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Abstract A Bayesian multi-planet Kepler periodogram has been developed based
on a fusion Markov chain Monte Carlo algorithm (FMCMC). FMCMC is a new
general purpose tool for nonlinear model fitting. It incorporates parallel tempering,
simulated annealing and genetic crossover operations. Each of these features fa-
cilitate the detection of a global minimum in chi-squared in a highly multi-modal
environment. By combining all three, the algorithm greatly increases the probability
of realizing this goal.

The FMCMC is controlled by a unique adaptive control system that automates
the tuning of the proposal distributions for efficient exploration of the model param-
eter space even when the parameters are highly correlated. This controlled statisti-
cal fusion approach has the potential to integrate other relevant statistical tools as
desired. The FMCMC algorithm is implemented in Mathematica using parallized
code and run on an 8 core PC. The performance of the algorithm is illustrated with
some recent successes in the exoplanet field where it has facilitated the detection
of a number of new planets. Bayesian model selection is accomplished with a new
method for computing marginal likelihoods called Nested Restricted Monte Carlo
(NRMC).

1 Introduction

A remarkable array of new ground based and space based astronomical tools are
providing astronomers access to other solar systems. Over 700 planets have been
discovered to date, starting from the pioneering work of [1, 2, 3, 4]. One example
of the fruits of this work is the detection of a super earth in the habitable zone
surrounding Gliese 581 [5]. Fig. 1 illustrates the pace of discovery up to Dec. 2011.

Because a typical star is approximately a billion times brighter than a planet, only
a small fraction of the planets have been detected by direct imaging. The majority
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Fig. 1 The pace of exoplanet discoveries.

of planets have been detected by studying the reflex motion of the star caused by the
gravitational tug of unseen planets, using precision radial velocity (RV) measure-
ments. There are currently 84 known multiple planet systems, the largest of which
has seven planets [6]. Recently the Kepler space mission has detected 2326 plane-
tary candidates using the transit detection method. These are awaiting confirmation
using the RV method or transit timing variation analysis. More than thirty of these
candidates have a radius ≤ the radius of the earth.

These successes on the part of the observers has spurred a significant effort to
improve the statistical tools for analyzing data in this field (e.g., [7, 8, 9, 10, 11, 12,
13, 14, 15, 16]). Much of this work has highlighted a Bayesian MCMC approach as a
way to better understand parameter uncertainties and degeneracies and to compute
model probabilities. MCMC algorithms provide a powerful means for efficiently
computing the required Bayesian integrals in many dimensions (e.g., an 8 planet
model has 41 unknown parameters). The output at each iteration of the MCMC
is a vector of the model parameters. After an initial burn-in period, the MCMC
produces an equilibrium distribution of samples in model parameter space such that
the density of samples is proportional to the joint posterior probability distribution
of the parameters. The marginal posterior probability density function (PDF) for any
single parameter is given by a histogram of that component of the vector for all post
burn-in iterations.

Frequently, MCMC algorithms have been augmented with an additional tool such
as parallel tempering, simulated annealing or differential evolution depending on
the complexity of the problem. My approach [17] has been to fuse together the ad-
vantages of all of the above tools together with a genetic crossover operation in a
single MCMC algorithm to facilitate the detection of a global minimum in χ2 (max-
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imum posterior probability in the Bayesian context). The FMCMC is controlled by a
unique multi-stage adaptive control system that automates the tuning of the proposal
distributions for efficient exploration of the model parameter space even when the
parameters are highly correlated. The FMCMC algorithm is implemented in Math-
ematica using parallized code and run on an 8 core PC. It is designed to be a very
general tool for nonlinear model fitting. When implemented with a multi-planet Ke-
pler model 1, it is able to identify any significant periodic signal component in the
data that satisfies Kepler’s laws and function as a multi-planet Kepler periodogram 2.

The different components of Fusion MCMC are described in Section 2. In Sec-
tion 3, the performance of the algorithm is illustrated with some recent successes in
the exoplanet field where it has facilitated the detection of a number of new planets.
Section 4 deals with the challenges of Bayesian model selection in this arena.

2 Adaptive Fusion MCMC

The adaptive fusion MCMC (FMCMC) is a very general Bayesian nonlinear model
fitting program. After specifying the model, Mi, the data, D, and priors, I, Bayes’
theorem dictates the target joint probability distribution for the model parameters
which is given by

p(X|D,Mi, I) =C p(X|Mi, I)× p(D|Mi,X, I). (1)

where C is the normalization constant which is not required for parameter estimation
purposes and X represent the vector of model parameters. The term, p(X|Mi, I), is
the prior probability distribution of X, prior to the consideration of the current data
D. The term, p(D|X,Mi, I), is called the likelihood and it is the probability that
we would have obtained the measured data D for this particular choice of parameter
vector X, model Mi, and prior information I. At the very least, the prior information,
I, must specify the class of alternative models being considered (hypothesis space
of interest) and the relationship between the models and the data (how to compute
the likelihood). In some simple cases the log of the likelihood is simply proportional
to the familiar χ2 statistic. For further details of the likelihood function for this type
of problem see Gregory [11].

An important feature that prevents the fusion MCMC from becoming stuck in
a local probability maximum is parallel tempering [20] (and re-invented under the
name exchange Monte Carlo [21]). Multiple MCMC chains are run in parallel. The
joint distribution for the parameters of model Mi, for a particular chain, is given by

π(X|D,Mi, I,β ) ∝ p(X|Mi, I)× p(D|X,Mi, I)β . (2)

1 For multiple planet models, there is no analytic expression for the exact radial velocity perturba-
tion. In many cases, the radial velocity perturbation can be well modeled as the sum of multiple
independent Keplerian orbits which is what has been assumed in this paper.
2 Following on from the pioneering work on Bayesian periodograms by [18, 19]
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Each MCMC chain corresponding to a different β , with the value of β ranging
from zero to 1. When the exponent β = 1, the term on the LHS of the equation is
the target joint probability distribution for the model parameters, p(X|D,Mi, I). For
β ≪ 1, the distribution is much flatter.

Fig. 2 Parallel tempering schematic.

In equation 2, an exponent β = 0 yields a joint distribution equal to the prior. The
reciprocal of β is analogous to a temperature, the higher the temperature the broader
the distribution. For parameter estimation purposes 8 chains were employed. A rep-
resentative set of β values is shown in Fig. 2. At an interval of 10 to 40 iterations, a
pair of adjacent chains on the tempering ladder are chosen at random and a proposal
made to swap their parameter states. A Monte Carlo acceptance rule determines
the probability for the proposed swap to occur (e.g., Gregory [10], equation 12.12).
This swap allows for an exchange of information across the population of parallel
simulations. In low β (higher temperature) simulations, radically different config-
urations can arise, whereas in higher β (lower temperature) states, a configuration
is given the chance to refine itself. The lower β chains can be likened to a series
of scouts that explore the parameter terrain on different scales. The final samples
are drawn from the β = 1 chain, which corresponds to the desired target probability
distribution. The choice of β values can be checked by computing the swap accep-
tance rate. When they are too far apart the swap rate drops to very low values. In
this work a typical swap acceptance rate of ≈ 30% was employed but rates in a
broad range from 0.15 to 0.5 were deemed acceptable as they did not exhibit any
clear differences in performance. For a swap acceptance rate of 30%, jumps to ad-
jacent chains will occur at an interval of ∼ 230 to 920 iterations while information
from more distant chains will diffuse much more slowly. Recently, Atchade et al.
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(2010) have shown that under certain conditions, the optimal swap acceptance rate
is 0.234. A future goal for fusion MCMC is to extend the control system to automate
the selection of an optimal set of β values as well.

Fig. 3 First two stages of the adaptive control system.

Fig. 4 Schematic illustrating how the second stage of the control system is restarted if a signifi-
cantly more probable parameter set is detected.
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At each iteration, a single joint proposal to jump to a new location in the param-
eter space is generated from independent Gaussian proposal distributions (centered
on the current parameter location), one for each parameter. In general, the values
of σ for these Gaussian proposal distributions are different because the parameters
can be very different entities. If the values of σ are chosen too small, successive
samples will be highly correlated and will require many iterations to obtain an equi-
librium set of samples. If the values of σ are too large, then proposed samples will
very rarely be accepted. The process of choosing a set of useful proposal values
of σ when dealing with a large number of different parameters can be very time
consuming. In parallel tempering MCMC, this problem is compounded because of
the need for a separate set of Gaussian proposal distributions for each tempering
chain. This process is automated by an innovative statistical control system [23, 24]
in which the error signal is proportional to the difference between the current joint
parameter acceptance rate and a target acceptance rate [25], λ (typically λ ∼ 0.25).
A schematic of the first two stages of the adaptive control system (CS) is shown 3 in
Fig. 3. Further details on the operation of the control system can be found in Gregory
[17] and references therein. A third stage that handles highly correlated parameters
is described in Section 2.2.

The adaptive capability of the control system can be appreciated from an exami-
nation of Fig. 4. The upper left portion of the figure depicts the FMCMC iterations
from the 8 parallel chains, each corresponding to a different tempering level β as
indicated on the extreme left. One of the outputs obtained from each chain at every
iteration (shown at the far right) is the log prior + log likelihood. This information
is continuously fed to the CS which constantly updates the most probable parameter
combination regardless of which chain the parameter set occurred in. This is passed
to the ‘Peak parameter set’ block of the CS. Its job is to decide if a significantly
more probable parameter set has emerged since the last execution of the second
stage CS. If so, the second stage CS is re-run using the new more probable parame-
ter set which is the basic adaptive feature of the existing CS 4. Fig. 4 illustrates how
the second stage of the control system is restarted if a significantly more probable
parameter set is detected regardless of which chain it occurs in. This also causes the
burn-in phase to be extended.

The control system also includes a genetic algorithm block which is shown in the
bottom right of Fig. 5. The current parameter set can be treated as a set of genes. In
the present version, one gene consists of the parameter set that specify one orbit. On
this basis, a three planet model has three genes. At any iteration there exist within
the CS the most probable parameter set to date Xmax, and the current most probable

3 The interval between tempering swap operations is typically much smaller than is suggested by
this schematic.
4 Mathematica code that implements the version of fusion MCMC shown in Fig. 4 is available on
the Cambridge University Press web site for my textbook [10], ‘Bayesian Logical data Analysis
for the Physical Sciences’. See the ‘Additional book examples with Mathematica 8 tutorial’ in the
resource material. There you will find an example entitled, ‘Markov chain Monte Carlo powered
Kepler periodogram’. Non Mathematica users can download a free Wolfram CDF Player to view
the resource material.
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Fig. 5 This schematic shows how the genetic crossover operation is integrated into the adaptive
control system.

parameter set of the 8 chains, Xcur. At regular intervals (user specified) each gene
from Xcur is swapped for the corresponding gene in Xmax. If either substitution
leads to a higher probability it is retained and Xmax updated. The effectiveness of
this operation can be tested by comparing the number of times the gene crossover
operation gives rise to a new value of Xmax compared to the number of new Xmax
arising from the normal parallel tempering MCMC iterations. The gene crossover
operations prove to be very effective, and give rise to new Xmax values ≈ 3 times
more often than MCMC operations. Of course, most of these swaps lead to very
minor changes in probability but occasionally big jumps are created. It turns out
that individual gene swaps from Xcur to Xmax are much more effective (in one test
by a factor of 17) than the other way around (reverse swaps). Since it costs just as
much time to compute the probability for a swap either way we no longer carry out
the reverse swaps. Instead, we have extended this operation to swaps from Xcur2,
the parameters of the second most probable current chain, to Xmax. This gives rise
to new values of Xmax at a rate approximately half that of swaps from Xcur to Xmax.
Crossover operations at a random point in the entire parameter set did not prove as
effective except in the single planet case where there is only one gene.

2.1 Automatic simulated annealing and noise model

The annealing of the proposal σ values occurs while the MCMC is homing in on
any significant peaks in the target probability distribution. Concurrent with this,
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Fig. 6 A simulated toy posterior probability distribution (PDF) for a single parameter model with
(dashed) and without (solid) an extra noise term s.

another aspect of the annealing operation takes place whenever the Markov chain is
started from a location in parameter space that is far from the best fit values. This
automatically arises because all the models considered incorporate an extra additive
noise [11], whose probability distribution is Gaussian with zero mean and with an
unknown standard deviation s. When the χ2 of the fit is very large, the Bayesian
Markov chain automatically inflates s to include anything in the data that cannot
be accounted for by the model with the current set of parameters and the known
measurement errors. This results in a smoothing out of the detailed structure in the
χ2 surface and, as pointed out by [13], allows the Markov chain to explore the large
scale structure in parameter space more quickly. This is illustrated in Figure 6 which
shows a simulated toy posterior probability distribution (PDF) for a single parameter
model with (dashed) and without (solid) an extra noise term s. Figure 7 shows the
behavior of Log10[Prior × Likelihood] and s versus MCMC iteration for a some real
data. In the early stages s is inflated to around 38 m s−1 and then decays to a value
of ≈ 4 m s−1 over the first 9,000 iterations as Log10[Prior × Likelihood] reaches a
maximum. This is similar to simulated annealing, but does not require choosing a
cooling scheme.

2.2 Highly correlated parameters

For some models the data is such that the resulting estimates of the model parame-
ters are highly correlated and the MCMC exploration of the parameter space can be
very inefficient. Fig. 8 shows an example of two highly correlated parameters and
possible ways of dealing with this issue which includes a transformation to more
orthogonal parameter set. It would be highly desirable to employ a method that au-
tomatically samples correlated parameters efficiently. One potential solution in the
literature is Differential Evolution Markov Chain (DE-MC) [26]. DE-MC is a popu-
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Fig. 7 The upper panel is a plot of the Log10[Prior × Likelihood] versus MCMC iteration. The
lower panel is a similar plot for the extra noise term s. Initially s is inflated and then rapidly decays
to a much lower level as the best fit parameter values are approached.

lation MCMC algorithm, in which multiple chains are run in parallel, typically from
15 to 40. DE-MC solves an important problem in MCMC, namely that of choosing
an appropriate scale and orientation for the jumping distribution.

For the fusion MCMC algorithm, I developed and tested a new method [27], in
the spirit of DE, that automatically achieves efficient MCMC sampling in highly
correlated parameter spaces without the need for additional chains. The block in
the lower left panel of Fig. 9 automates the selection of efficient proposal distri-
butions when working with model parameters that are independent or transformed
to new independent parameters. New parameter values are jointly proposed based
on independent Gaussian proposal distributions (‘I’ scheme), one for each param-
eter. Initially, only this ‘I’ proposal system is used and it is clear that if there are
strong correlations between any parameters the σ values of the independent Gaus-
sian proposals will need to be very small for any proposal to be accepted and con-
sequently convergence will be very slow. However, the accepted ‘I’ proposals will
generally cluster along the correlation path. In the optional third stage of the con-
trol system every second 5 accepted ‘I’ proposal is appended to a correlated sample
buffer. There is a separate buffer for each parallel tempering level. Only the 300
most recent additions to the buffer are retained. A ‘C’ proposal is generated from
the difference between a pair of randomly selected samples drawn from the corre-

5 Thinning by a factor of 10 has already occurred meaning only every tenth iteration is recorded.
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Fig. 8 An example of two highly correlated parameters and possible ways of dealing with this
issue which includes a transformation to more orthogonal parameter set.

Fig. 9 This schematic illustrates the automatic proposal scheme for handling correlated (’C’) pa-
rameters.
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lated sample buffer for that tempering level, after multiplication by a constant. The
value of this constant (for each tempering level) is computed automatically [27] by
another control system module which ensures that the ‘C’ proposal acceptance rate
is close to 25%. With very little computational overhead, the ‘C’ proposals provide
the scale and direction for efficient jumps in a correlated parameter space.

The final proposal distribution is a random selection of ‘I’ and ‘C’ proposals such
that each is employed 50% of the time. The combination ensures that the whole pa-
rameter space can be reached and that the FMCMC chain is aperiodic. The parallel
tempering feature operates as before to avoid becoming trapped in a local probabil-
ity maximum.

Because the ‘C’ proposals reflect the parameter correlations, large jumps are pos-
sible allowing for much more efficient movement in parameter space than can be
achieved by the ‘I’ proposals alone. Once the first two stages of the control system
have been turned off, the third stage continues until a minimum of an additional 300
accepted ‘I’ proposals have been added to the buffer and the ‘C’ proposal accep-
tance rate is within the range ≥ 0.22 and ≤ 0.28. At this point further additions to
the buffer are terminated and this sets a lower bound on the burn-in period.

2.2.1 Tests of the ‘C’ proposal scheme

Gregory [27] carried out two tests of the ‘C’ proposal scheme using (a) simulated
exoplanet astrometry data, and (b) a sample of real radial velocity data. In the latter
test we analyzed a sample of seventeen HD 88133 precision radial velocity measure-
ments [28] using a single planet model in three different ways. Fig. 10 shows a com-
parison of the resulting post burn-in marginal distributions for two correlated pa-
rameters χ and ω together with a comparison of the autocorrelation functions. The
black trace corresponds to a search in χ and ω using only ‘I’ proposals. The red trace
corresponds to a search in χ and ω with ‘C’ proposals turned on. The green trace
corresponds to a search in the transformed orthogonal coordinates ψ = 2πχ +ω
and ϕ = 2πχ − ω using only ‘I’ proposals. It is clear that a search in χ and ω
with ‘C’ proposals turned on achieves the same excellent results as a search in the
transformed orthogonal coordinates ψ and ϕ using only ‘I’ proposals.

3 Exoplanet applications

As previously mentioned the FMCMC algorithm is designed to be a very gen-
eral tool for nonlinear model fitting. When implemented with a multi-planet Kepler
model it is able to identify any significant periodic signal component in the data that
satisfies Kepler’s laws and is able to function as a multi-planet Kepler periodogram.

In this section we describe the model fitting equations and the selection of priors
for the model parameters. For a one planet model the predicted radial velocity is
given by
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Fig. 10 The two panels on the left show a comparison of the post burn-in marginal distributions
for χ and ω . The two panels on the right show a comparison of their MCMC autocorrelation
functions. The black trace corresponds to a search in χ and ω using only ‘I’ proposals. The red
trace corresponds to a search in χ and ω with ‘C’ proposals turned on. The green trace corresponds
to a search in the transformed orthogonal coordinates ψ = 2πχ +ω and ϕ = 2πχ −ω using only
‘I’ proposals.

v(ti) =V +K[cos{θ(ti +χP)+ω}+ ecosω], (3)

and involves the 6 unknown parameters

V = a constant velocity.
K = velocity semi-amplitude.
P = the orbital period.
e = the orbital eccentricity.
ω = the longitude of periastron.
χ = the fraction of an orbit, prior to the start of data taking, that periastron oc-
curred at. Thus, χP = the number of days prior to ti = 0 that the star was at
periastron, for an orbital period of P days.
θ(ti +χP) = the true anomaly, the angle of the star in its orbit relative to perias-
tron at time ti.

We utilize this form of the equation because we obtain the dependence of θ on ti
by solving the conservation of angular momentum equation

dθ
dt

− 2π[1+ ecosθ(ti +χ P)]2

P(1− e2)3/2 = 0. (4)

Our algorithm is implemented in Mathematica and it proves faster for Mathematica
to solve this differential equation than solve the equations relating the true anomaly
to the mean anomaly via the eccentric anomaly. Mathematica generates an accurate
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interpolating function between t and θ so the differential equation does not need to
be solved separately for each ti. Evaluating the interpolating function for each ti is
very fast compared to solving the differential equation. Details on how equation 4
is implemented are given in the Appendix of [17].

We employed a re-parameterization of χ and ω to improve the MCMC conver-
gence speed motivated by the work of Ford (2006). The two new parameters are
ψ = 2πχ +ω and ϕ = 2πχ −ω . Parameter ψ is well determined for all eccentrici-
ties. Although ϕ is not well determined for low eccentricities, it is at least orthogonal
to the ψ parameter. We use a uniform prior for ψ in the interval 0 to 4π and uniform
prior for ϕ in the interval −2π to +2π . This insures that a prior that is wraparound
continuous in (χ,ω) maps into a wraparound continuous distribution in (ψ ,ϕ). To
account for the Jacobian of this re-parameterization it is necessary to multiply the
Bayesian integrals by a factor of (4π)−nplan, where nplan = the number of planets
in the model. Also, by utilizing the orthogonal combination (ψ,ϕ) it was not neces-
sary to make use of the ’C’ proposal scheme outlined in Section 2.2 which typically
saves about 25% in execution time.

In a Bayesian analysis we need to specify a suitable prior for each parameter.
These are tabulated in Table 1. For the current problem, the prior given in equation 2
is the product of the individual parameter priors. Detailed arguments for the choice
of each prior were given in [29, 24].

As mentioned in Section 2.1, all of the models considered in this paper incor-
porate an extra noise parameter, s, that can allow for any additional noise beyond
the known measurement uncertainties6. We assume the noise variance is finite and
adopt a Gaussian distribution with a variance s2. Thus, the combination of the known
errors and extra noise has a Gaussian distribution with variance = σ2

i + s2, where σi
is the standard deviation of the known noise for ith data point. For example, suppose
that the star actually has two planets, and the model assumes only one is present. In
regard to the single planet model, the velocity variations induced by the unknown
second planet acts like an additional unknown noise term. Other factors like star
spots and chromospheric activity can also contribute to this extra velocity noise
term which is often referred to as stellar jitter. In general, nature is more compli-
cated than our model and known noise terms. Marginalizing s has the desirable ef-
fect of treating anything in the data that can’t be explained by the model and known
measurement errors as noise, leading to conservative estimates of orbital parame-
ters. See Sections 9.2.3 and 9.2.4 of [10] for a tutorial demonstration of this point.
If there is no extra noise then the posterior probability distribution for s will peak at
s = 0. The upper limit on s was set equal to Kmax. We employed a modified Jeffrey’s
(scale invariant) prior for s with a knee, s0 = 1m s−1.

Fig. 11 shows sample MCMC traces for a two planet fit [29] to a set of HD
208487 radial velocity data [31].

6 In the absence of detailed knowledge of the sampling distribution for the extra noise, we pick a
Gaussian because for any given finite noise variance it is the distribution with the largest uncer-
tainty as measured by the entropy, i.e., the maximum entropy distribution [30] and [10] (section
8.7.4.)
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Table 1 Prior parameter probability distributions.

Parameter Prior Lower bound Upper bound
Orbital frequency p(ln f1, ln f2, · · · ln fn|Mn, I) = n!

[ln( fH/ fL)]n
1/1.1 d 1/1000 yr

(n =number of planets)

Velocity Ki Modified Jeffreys a 0 (K0 = 1) Kmax

(
Pmin

Pi

)1/3
1√

1−e2
i

(m s−1)
(K+K0)

−1

ln

[
1+ Kmax

K0

(
Pmin

Pi

)1/3 1√
1−e2

i

] Kmax = 2129

V (m s−1) Uniform −Kmax Kmax

ei Eccentricity a) Uniform 0 1
b) Ecc. noise bias correction filter 0 0.99

χ orbit fraction Uniform 0 1

ωi Longitude of Uniform 0 2π
periastron

s Extra noise (m s−1) (s+s0)
−1

ln
(

1+ smax
s0

) 0 (s0 = 1) Kmax

a Since the prior lower limits for K and s include zero, we used a modified scale invariant prior of the
form

p(X |M, I) =
1

X +X0

1

ln
(

1+ Xmax
X0

) (5)

For X ≪ X0, p(X |M, I) behaves like a uniform prior and for X ≫ X0 it behaves like a scale invariant
prior.
The ln

(
1+ Xmax

X0

)
term in the denominator ensures that the prior is normalized in the interval 0 to

Xmax.

3.1 47 Ursae Majoris

47 Ursae Majoris (47 UMa) is a solar twin at a distance of 46 light years. A brief
history of the analysis of the radial velocity data together with the recent 3 planet
FMCMC fit of the Lick Observatory data [24] is shown in Fig. 12.

Five different models assuming 0, 1, 2, 3, & 4 planets were explored. Our
Bayesian model selection analysis indicates that the 3 planet model is signifi-
cantly [24] more probable than the others. Fig. 13 shows some of the FMCMC
results for the preferred 3 planet model. The upper left graph shows the trace of the
Log10[Prior × Likelihood] versus iteration for the Lick telescope data. The lower
left graph shows the corresponding trace of the three period parameters. The start-
ing parameter values are indicated by the three arrows. The top right graph shows a
plot of eccentricity versus period for the same run. There is clear evidence for three
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Fig. 11 Sample FMCMC traces for a two planet fit to HD 208487 radial velocity data.

Fig. 12 Brief history of 47 UMa radial velocity fits.
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signals including one with a period of ∼ 2400d. The longest period of ∼ 10000d is
not as well defined mainly because it corresponds to periods longer than the data du-
ration of 7907d. Previous experience with the FMCMC periodogram indicates that
it is capable of finding a global peak in a blind search of parameter space for a three
planet model. The lower right graph shows the trace of the three period parameters
for a second run with very different starting parameter periods of 5, 20, 100d. The
algorithm readily finds the same set of final periods in both cases.

Fig. 13 The upper left graph shows the trace of the Log10[Prior × Likelihood] versus iteration for
the 3 planet FMCMC Kepler periodogram of the Lick telescope data for 47 UMa. The lower left
graph shows the corresponding trace of the three period parameters. The starting parameter values
are indicated by the three arrows. The top right graph shows a plot of eccentricity versus period for
the same run. The lower right graph shows the trace of the three period parameters for a second
run with very different starting parameter values.

To test the evidence for three planets the analysis was repeated with the Lick data
combined with the data [32] from the 9.2 m Hobby-Eberly Telescope (HET) and 2.7
m Harlam J. Smith (HJS) telescopes of the McDonald Observatory. Figure 14 shows
a plot of eccentricity versus period for our 3 planet FMCMC fit to the combined data
set. The same three periods appear as before but with the extra data the results now
favor low eccentricity orbits for all three periods. This is a particularly pleasing
result as low eccentricity orbits are more likely to exhibit long term stability than
high eccentricity orbits.

Figure 15 shows the final marginal distributions for the parameters for the three
telescope combined analysis. One of the advantages of the Bayesian approach is
the ability to deal with nuisance parameters such as unknown systematic residual
velocity offsets when combining data from different observatories, and different
detector dewars on the same telescope. The marginal distributions for these nuisance
parameters are included Figure 15 together with the distribution of the extra noise
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Fig. 14 A plot of eccentricity versus period for a 3 planet FMCMC fit [24] of the combined Lick,
Hobby-Eberly, and Harlam J. Smith telescope data set for 47 UMa.

parameter s. The systematic residual offset velocity parameters, relative to the Lick
dewar number 24, are designated Vj, where j = 6,8,39,18 correspond to the other
Lick dewars and subscripts HET and HJS refer to the Hobby-Eberly Telescope and
Harlam J. Smith telescopes.

3.2 Gliese 581

Gliese 581 (Gl 581) is an M dwarf with a mass of 0.31 times the mass of the sun
at a distance of 20 light years which has received a lot of attention because of the
possibility of two super-earths in the habitable zone where liquid water could exist.
A brief history of the analysis of the radial velocity data together with our recent [17]
5 planet FMCMC fit of the HARPS [33] data is shown in Fig. 16.

We carried out a Bayesian re-analysis of the HARPS [33] and HIRES data [34].
Our analysis of the HARPS data found significant evidence for 5 planets, the four
reported by [33] and a 399+14

−16d period (6.6+2.0
−2.7M⊕) planet similar to the 433±13d

period reported by Vogt et al. [34]. Fig. 17 shows the 5 planet Kepler periodogram
results for the HARPS data. The best set of parameters from the 4 planet fit were
used as start parameters. The starting period for the fifth period was set = 300d and
the most probable period found to be ∼ 400d. As illustrated in this example, the
parallel tempering feature identifies not only the strongest peak but other potential
interesting ones as well. The fifth period parameter (orange points) shows 3 peaks
but the 400d period has a maximum value of prior × likelihood that is almost 1000
times larger than the next strongest which is a second harmonic at 200d. A much
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Fig. 15 A plot of parameter marginal distributions for a 3 planet FMCMC of the combined Lick,
HET, and HJS telescope data set for 47 UMa. In addition to the extra noise parameter s distributions
are also shown for 6 additional nuisance parameters. They are systematic residual offset velocity
parameters relative to the Lick dewar 24. They are designated Vj , where j = 6,8,39,18 correspond
to the other Lick dewars and subscripts HET and HJS refer to the Hobby-Eberly Telescope and
Harlam J. Smith telescopes.
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Fig. 16 Brief history of Gliese 581 radial velocity fits.

weaker peak shows up with a 34.4d period. In a Bayesian analysis the relative im-
portance of the three peaks is in proportion to the number of MCMC samples in
each peak which is in the ratio of 1.0:0.35:0.04 for the 400, 200, and 34.4d peaks,
respectively.
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Fig. 17 A plot of the 5 period parameter values versus a normalized value of Log10[Prior × Like-
lihood] for the 5 planet FMCMC Kepler periodogram of the HARPS data for Gliese 581. The fifth
period parameter points are shown in orange.
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Fig. 18 shows a plot of a subset of the FMCMC parameter marginal distributions
for the 5 planet fit of the HARPS data after filtering out the post burn-in FMCMC
iterations that correspond to the 5 dominant period peaks at 3.15, 5.37, 12.9, 66.9,
and 400d. The median value of the extra noise parameter s = 1.16m s−1.
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Fig. 18 A plot of a subset of the FMCMC parameter marginal distributions for a 5 planet fit of the
HARPS data for Gliese 581.

A six planet model fit found multiple periods for a sixth planet candidate, the
strongest of which had a period of 34.4±0.1d but our Bayesian false alarm proba-
bility (discussed in Section 4) was much too high to consider it significant. Vogt et
al. found a period of 36.562±0.052d for Gl 581g.
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The analysis of the HIRES data set yielded a reliable detection of only the
strongest 5.37 and 12.9 day periods. For a two planet fit the value of the extra noise
term s (stellar jitter) was higher for the HIRES data than for the HARPS data sug-
gesting the possibility the HIRES measurement uncertainties were underestimated.
The analysis of the combined HIRES/HARPS data again only reliably detected the
5.37 and 12.9d periods. Detection of 4 planetary signals with periods of 3.15, 5.37,
12.9, and 66.9d was only achieved by including an additional unknown but param-
eterized Gaussian error term added in quadrature to the HIRES quoted errors. The
marginal probability density of the sigma for this additional HIRES Gaussian noise
term has a well defined peak at 1.84+0.35

−0.33m s−1.
The two conclusions of our GL 581 analysis are: (1) The current evidence is

insufficient to warrant a claim for Gl 581g. (2) The quoted errors for the HIRES data
are significantly underestimated equivalent to an effective 1.80.35

0.33 ms−1 Gaussian
error added in quadrature with the quoted uncertainties.

4 Model Selection

One of the great strengths of Bayesian analysis is the built-in Occam’s razor. More
complicated models contain larger numbers of parameters and thus incur a larger
Occam penalty, which is automatically incorporated in a Bayesian model selection
analysis in a quantitative fashion (see for example, Gregory [10], p. 45). The analysis
yields the relative probability of each of the models explored.

To compare the posterior probability of the ith planet model to the four planet
model we need to evaluate the odds ratio, Oi4 = p(Mi|D, I)/p(M4|D, I), the ratio of
the posterior probability of model Mi to model M4. Application of Bayes’ theorem
leads to,

Oi4 =
p(Mi|I)
p(M4|I)

p(D|Mi, I)
p(D|M4, I)

≡ p(Mi|I)
p(M4|I)

Bi4 (6)

where the first factor is the prior odds ratio, and the second factor is called the Bayes
factor, Bi4. The Bayes factor is the ratio of the marginal (global) likelihoods of the
models. The marginal likelihood for model Mi is given by

p(D|Mi, I) =
∫

dXp(X|Mi, I)× p(D|X,Mi, I). (7)

Thus Bayesian model selection relies on the ratio of marginal likelihoods, not maxi-
mum likelihoods. The marginal likelihood is the weighted average of the conditional
likelihood, weighted by the prior probability distribution of the model parameters
and s. This procedure is referred to as marginalization.

The marginal likelihood can be expressed as the product of the maximum like-
lihood and the Occam penalty (e.g., see Gregory [10], page 48). The Bayes factor
will favor the more complicated model only if the maximum likelihood ratio is large
enough to overcome this penalty. In the simple case of a single parameter with a
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uniform prior of width ∆X , and a centrally peaked likelihood function with charac-
teristic width δX , the Occam factor is ≈ δX/∆X . If the data is useful then generally
δX ≪ ∆X . For a model with m parameters, each parameter will contribute a term
to the overall Occam penalty. The Occam penalty depends not only on the number
of parameters but also on the prior range of each parameter (prior to the current
data set, D), as symbolized in this simplified discussion by ∆X . If two models have
some parameters in common then the prior ranges for these parameters will cancel
in the calculation of the Bayes factor. To make good use of Bayesian model selec-
tion, we need to fully specify priors that are independent of the current data D. The
sensitivity of the marginal likelihood to the prior range depends on the shape of the
prior and is much greater for a uniform prior than a scale invariant prior (e.g., see
Gregory [10], page 61). In most instances we are not particularly interested in the
Occam factor itself, but only in the relative probabilities of the competing models
as expressed by the Bayes factors. Because the Occam factor arises automatically in
the marginalization procedure, its effect will be present in any model selection cal-
culation. Note: no Occam factors arise in parameter estimation problems. Parameter
estimation can be viewed as model selection where the competing models have the
same complexity so the Occam penalties are identical and cancel out.

The MCMC algorithm produces samples which are in proportion to the posterior
probability distribution which is fine for parameter estimation but one needs the pro-
portionality constant for estimating the model marginal likelihood. Clyde et al. [35]
reviewed the state of techniques for model selection from a statistical perspective
and Ford and Gregory [14] have evaluated the performance of a variety of marginal
likelihood estimators in the exoplanet context. Other techniques that have recently
been proposed include: Nested Restricted Monte Carlo (NRMC) [24], MultiNest
[36], Annealing Adaptive Importance Sampling (AAIS) [37], and Reversible Jump
Monte Carlo using a kD-tree [38]. For one planet models with 7 parameters, a wide
range of techniques perform satisfactorily. The challenge is to find techniques that
handle high dimensions. A six planet model has 32 parameters and one needs to de-
velop and test methods of handling at least 8 planets with 42 parameters. At present
there is no widely accepted method to deal with this challenge.

For the 47UMa and Gliese 581 data discussed in Sections 3.1 and 3.2 the author
employed Nested Restricted Monte Carlo (NRMC) to estimate the marginal likeli-
hoods. Monte Carlo (MC) integration can be very inefficient in exploring the whole
prior parameter range because it randomly samples the whole volume. The fraction
of the prior volume of parameter space containing significant probability rapidly
declines as the number of dimensions increase. For example, if the fractional vol-
ume with significant probability is 0.1 in one dimension then in 32 dimensions the
fraction might be of order 10−32. In restricted MC integration (RMC) this problem
is reduced because the volume of parameter space sampled is greatly restricted to a
region delineated by the outer borders of the marginal distributions of the parame-
ters for the particular model. However, in high dimensions most of the MC samples
will fall near the outer boundaries of that volume and so the sampling could easily
under sample interior regions of high probability.
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In NRMC integration, multiple boundaries are constructed based on credible re-
gions ranging from 30% to ≥ 99%, as needed. We are then able to compute the
contribution to the total integral from each nested interval and sum these contribu-
tions. For example, for the interval between the 30% and 60% credible regions, we
generate random parameter samples within the 60% region and reject any sample
that falls within the 30% region. Using the remaining samples we can compute the
contribution to the NRMC integral from that interval.

The left panel of Fig. 19 shows the NRMC contributions to the marginal likeli-
hood from the individual intervals for five repeats of a 3 planet fit to the HARPS
data [33]. The right panel shows the summation of the individual contributions ver-
sus the volume of the credible region. The credible region listed as 9995% is defined
as follows. Let XU99 and XL99 correspond to the upper and lower boundaries of the
99% credible region, respectively, for any of the parameters. Similarly, XU95 and
XL95 are the upper and lower boundaries of the 95% credible region for the pa-
rameter. Then XU9995 = XU99 +(XU99 −XU95) and XL9995 = XL99 +(XL99 −XL95).
Similarly 7, XU9984 = XU99 +(XU99 −XU84). For the 3 planet fit the spread in re-
sults is within ±23% of the mean. For each credible region interval approximately
320,000 MC samples were used. The mean value of the prior × likelihood within
the 30% credible region is a factor of 2× 105 larger than the mean in the shell be-
tween the 97 and 99% credible regions. However, the volume of parameter space in
the shell between the 97 and 99% credible regions is a factor of 8×1011 larger than
the volume within the 30% credible region so the contribution from the latter to the
marginal likelihood is negligible.
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Fig. 19 Left panel shows the contribution of the individual nested intervals to the NRMC marginal
likelihood for the 3 planet model for five repeats. The right panel shows the sum of these contribu-
tions versus the parameter volume of the credible region.

The left panel of Fig. 20 shows the contributions from the individual credible
region intervals for five repeats of the NRMC marginal likelihood estimate for a
5 planet fit to the HARPS data [33]. The right panel shows the summation of the
individual contributions versus the volume of the credible region. In this case the

7 Test that the extended credible region (like 9930) for one period parameter does not overlap the
credible region of an adjacent period parameter in a multiple planet fit.
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spread in five NRMC marginal likelihood estimates extends from 2.1× the mean to
0.65× the mean.
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Fig. 20 Left panel shows the contribution of the individual nested intervals to the NRMC marginal
likelihood for the 5 planet model for five repeats. The right panel shows the integral of these
contributions versus the parameter volume of the credible region.
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Fig. 21 Left panel shows the maximum and mean values of the Log10[prior × likelihood] for each
interval of credible region versus parameter volume for the 5 planet fit. The right panel shows
the maximum, mean, and minimum values of the Log10[prior × likelihood] versus the parameter
volume.

The biggest contribution to the spread in NRMC marginal likelihood estimates
for the 5 planet fit comes from the outer credible region intervals starting around
99%. The reason for the increased scatter in the Log10[∆ Marginal Likelihood] is
apparent when we examine the MC samples for one of the five repeats. Fig 21 shows
plots of the maximum and mean values (Left) and maximum, mean, and minimum
values (Right) of the MC samples of the Log10[prior × likelihood] for each interval
of credible region, versus the parameter volume. The range of Log10[prior × like-
lihood] values increase rapidly with increasing parameter volume starting around
the 99% credible region boundary. This makes the Monte Carlo evaluation of the
mean value more difficult in these outer intervals. We can compute the fraction of
our total marginal likelihood estimate that arises for the intervals beyond the 99%
credible region. Averaging over the 5 repeats the mean fraction is 6.6±3.4%. This
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mean fraction increases to 36±12% for all intervals beyond the 97% credible region
and to 56±9% for the all intervals beyond the 95% credible region.

The NRMC method is expected to underestimate the marginal likelihood in
higher dimensions and this underestimate is expected to become worse the larger
the number of model parameters, i.e. increasing number of planets [39]. When we
conclude, as we do, that the NRMC computed odds in favor of a five planet model
for Gliese 581 compared to the four planet model is ∼ 102 (see Table 2), we mean
that the true odds is ≥ 102. Thus the NRMC method is conservative. One indication
of the break down of the NRMC method is the increased spread in the results for re-
peated evaluations that was discussed above. A recent comparison by Gregory [40]
of the NRMC method with a second method, the Ratio Estimator (RE), described in
Ford and Gregory [14], indicates the two methods agree within 25% for a 3 planet
model fit (17 parameters) to three different exoplanet data sets including Gliese 581.
However, the agreement between the two methods breaks down at the 4 planet fit
level (22 parameters) with the value of the RE estimate 62 times the NRMC estimate
for the Gliese 581 HARPS data. Unlike the NRMC method, the RE method has the
potential to pay too much attention to the mode and is expected to overestimate the
marginal likelihood [41] at sufficiently high dimensions.

We can readily convert the Bayes factors to a Bayesian False Alarm Probability
(FAP) which we define in equation 8. For example, in the context of claiming the
detection of m planets the FAPm is the probability that there are actually fewer than
m planets, i.e., m−1 or less.

FAPm =
m−1

∑
i=0

(prob.of i planets) (8)

If we assume a priori (absence of the data) that all models under consideration
are equally likely, then the probability of each model is related to the Bayes factors
by

p(Mi | D, I) =
Bi4

∑N
j=0 B j4

(9)

where N is the maximum number of planets in the hypothesis space under consid-
eration, and of course B44 = 1. For the purpose of computing FAPm we set N = m.
Substituting Bayes factors, given in Table 2, into equation 8 gives

FAP5 =
(B04 +B14 +B24 +B34 +B44)

∑5
j=0 B j4

≈ 10−2 (10)

For the 5 planet model we obtain a low FAP ≈ 10−2.
Table 2 gives the NRMC marginal likelihood estimates 8, Bayes factors and false

alarm probabilities for 0, 1, 2, 3, 4, 5 and 6 planet models which are designated

8 Table 1 gives two different choices of prior for the eccentricity parameter. The marginal like-
lihoods listed in the Table 2 correspond to the eccentricity noise bias prior. Marginal likelihood
values assuming a uniform eccenticity prior were systematically lower. For example, for a 3 planet
fit using the uniform eccenticity prior the marginal likelihood was a factor of 3 smaller.
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M0, · · · ,M6. For each model the NRMC calculation was repeated 5 times and the
quoted errors give the spread in the results, not the standard deviation. The Bayes
factors that appear in the third column are all calculated relative to model 4. Based
on the HARPS [33] data, the Bayes factor favors a 5 planet model.

Table 2 Marginal likelihood estimates [17], Bayes factors relative to model 4, and false alarm
probabilities. The quoted errors are the spread in the results for 5 repeats, not the standard deviation.

Model Periods Marginal Bayes factor False Alarm
(d) Likelihood nominal Probability

M0 6.10×10−197 2.0×10−59

M1 (5.37) (4.221±0.003)×10−155 1.4×10−17 1.4×10−42

M2 (5.37,12.9) (1.94±0.01)×10−145 6.5×10−8 2.2×10−10

M3 (5.37,12.9,66.9) (3.0+0.7
−0.5)×10−142 10−4 6.5×10−4

M4 (3.15,5.37,12.9,66.9) (3.0+1.1
−0.6)×10−138 1.0 10−4

M5 (3.15,5.37,12.9,66.9,399) (3.0×2.1
×0.65)×10−136 102 0.01

M6 (3.15,5.37,12.9,34.4,66.9,399) (6.7×2.4
×1/3)×10−141 2.2×10−3 0.999978

5 Conclusions

The main focus of this chapter has been on a new fusion MCMC approach to
Bayesian nonlinear model fitting. In fusion MCMC the goal has been to develop an
automated MCMC algorithm which is well suited to exploring multi-modal proba-
bility distributions such as those that occur in the arena of exoplanet research. This
has been accomplished by the fusion of a number of different statistical tools. At
the heart of this development is a sophisticated control system that automates the
selection of efficient MCMC proposal distributions (including for highly correlated
parameters) in a parallel tempering environment. It also adapts to any new signifi-
cant parameter set that is detected in any of the parallel chains or is bred by a genetic
crossover operation. This controlled statistical fusion approach has the potential to
integrate other relevant statistical tools as required. A future goal is to automate the
selection of an efficient set of β values used in the parallel tempering.

For some special applications it is possible to develop a faster more specialized
MCMC algorithm, perhaps for dealing with real time analysis situations. In the de-
velopment of fusion MCMC, the primary concern has not been speed but rather
to see how powerful a general purpose MCMC algorithm we could develop and
automate. In real life applications to challenging multi-modal exoplanet data fusion
MCMC is proving to be a powerful tool. One can anticipate that this approach might
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also allow for the joint analysis of different types of data (e.g., radial velocity, as-
trometry, and transit information) giving rise to statistical fusion and data fusion
algorithms.

On the Bayesian model selection front, a wide variety of marginal likelihood
estimators perform satisfactorily for models with ∼ 7 parameters and the author
has achieved satisfactory agreement between two different Bayesian estimators at
the 17 parameter level. One of these, the nested restricted Mont Carlo (NRMC)
method, has been investigated for up to 32 model parameters. More research aimed
at the development and testing of reliable and efficient estimators that work in high
dimensions is an important priority.
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