Tutorial exercises, March 21

1. A horizontal force F is applied to the axle of a wheel of radius a, which starting from rest at $x=0$ accelerates along a flat horizontal surface.
(a) Assuming that the wheel rolls without slipping, find the kinetic energy of the wheel as a function of the horizontal velocity \dot{x}.
(b) Equate this energy to the work done by the force F, and by differentiating the result, find an equation for the acceleration \ddot{x}.

Answers:

1. (a) The energy of motion the centre of mass (CM) is $m \dot{x}^{2} / 2$ and the energy of the rotational motion is $I \omega^{2} / 2$. Therefore the total energy is

$$
E=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} I \dot{\omega}^{2}
$$

Since the wheel does not slip, the linear and angular velocities are related by $\dot{x}=a \omega$. Therefore,

$$
E=\frac{1}{2}\left(m+I / a^{2}\right) \dot{x}^{2}=\frac{1}{2} m\left(1+k^{2} / a^{2}\right) \dot{x}^{2}
$$

where $k^{2}=I / m$.
(b) Equating this to the work done,

$$
W=\int F d x=F x=\frac{1}{2} m\left(1+k^{2} / a^{2}\right) \dot{x}^{2}
$$

Now take the derivative with respect to time,

$$
F \dot{x}=m\left(1+k^{2} / a^{2}\right) \dot{x} \ddot{x}
$$

Solving this for the acceleration,

$$
\begin{equation*}
\ddot{x}=\frac{F}{m\left(1+k^{2} / a^{2}\right)} \tag{1}
\end{equation*}
$$

We see that the wheel behaves as if it has a mass that is greater by a factor $\left(1+k^{2} / a^{2}\right)$.

