## 1 Tutorial exercises, January 17

1. For an object moving in one dimension,
(a) suppose that the force acting on a article is the product of a function of position and a function of velocity: $F(x, v)=f(x) g(v)$. Show that the equation of motion can be solved by integration.
(b) If instead the force is a product of a function of position and a function of time, can the equation of motion be solved by simple integration?
(c) If the force is a product of a function of vecocity and a function of time, can the equation of motion be solved by simple integration?

Answers:

1. (a) The equation of motion is

$$
\begin{equation*}
m \ddot{x}=f(x) g(v)=m \frac{d}{d t} v=m v \frac{d v}{d x} . \tag{1.1}
\end{equation*}
$$

We can separate the terms involving $x$ and $v$ as follows,

$$
\begin{equation*}
f(x) d x=m \frac{v d v}{g(v)} . \tag{1.2}
\end{equation*}
$$

We can now integrate both sides.

$$
\begin{equation*}
\int f(x) d x=m \int \frac{v d v}{g(v)}, \tag{1.3}
\end{equation*}
$$

This gives a relation between $v$ and $x$. If we can solve the resulting equation for the velocity $v(x)$, we can integrate it to get the time as a function of $x$,

$$
\begin{equation*}
t=\int \frac{d x}{v(x)} \tag{1.4}
\end{equation*}
$$

(b) In this case,

$$
\begin{equation*}
m \ddot{x}=f(x) g(t)=m \frac{d}{d t} \frac{d x}{d t} \tag{1.5}
\end{equation*}
$$

and there is no general way to separate the variables.
(c) Now we have

$$
\begin{equation*}
m \ddot{x}=f(v) g(t)=m \frac{d v}{d t} . \tag{1.6}
\end{equation*}
$$

Here we can separate the variables,

$$
\begin{equation*}
m \int \frac{d v}{f(v)}=\int g(t) d t \tag{1.7}
\end{equation*}
$$

The integration gives a relationship $v(t)$ between velocity and time. Assuming that we can solve this equation for $v(t)$, We can then find $x$ by integrating the velocity,

$$
\begin{equation*}
x=\int v(t) d t \tag{1.8}
\end{equation*}
$$

