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Abstract. Astronomers searching for the small signals induced by planets inevitably face signifi-
cant statistical challenges. Bayesian inference has the potential of improving the interpretation of
existing observations, the planning of future observations and ultimately inferences concerning the
overall population of planets. This paper illustrates how a re-analysis of published radial velocity
data sets with a Bayesian multi-planet Kepler periodogram is providing strong evidence for addi-
tional planetary candidates. The periodogram is implemented with a Markov chain Monte Carlo
(MCMC) algorithm that employs an automated adaptive control system. For HD 11964, the data
has been re-analyzed using 1, 2, 3 and 4 planet models. The most probable model exhibits three pe-
riods of 38.02+0.06

−0.05, 360+4
−4 and 1924+44

−43 d, and eccentricities of 0.22+0.11
−0.22, 0.63+0.34

−0.17 and 0.05+0.03
−0.05,

respectively. Assuming the three signals (each one consistent with a Keplerian orbit) are caused by
planets, the corresponding limits on planetary mass (Msini) and semi-major axis are
(0.090+0.15

−0.14MJ,0.253+0.009
−0.009au), (0.21+0.06

−0.07MJ,1.13+0.04
−0.04au), (0.77+0.08

−0.08MJ,3.46+0.13
−0.13au),

respectively.
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INTRODUCTION

Improvements in precision radial velocity measurements and continued monitoring are
permitting the detection of lower amplitude planetary signatures. One example of the
fruits of this work is the detection of a super earth in the habital zone surrounding
Gliese 581 by Udry et al. [19]. This and other remarkable successes on the part of the
observers is motivating a significant effort to improve the statistical tools for analyzing
radial velocity data, e.g., [7, 6, 5, 9, 3, 15, 14]. Much of the recent work has highlighted
a Bayesian MCMC approach as a way to better understand parameter uncertainties and
degeneracies and to compute model probabilities.

Gregory [8, 9, 10, 11, 12] presented a Bayesian MCMC algorithm that makes use
of parallel tempering to efficiently explore the full range of a large model parameter
space starting from a random location. The prior information insures that any periodic
signal detected satisfies Kepler’s laws and thus the algorithm functions as a Kepler peri-



odogram1. In addition, the Bayesian MCMC algorithm provides full marginal parame-
ters distributions for all the orbital elements that can be determined from radial velocity
data. The samples from the parallel chains can also be used to compute the marginal
likelihood for a given model [8] for use in computing the Bayes factor that is needed
to compare models with different numbers of planets. The parallel tempering MCMC
algorithm employed in this work includes an innovative two stage adaptive control sys-
tem that automates the selection of efficient Gaussian parameter proposal distributions
through an annealing operation. This feature coupled with parallel tempering makes it
practical to attempt a blind search for multiple planets simultaneously. This was done
for the analysis of the current data set and for the analysis of the HD 208487 reported
earlier [11]. Of course, there is no guarantee that the algorithm will discover all modes
in a multiple mode problem. More discussion of the control system is given below.

This paper illustrates how a Bayesian re-analysis of the 87 precision radial velocity
measurements for HD 11964 published by Butler et al. [2] is providing strong evidence
for additional planetary candidates. A more detailed account of many aspects of this
analysis can be found in Gregory [12]. Butler et al. [2] reported the detection of a single
planet with a period of 2110±270d after removing a trend in the data.

RE-ANALYSIS OF HD 11964

The Bayesian multi-planet Kepler periodogram utilizes a parallel tempering Markov
chain Monte Carlo algorithm which yields samples of the joint probability density
distribution of the model parameters and permits a direct comparison of the probabilities
of models with differing numbers of planets. In parallel tempering, multiple MCMC
chains are run in parallel with each chain corresponding to a different temperature. We
parameterize the temperature by its reciprocal,β = 1/T which varies from zero to 1. The
joint probability density distribution for the parameters (~X) of modelMi for a particular
chain is given by

p(~X|D,Mi, I ,β) = P(~X|Mi, I )× p(D|~XMi, I )β (1)

For parameter estimation purposes 12 chains
(β = {0.05,0.1,0.15,0.25,0.35,0.45,0.55,0.65,0.70,0.80,0.90,1.0}) were employed.
At intervals, a pair of adjacent chains on the tempering ladder are chosen at random and
a proposal made to swap their parameter states. The mean number of iterations between
swap proposals was set= 8. A Monte Carlo acceptance rule determines the probability
for the proposed swap to occur. This swap allows for an exchange of information across
the population of parallel simulations. In the higher temperature simulations, radically
different configurations can arise, whereas in higherβ (lower temperature) states, a
configuration is given the chance to refine itself. The final samples are drawn from the
β = 1 chain, which corresponds to the desired target probability distribution. Forβ � 1,
the distribution is much flatter. The choice ofβ values can be checked by computing the

1 Following on from the pioneering work on Bayesian periodograms by Jaynes [13] and Bretthorst [1].



swap acceptance rate. When they are too far apart the swap rate drops to very low values.
For theβ values employed the swap rate was∼ 50%. The lowestβ value was chosen
to achieve a broad sampling of the prior parameter range. A more common strategy is
to propose a swap after each iteration and use fewer more widely spaced chains that
achieve a swap rate of∼ 25%. During the early development phase of the algorithm,
this latter strategy appeared not to be quite as satisfactory, but we plan to re-visit this
issue.

The samples from hotter simulations can also used to evaluate the marginal (global)
likelihood needed for model selection, following Section 12.7 of Gregory [8] and Gre-
gory [12]. Marginal likelihoods estimated in this way require many more parallel simu-
lations. For HD 11964, 40β levels were used spanning the rangeβ = 10−8 to 1.0.

For a one planet model the predicted radial velocity is given

v(ti) = V +K[cos{θ(ti + χP)+ω}+ecosω], (2)

and involves the 6 unknown parameters

V = a constant velocity.
K = velocity semi-amplitude.
P = the orbital period.
e= the orbital eccentricity.
ω = the longitude of periastron.
χ = the fraction of an orbit, prior to the start of data taking, that periastron occurred
at. Thus,χP = the number of days prior toti = 0 that the star was at periastron, for
an orbital period of P days.
θ(ti +χP) = the angle of the star in its orbit relative to periastron at timeti measured
with the focus of the orbital ellipse as the origin, also called the true anomaly.

We utilize this form of the equation because we obtain the dependence ofθ on ti by
solving the conservation of angular momentum equation. Gregory [11] describes the
advantage of this approach.

In a Bayesian analysis we need to specify a suitable prior for each parameter. The
priors used in the current analysis are given in Table 1 of Gregory [12]. Following
Gregory [9], all of the models considered in this paper incorporate an extra additive
noise whose probability distribution is Gaussian with zero mean and standard deviation
s. Marginalizings has the desirable effect of treating anything in the data that can’t be
explained by the model and known measurement errors (e.g., stellar jitter) as noise,
leading to conservative estimates of orbital parameters. Following Gregory [11], we
employed a modified Jeffrey’s prior forswith a knee,s0 = 1m s−1.

MCMC ADAPTIVE CONTROL SYSTEM

The process of choosing a set of useful proposalσ ’s when dealing with a large number
of different parameters can be very time consuming. In parallel tempering MCMC, the
problem is compounded because of the need for a separate set of proposalσ ’s for each
chain. We have automated this process using an innovative two stage statistical control



system (CS) in which the error signal is proportional to the difference between the
current joint parameter acceptance rate and a target acceptance rate, typically 25% [17].

In the first stage, an initial set of proposalσ ’s (≈ 10% of the prior range for each
parameter) are used for each chain. During the major cycles, the joint acceptance rate is
measured based on the current proposalσ ’s. During the minor cycles, each proposalσ is
separately perturbed to determine an approximate gradient in the acceptance rate for that
parameter. Theσ ’s are then jointly modified by a small increment in the direction of this
gradient. This is done for each of the parallel simulations or chains as they are sometimes
called. Proposals to swap parameter values between tempering levels are allowed during
major cycles but not within minor cycles.

Although the first stage CS achieves the desired joint acceptance rate, it often happens
that a subset of the proposalσ ’s are too small leading to an excessive autocorrelation in
the MCMC iterations for these parameters. Part of the second stage CS corrects for this
as follows.

The goal of the second stage is to achieve a set of proposalσ ’s that equalizes
the MCMC acceptance rates when new parameter values are proposed separately and
achieves the desired acceptance rate when they are proposed jointly. Let acc(1) equal
the acceptance for single parameter proposals and acc(m) the desired acceptance rate
(typically 0.25) formparameter joint proposals. We make use of the following relation-
ship between acc(1) and acc(m)

acc(1) = acc(m)1/mkα
, (3)

whereα is given by

α = 0.8061−1.1205×10−2m+3.1233×10−4m2−3.0357×10−6m3, (4)

andk= 0.85 is an empirical determined quantity. Equ. (3) was arrived at in the following
way. An MCMC simulation was run on anm parameter multivariate normal target
probability distribution with a mean for each parameter of zero and a covariance matrix
equal to an identity matrix. New parameters were proposed using another multivariate
normal with mean zero and a covariance matrix equal toγ2 times the identity matrix.
Thus,γ is the ratio of the proposalσ to the target distributionσ for each parameter. For
each choice ofγ in the range 0.4 to 1.1, the MCMC acceptance rate for joint parameter
proposals was determined as a function ofm. For eachγ the acceptance rate was well fit
by a function of the form

acc(m) = acc(1)mαγ
, (5)

and the value ofm= mγ at which acc(m) = 0.25 was noted. Forγ ranging from 0.4 to
1.1,mγ varied from 34 to 5.4 andαγ from 0.667 to 0.755. A cubic polynomial was fit
to the(mγ,αγ) pairs yielding Equ. (3) without the k value. Of course, the actual Kepler
target distribution is not a multivariate normal but with the inclusion of the empirically
determinedk value, Equ. (3) provides a useful scaling relationship.

The next step is to adjust the individual parameter proposalσ ’s to achieve an accep-
tance of acc(1) given by Equ. (3). Using the proposalσ ’s obtained in the first stage CS,
each parameter is allowed to vary one at a time during a minor cycle and the acceptance
rate measured. Letacc1 = the measured acceptance rate when the proposalσ for the



parameter in question wasσ1. We then update the proposalσ for this parameter toσ2
according to

σ2 = σ1

√
(acc1 +∆)

acc(1)
(1−acc(1))

(1−acc1 +∆)
, (6)

where we use a∆ = 0.01.
If acc1 = acc(1), then Equ. (6) leaves the proposalσ unchanged except for the small

effect of the∆ term. The∆ term is there to handle the extremes ofacc1 = 0 and 1
gracefully. Ifacc1 = 1, then we want to increase the proposalσ for that parameter. From
Equ. (6) andm = 17 parameters,σ2/σ1 = 6.7. If on the other handacc1 is too low,
sayacc1 = 0.25, we want to decrease the size of the proposal distribution. In this case,
Equ. (6) yieldsσ2/σ1 = 0.39. Equ. (6) can be iterated for each parameter to achieve a
final set of proposalσ ’s that achieve equal acceptance rates and a final joint acceptance
rate of acc(m). In practice we iterate Equ. (6) twice for each parameter. Other forms of
Equ. (6) could also achieve the same goal in an iterative fashion.

In general, the burn-in period occurs within the span of the first stage CS, i.e., the
significant peaks in the joint parameter probability distribution are found, and the second
stage improves the choice of proposalσ ’s for the highest probability parameter set.
Occasionally, a new higher (by a user specified threshold) target probability parameter
set emerges after the first two stages of the CS are completed. The control system has the
ability to detect this and re-activating the second stage. In this sense the CS is adaptive.
If this happens the iteration corresponding to the end of the control system is reset.
The useful MCMC simulation data is obtained after the first two stages of the CS are
switched off.

Although inclusion of the control system may result in a somewhat longer effective
burn-in period, there is a huge saving in time because it eliminates many trial runs to
manually establish a suitable set of proposalσ ’s. When theσ ’s are large all the MCMC
chains explore broadly the prior distribution and locate significant probability peaks in
the joint parameter space. As the proposalσ ’s are refined these peaks are more efficiently
explored, especially in the higherβ chains. This annealing of the proposalσ ’s typically
takes place over the first 5,000 to 150,000 (unthinned) iterations for one planet and first
5,000 to 300,000 iterations for three planets. This may seem like an excessive number
of iterations but keep in mind that (a) we are dealing with sparse data sets that can have
multiple, widely separated probability peaks, (b) the typical start location in parameter
space is far from the target posterior peak, and (c) we want the MCMC to locate the
most significant probability peak before finalizing the choice of proposalσ ’s. Within
each chain, the CS corresponds to an annealing operation. Taken together with the
parallel tempering, the two operations enhance the chances of detecting peaks in the
target posterior compared to just implementing either one.

RESULTS

Panel (a) of Figure 1 shows the precision radial velocity data for HD 11964 from Butler
et al. [2] who reported a single planet withM sini = 0.61±0.10 in a 2110±270 day
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FIGURE 1. The data is shown in panel (a), the best fitting three planet (P1 = 38,P2 = 357 , &P3 = 1928
days) model versus time in (b), and the residuals in (c). Panel (d) shows the data plotted versusP1 phase
for two cycles, with the best fittingP2 andP3 orbits removed. Panel (e) shows the data plotted versusP2
phase with the best fittingP1 andP3 orbits removed. Panel (f) shows the data plotted versusP3 phase with
the best fittingP1 andP2 orbits removed.

orbit with an eccentricity of 0.06±0.17. Panels (b) and (c) show our best fitting three
planet velocity curve and residuals. The initial starting location in period parameter
space that was used for the Kepler periodogram (P1 = 10,P2 = 500 andP3 = 2300d)
was significantly different from the best location the algorithm found. Similar results
were obtained with other different starting positions.

Table 1 gives our Bayesian three planet orbital parameter values and their marginal
uncertainties. The parameter values given for our analysis are the median of the marginal
probability distribution for the parameter in question and the error bars identify the
boundaries of the 68.3% marginal credible regions. The value immediately below in
square brackets is the maximuma posteriori(MAP) value determined using the Nelder-



TABLE 1. Three planet model parameter estimates.

Parameter planet 1 planet 2 planet 3

P (d) 38.02+0.6
−0.5 360+4

−4 1925+44
−44

[38.07](38.08) [357](356) [1928](1914)

K (m s−1) 4.3+0.7
−0.7 6.1+3.0

−3.3 9.7+0.8
−0.8

[4.8](5.4) [5.4](5.8) [10.0](9.3)

e 0.23+.10
−.22 0.63+.35

−.13 0.05+.03
−.05

[0.31](0.34) [0.63](0.60) [0.09](0.07)

ω (deg) 123+41
−48 103+38

−34 195+80
−74

[111](108) [107](90) [205](208)

a (au) 0.2527+.0085
−.0085 1.132+.039

−.039 3.46+.13
−.13

[0.253](0.253) [1.124](1.123) [3.46](3.45)

M sini (MJ) 0.090+.014
−.015 0.213+.058

−.067 0.77+.08
−.08

[0.098](0.098) [0.191](0.209) [0.795](0.735)

Periastron 12737+6
−3 12397+35

−32 10535+401
−414

passage [12736](12736) [12421](12370) [10564](10598)
(JD - 2,440,000)

Mead [16] downhill simplex method. Next to this, in parenthesis, is the MCMC pa-
rameter value corresponding to the largest joint posterior probability density, which is
an approximation to the MAP value. The values derived for the semi-major axis and
M sini, and their errors, are based on the assumed mass of the star= 1.49±0.15 M�
[18]. Butler et al. [2] assumed a mass of= 1.12 M� but also quote Valenti & Fischer
[18] as the reference. Panel (d) of Figure 1 shows the data with the best fittingP2 andP3
orbits subtracted, for two cycles ofP1 phase with the best fittingP1 orbit overlaid. Panel
(e) shows the data plotted versusP2 phase with the best fittingP1 andP3 orbits removed.
Panel (f) shows the data plotted versusP3 phase with the best fittingP1 andP2 orbits
removed.

Following Gregory [11], the marginal likelihoods and their uncertainties for the 1,2,3
and 4 planet models were computed for the HD 11964 data set. Assuming that all the
models are equally probablea priori, the three planet model was found to be≥ 600
times more probable than the next most probable model which is a two planet model. A
detailed comparison of the different marginal likelihood estimates is given in a Gregory
[12].

For the most probable three planet model, the estimated stellar jitter based on the
MAP value of thes parameter is 1.9m s−1.



CONCLUSIONS

In this paper, we provided further details of the innovative adaptive control system em-
ployed by our automated parallel tempering MCMC nonlinear model fitting algorithm.
This has been applied to the analysis of precision radial velocities for HD 11964 using
1, 2, 3 and 4 planet models. Assuming that all the models are equally probablea priori,
the three planet model was found to be≥ 600 times more probable than the next most
probable model which is a two planet model. The most probable model exhibits three
periods of 38.02+0.06

−0.05, 360+4
−4 and 1924+44

−43 d. The small difference (1.3σ) between the
360 day period and one year suggests that it might be worth investigating the barycentric
correction for the HD 11964 data. Based on our three planet model results, the remaining
unaccounted for stellar jitter parameter is∼ 1.9m s−1.

This research was supported in part by grants from the Canadian Natural Sciences and
Engineering Research Council at the University of British Columbia.
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