## Tutorial exercises, March 28

1. Find the acceleration of a solid uniform sphere rolling without slipping down a fixed inclined plane of angle $\theta$ (measured from the horizontal direction).

## Answers:

1. We need only one parameter to specify the position of the sphere, so the problem is onedimensional. Let $q_{1}=x$, the distance that the centre of the sphere has moved along the plane from its starting point. Let $a$ be the radius of the sphere.

Because there is no slipping, the angular velocity of rotation of the sphere is related to its velocity by

$$
\omega=\frac{\dot{x}}{a} .
$$

The kinetic energy is the sum of the translational energy of the centre of mass and the rotational energy,

$$
T=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} \frac{I}{a^{2}} \dot{x}^{2}
$$

The potential energy is $m g$ times the height of the centre of mass,

$$
V=-m g x \sin \theta
$$

Therefore, the Lagrangian is

$$
L=\frac{1}{2}\left(m+\frac{I}{a^{2}}\right) \dot{x}^{2}+m g x \sin \theta
$$

There is one Lagrange equation,

$$
\frac{d}{d t}\left[\left(m+\frac{I}{x}\right) \dot{x}\right]-m g \sin \theta
$$

which gives the equation of motion

$$
\ddot{x}=\frac{m g \sin \theta}{m+I / a^{2}}=\frac{g \sin \theta}{1+k^{2} / a^{2}}
$$

where $k^{2}=I / m$. For a sphere, $k^{2}=2 a^{2} / 5$, so the final result is

$$
\ddot{x}=\frac{g \sin \theta}{1+2 / 5}=\frac{5}{7} g \sin \theta
$$

