Phys525: Quantum Condensed Matter Physics:

Episode 5: PHC as an internal emergent symmetries (ES): summary of Haldane model(can also be relativistic) and PHC in SSB states

Tentative schedule I (before the reading break of Feb 20-24, subjected to revisions)

Week one:

L1: general information on the course

- L2: Why emergent symmetries/emergent space-time symmetries?
 - --perspectives from QCP points of view (I.e. space-time symmetries)
 - --perspectives from Topological point of view (I.e. internal symmetries)

Week two: Emergent space-time symmetries in Quantum Crystals

- L3: Emergent Galilean symmetry near Lifshitz points
- L4: Emergent Lorentz symmetry in lattices

Week three and four: Emergent space-time symmetries in strongly interacting systems (Two important ideas)

L5: Emergent symmetries in quantum interacting spin models: From discrete quantum (or classical) lattice models to continuous field theories

- A) the imaginary time evolution -- the Vac-Vac transition amplitude in Quantum models;
- B) the method of Coarse graining spins.
- L6: Emergent symmetries in quantum interacting particle models I
- A) coarse graining quantum particles;
- B) emergent symmetries in Bose-Hubbard models: Galilean invariance vs Lorentz invariance.
- L7: Open discussions: Emergent symmetries in quantum interacting particle models II
- A) Emergent locality and causality.
- L8: Open discussions: Emergent symmetries in quantum interacting particle models III
- A) Quantum dynamics of real fermions;
- B) Emergent Lorentz symmetries in real fermions.

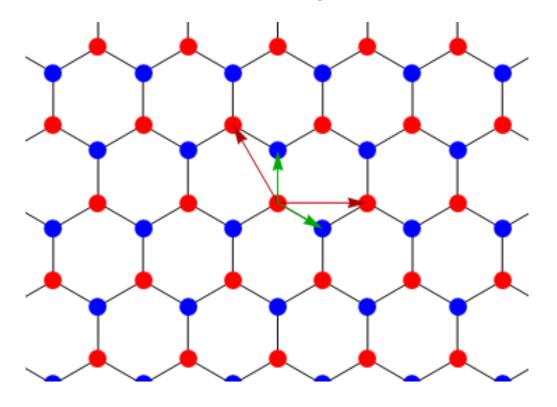
Week five and six: Emergent Scale and conformal symmetries in strongly interacting systems

L9: Scale symmetries and basic ideas of Wilsonian approaches to scale symmetries

L10: How it works? Ideas of fixed points and anomalous dimensions

Discussions on a more realistic Haldane

model in honeycomb lattices

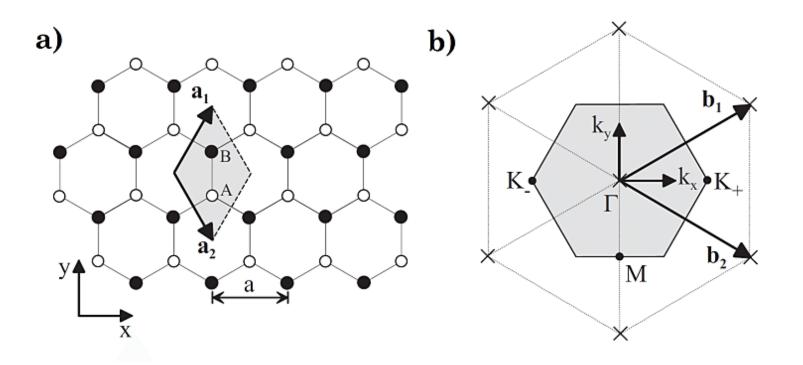


 NN hoping only and no internal B field lead to an emergent PHC/CC symmetry in addition to TRS. Note that PHC is not a fundamental/ generic symmetry of the honeycomb lattice.

PHC/CC, TRS

$$fl(p,m) = T_2 \otimes \sigma_{\gamma} p_{\infty} + \sigma_{y} p_{y} + m \sigma_{z}$$

 $T_{z} : Valley Subspace; $\sigma_{\gamma,y,z} : Subjattice$
Subspace$



PHC Transformation: C = K 1 & Ox Y complex Conjugate $\mathcal{C}\mathcal{H}(p,m)\mathcal{C} = -\mathcal{H}(-p,m)$ Time Revensal Transformation: $\mathcal{T} = K \mathcal{T}_{\mathcal{K}}, \quad \mathcal{T}^{\dagger} \mathcal{H}(p, m) \mathcal{T} = + \mathcal{H}(-p, m)$ Chiral Transformation $S \mathcal{H}(\rho, m) \mathcal{T} = -\mathcal{H}(\rho, m)$ $\mathcal{T}_{\mathcal{X}} \otimes \mathcal{T}_{\mathcal{X}}$ 5 =

C is not unique because of additional U(1) "chiral" symmetry $U_A^{\dagger} \mathcal{H} U_A = \mathcal{H}, \quad U_A^{\dagger} U_A = 1$ then CC Tranformation is defined up to UA. i.e. $f C^{\dagger} \mathcal{U} C = -\mathcal{U}$, then for $\mathcal{U}_{A} = C'$ C' H C' = -HMore explicitly, $C' = U_A^{\dagger} K U_C U_A = K U_A^{\dagger} U_C U_A$

C defined up to UA. In the Haldome Model, MA = e 120/2 C=K1062 $C'=\mathcal{U}_{A}^{+}K \ \mathbf{1}\otimes \mathbf{6}_{\mathbf{x}} \ \mathcal{U}_{A} = K \ \mathbf{U}_{A}^{-} \ \mathbf{1}\otimes \mathbf{6}_{\mathbf{x}} \ \mathcal{U}_{A}$ = $K 1 \otimes G_{\chi} U_{A}$, $U_{A} = U_{A}$ = C UA = OC [cosotisin O Tz]

Different limits of the Haldane lattice Model

- With only NN hoping and without magnetic fields, it has PHC/CC symmetry and also TRS. (Belongs to BDI, chiral orthogonal class). No QHE.
- Breaking TRS (via NNN hoping in the model+ internal magnetic fields) in this particular Haldane's proposal, it also breaks PHC/CC symmetry. Leads QHE. (Belongs to A, unitary class).

🗢 51% 🔳 🖓

ריז

-(111)

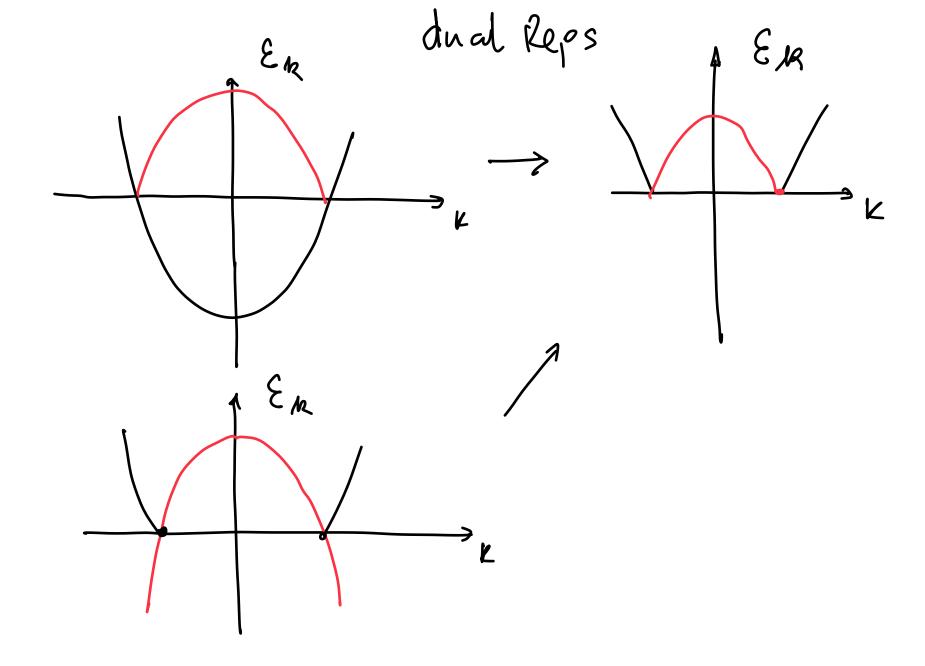
the state

		TRS	PHS	SLS	d = 1	d=2	d =
standard	A (unitary)	0	0	0	-	\mathbb{Z}	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
chiral	AIII (chiral unitary)	0	0	1	\mathbb{Z}	-	Z
(sublattice)	BDI (chiral orthogonal)		+1	1	\mathbb{Z}	-	-
	CII (chiral symplectic)	-1	-1	1	\mathbb{Z}	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}	-
	С	0	-1	0	-	Z	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
	CI	+1	-1	1	-	-	Z

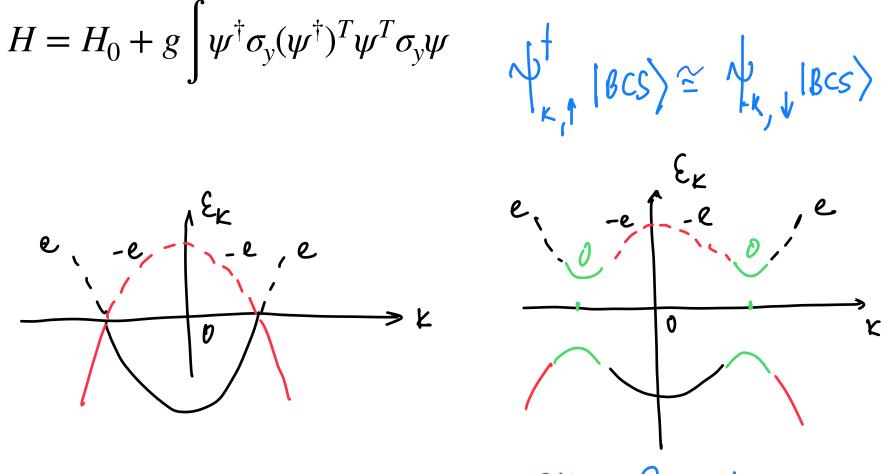
metry classes of single particle Hamiltonians classified in terms of the presence or absed d particle-hole symmetry (PHS), as well as sublattice (or "chiral") symmetry (SLS).³⁶ ies is denoted by "0". The presence of these symmetries is denoted either by "+1" ϵ iunitary) operator implementing the symmetry at the level of the single-particle Ham ext). [The index ±1 equals η_c in Eq. (1b); here $\epsilon_c = +1, -1$ for TRS and PHS, respect ABLE (which can be realized in non-superconducting systems) TRS = +1 when the S in the text] and TRS = -1 when it is a half-integer [called TRS (odd) in the text] nductor "Bogoliubov-de Gennes" (BdG) symmetry classes D, C, DIII, and CI, the Ha tion symmetry when PHS=-1 [called PHS (singlet) in the text], while it does not put S (triplet) in the text]. The last three columns list all topologically non-trivial quantu etry class and spatial dimension. The symbols Z and Z₂ indicate whether the space into topological sectors labeled by an integer or a Z₂ quantity, respectively.

Today's plan

• PHC/CC symmetry in SSB states (particleparticle interaction driven) more interesting case: PHC symmetry without U(1) symmetry via SSB



Examples of interaction-induced EBs

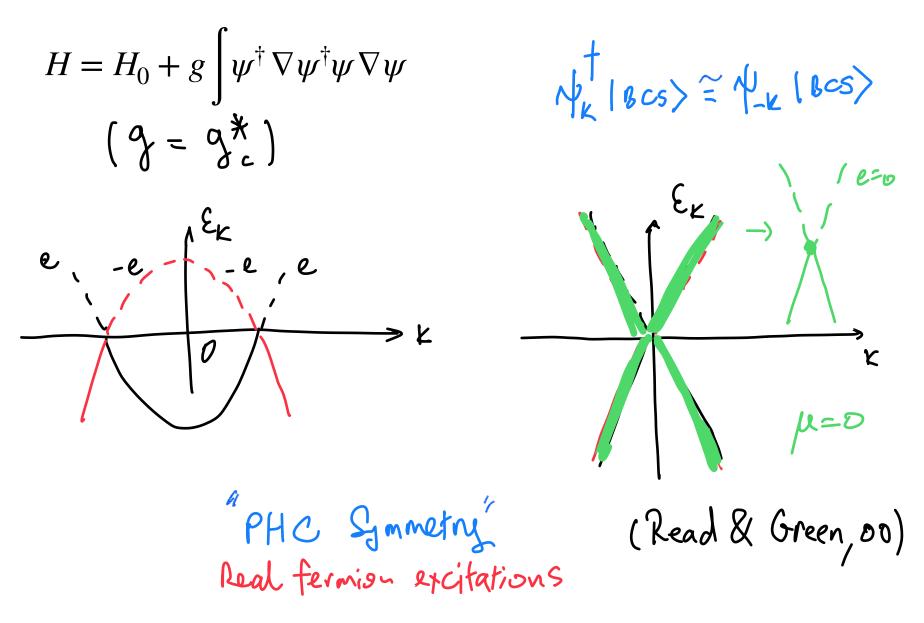


PHC Symmetry (Real fermion Rep.)

NKr IBCS> ~> N-KJ |BCS> for any k w- Μ - - - - - - M $\mathcal{M}_{K} = \begin{bmatrix} \varepsilon_{k} + M & \Delta \\ \widehat{\Delta} & \mu - \varepsilon_{+} k \end{bmatrix}$ $\begin{array}{c} \gamma \\ \gamma \\ (+) \\ (+) \end{array}^{k} \begin{array}{c} \uparrow \\ \uparrow \end{array} = \begin{array}{c} \gamma \\ (-) \\ -k \end{array}$ PHC H=ZYtHK MK

IK-Nambu Spinor

Examples of interaction-induced EBs



- Emergent PHC/CC symmetries: case analysis
- A) due to interactions with background crystal structures, i.e. band structures with U(1) charge symmetries. (Often need tuning!!)
- B) due to mutual interactions between particles via spontaneous symmetry breaking. (Very robust!!)