\
\boldsymbol{v}_{1} & =\boldsymbol{v}_{\mathrm{cm}}+\frac{m_{2}}{m} \boldsymbol{v} \\
\boldsymbol{r}_{2} & =\boldsymbol{r}_{\mathrm{cm}}-\frac{m_{1}}{m} \boldsymbol{R} \\
\boldsymbol{v}_{2} & =\boldsymbol{v}_{\mathrm{cm}}-\frac{m_{1}}{m} \boldsymbol{v}
\end{aligned}
$$

Putting these into the first equation, we get

$$
\begin{aligned}
\boldsymbol{L} & =m_{1}\left(\boldsymbol{r}_{\mathrm{cm}}+\frac{m_{2}}{m} \boldsymbol{R}\right) \times\left(\boldsymbol{v}_{\mathrm{cm}}+\frac{m_{2}}{m} \boldsymbol{v}\right)+m_{2}\left(\boldsymbol{r}_{\mathrm{cm}}-\frac{m_{1}}{m} \boldsymbol{R}\right) \times\left(\boldsymbol{v}_{\mathrm{cm}}-\frac{m_{1}}{m} \boldsymbol{v}\right), \\
& =\left(m_{1}+m_{2}\right) \boldsymbol{r}_{\mathrm{cm}} \times \boldsymbol{v}+\left(\frac{m_{1} m_{2}^{2}}{m^{2}}+\frac{m_{1}^{2} m_{1}}{m^{2}}\right) \boldsymbol{R} \times \boldsymbol{v}, \\
& =m \boldsymbol{r}_{\mathrm{cm}} \times \boldsymbol{v}+\mu \boldsymbol{R} \times \boldsymbol{v},
\end{aligned}
$$

